A Workload-Aware, Eco-Friendly Daemon
for Cluster Computing

S. Huang and W. Feng
Department of Computer Science
Virginia Tech
{huangs, f eng}@s. vt . edu

Abstract—This paper presents an eco-friendly daemon that e.g., waiting for the completion of a large block of I/O
reduces power consumption while better maintaining high per- accesses. Application performance during such period$-of o
formance via a novel behavioral quantification of workload. chip access is insensitive to processor performance. Thus

Specifically, our behavioral quantification achieves a more ac- d th It d f duri
curate workload characterization than previous approaches by W€ €an reauce thé processor voitage and irequency auring

inferring “processor stall cycles due to off-chip activities.” This Such periods to reduce power consumption while maintaining
quantification, in turn, provides a foundation upon which we con- application performance.
struct an interval-based, power-aware, run-time algorithm thatis However, given that the time to scale voltage and frequency
implemented within a system-wide daemon. We then evaluate our a1a5 0(10,000,000) clock cycles, sophsticated use of D¥FS
power-aware daemon in a cluster-computing environment with - . . . -
the NAS Parallel Benchmarks. The results indicate that our novel needed if energy savings is to b? realized within a perfooaan
behavioral quantification of workload allows our power-aware bound. Enabling such use requires accurate workload charac
daemon to more tightly control performance while delivering terization, one of the main contributions of this work. Then
substantial energy savings. the challenge is to make use of this workload charactedzati
to autonomically scale the frequency and voltage.
Thus, this paper presents a novel methodology for workload
According to a recent IBM report [16], the annual budgeatharacterization on a per-node basis that is then used tdeena
for power and cooling is fast approaching the annual buphtelligent power-aware computing across computationdes
get for new server spending. This is why companies lika a cluster, datacenter, or grid. For the purposes of thipa
Google located one of their new data centers in rural Oreghowever, our focus will be on the former.
on the Columbia River — to take advantage of the cheapWe refer to our power-aware, eco-friendly algorithmeas
hydroelectric power generated by the nearby Grand Coolawd its implementation ascod. Theecod system manages
Dam [17]. Rapidly increasing utility bills, coupled with Wo application performance and power consumption in real time
heat from excessive power affects reliability [5], motesithe based on an accurate measurement of CPU stall cycles due
need for power awareness in cluster computers, whether imoaoff-chip activities and doesot require application-specific
supercomputing center or a large-scale data center. information a priori. The paper will show thaicod controls
One way to address this growing problem is to improvgerformance with only a 4.8% impact (if our performance-
the energy and power efficiency of cluster computers bbund knob is set to 5%) and less than 1% variance, both
different levels of abstraction: hardware [14], [4], syste better than the current state-of-the-art, while savingaup%o
integration [5], systems software [8], [7], middleware [12 in CPU energy and 10% in overall system energy.
and applications software [12]. In this paper, we usgssems- The remainder of the paper is organized as follows. Sec-
software approach that leveragesccurate workload charac- tion Il discusses related work on workload characteriratio
terization via a unique synthesis of hardware performance and power-aware algorithms. Section Il presents our novel
counters in order to determinevhen and how to use dynamic behavioral quantification based on CPU stall cycles duefto of
voltage and frequency scaling (DVFS) to improve energship activities. In Section IV, we present our power-aware,
efficiency while strictly maintaining performance. Becatlse run-time algorithm calledeco, which is implemented as a
power consumption of a processor is proportional to itskcloedlaemon. Sections V and VI present our experimental setup and
frequency and the square of its voltage supply, we use DVR8sults, respectively, followed by a conclusion in Sectith
available on virtually all modern processors, e.g., SpeguS
on Intel and PowerNow! on AMD, to set the voltage and
frequency of the processor so as to reduce power consumptionThe past few years has seen significant research in power-
In a DVFS-enabled processor, a low (or high) poweaware cluster computing, which can be categorized into two
consuming mode corresponds to processor that runs at a kyyes [7]: off-line, trace-based scheduling [1], [6], [25]d on-
(or high) frequency and voltage. Thus, a DVFS algorithriine, profile-based scheduling [8], [11], [7], [3]. For bigy
should reduce the frequency and voltage of a processbe related work below focuses on the latter, which is theemor
only when the processor is not needed to do useful worhallenging problem.

I. INTRODUCTION

Il. RELATED WORK



With respect to on-line, profile-based scheduling, Lim [11jumber of on-chip accesses based on heuristics. As sush, thi
designs an MPI runtime system that dynamically reduces CRigproach only accurately characterizes workload on agerag
performance during communication phases in MPI programs.Finally, the Linux on-demand governor is the most widely
Matthew [3] presents a comprehensive framework for autemployed across laptops, desktops and servers. The Linux on
nomic power-performance adaptation of multi-threaded prdemand governor is provided in tl@PUFr eq subsystem of
grams using thread throttling. However, these two workshaw recent Linux kernel. It dynamically changes CPU frequency
limited application in that they are designed only for MPHandepending on CPU utilization [13]. Because CPU utilization
OpenMP applications, respectively. For power-aware rebeais misleading in terms of characterizing a program’'s waakio
using general workload characterization, Choi and Pedgdm [the on-demand governor cannot efficiently deliver both powe
Hsu and Feng [8]4 algorithm), and Ge et al. [7] possess th&avings while controlling performance loss.
current state-of-the-art for general computing systems.

Choi and Pedram proposed a DVFS approach based on Ill. NoVEL WORKLOAD CHARACTERIZATION

the ratio of off-chip access to on-chip computation timet tha E . he behavi f i
targeted embedded systems. It uses the number of instractio fom a power-aware per_spectlve, the be avior of an appil-
tion can create opportunities for energy savings. Ei@tut

and external memory accesses to compute the ratio of oci‘f]1 ith intensi fvities h b it
chip computation time to on-chip computation time. Howevep"ases With memory=intensive activiies have been ancatira

this workload characterization iEPU-frequency dependent. tive target for DVFS algorithms because the time for a memory

On the one hand, the off-chip access time is constant no maftecess Is independent of how fast the processor is running.

what CPU frequency is used. On the other hand, on-ch hen freqqent memory or I/O accesses dominate aprogram’s
ecution time, they limit how fast the program can finish

computation time will decrease as CPU frequency increas&§CUl S . .
Hence, the ratio of off-chip access to on-chip computaiimet executing. It is thignemory wall that provides an opportunity

depends on the CPU frequency. Moreover, Choi's work on reduce power and energy consumption while maintaining

considers memory access and ignores thread synchromiza 8rformanfce.hln cluster gqmp?tlng and gr:jd envwonmepts,
in exploring energy-saving opportunities. there are further opportunities for power and energy savying

The 3 algorithm [8] of Hsu and Feng assumes that CPBarticularly network process synchronization as well & |/

boundedness is indirectly reflected via the MIPS (mi”iongynchron!zat!on, €.9., tradltlc_)nal coII_chve I./O.' Dugirthe
chronization, CPUs are either waiting or idling.

of instructions per second) rate. Since the MIPS rate on?}m X

approximately reflects CPU boundedness and is dependent o elow we conduct a theore.ncal study on how to best cpntrol
CPU frequency, it cannot accurately characterize apjpbicat perf‘?rm?‘”ce and how t.o derive a param.eketp characterize
workload nore can it effectively bound performance loss. plication workloads, i.e., quantify application b_ehvae
addition, another (arguable) drawback is that thalgorithm then present our method(_)logy _OT‘_hOW to measuosing CPU
takes the entire history of workload into consideration wheStaII cycles due to off-chip activities.

making DVFS decisions. While appropriate for some applica- I
tions, ?{ is not for many other apr?lie:at?ons. Figure 1 prcleaailgsid A. Workioad Characterization

an example of significant workload variance in NPB FT At the systems level, any execution time of a program at
benchmark. Consequently, with the accuracy of the worklo@PU frequencyf can be divided into two parts. One part
characterization compromised, ti¥ealgorithm misses poten- is frequency sensitive, and the other is frequency inseasit
tial opportunities to save energy. As such, thedaptation Correspondingly, we divide the CPU execution cycles inte on
algorithm does not perform well on these benchmarks. chip cyclesC,,, and off-chip cyclesC,; .

i Con+coff :T(f) f (1)
350 - - P fi C,, is the CPU cycles whose execution is affected by
ol I 1IN ) frequency variation whileC,; is the CPU cycles whose
- ___F_ \ | [ | execution is not affected by frequency variation.
® / | [ | We definel,;; to represent the execution time that is CPU
100 ll‘ 'l\ \ J' | l\ frequency insensitive.
50 +—4— I - "'\\j _— 1
’ o1 :U; 4 3 6 7% 9\ T(f):CO”'?_'_TOff 2
eeond When a program runs at maximum frequentys,..,
Fig. 1. MIPS of NPB FT benchmark T(fmm) =Chy - L + Toff (3)

fmax

CPU MISER [7] relies on cache-access statistics to providg; in Eq(3) is the same as in E@&) when executing the
information about the workload. It also assumes that tlsame amount of program instructions sifi¢g; is not affected
number of instructions executed approximately equals tbg the change of CPU frequengy



To quantify the performance loss, we define a parametetSC,.,; UsSing the CPU’s decoder/dispatch stall cycles and
that indicates the performance bound in employing DVFS, measuresC,,, using the sum of the CPU’s decoder stall cycles

T(f) = T(fraz) due to branch mispredictios Cy,-oncr) and full reorder buffer
T(f—;m <6 (4)  (SCreorder). Why choose these two events? They dominate
max CPU stall cycles due to on-chip activities and hardly oyerla
Substituting?'(f) andT'( fna2) from Eq. (2) and (3), respec- with each other. There are also other stall cycles conwitsyt
tively, into Eq. (4), we get e.g. segment load, serialization, and so on. However, our
Con — 5 empirical results show that CPU stall cycles contributed by
) < i . . -
Con + Tost - frnas 7 these events are small; thus, we ignore them in our estimatio
The equation can be reformulated as 2) Off-Chip Measurement:
maz — off — N . AT T -
)\ . fma.} f < 5 (5) Scoff mem * Tmem f + 70 f + idle f
whereSC?/1 is the off-chip measurement of CPU stall cycles
where o due to off-chip activities.N,,., is the number of off-chip

= Con + Loty - frmas (6) memory accesses:,... is the memory-access latency:,
is the CPU stall time for waiting on I/O completion; afig;;.

The workload characterization, denoted byn Eg. (6), can s the CPU idle time. We use L2 cache misses to emulate the
be reformulated as number of off-chip memory accesses and us®ench [10]
Con to measure the memory-access latemgy,,. T;, and T;q.

A= Con + Cofy - fT (7) can be obtained throughpr oc/ st at on Linux systems.
Combining Eq. (1) and (7), we obtain 3) Synthetic Measurement: We obtain our final measure-
) ment by taking the minimum of on-chip and off-chip mea-
)\ = FT(f) = fCos (8) surement of CPU stall cycles due to off-chip activities.
sz(f)ffcoff+fmamCoff . ’ of f
SCopp = min(SCYf;, SCot)

where 0< )\ < 1. The value of\ serves two purposes:
« Intrinsic workload characterization. From Eq. (6), thdVhy take the minimum? Both measurements over-estimate

workload characterization\ is a parameter that is in- thé number of CPU stall cycles. On the one hand, for on-
dependent of the CPU frequency that the applicaticﬁh'p measur_ement, ‘many events can cause CPU stalls, e.qg.
is running at.\ only depends on the application itselfpra”‘:h abortion, serialization, full reorder buffer [Qlitlthere
Eq. (7) shows thah characterizes the percentage of orfS N0 such hardware_ (_ayent t_hat can measure CPU stall cycles
chip cycles out of the total CPU cycles at frequerfgy,.. due to.off-chlp act|V|t|es'd|rec.tIy.. Moreover, most o_f'the
When A equals tol, C,; is 0, which means that the events involve both on-chip actl\_/ltles and off-chip adtas.
program spent all its time on on-chip activities. Wheﬂ'herefor_e, an _ey_ent cannot b_e S|m_pl_y_ treated as an event due
)\ equals0, C,,, must be0, which means the programto on-chip activities or off—.chlp actlvmes..To exacerbahe
spent all its time on off-chip activities. Eq. (8) gives uProblem, the events sometimes overlap with each other. ©n th

a method to quantify the behavior of applications, evepther hand, off-chip measurement is also not accurate énoug

if they are not running on frequencf,q.- Let us take CPU stall cycles due to off-chip memory
« Frequency schedule indicator. In Eqg. (5), assuming tlaecesses as an example. Both off-chip memory accesses and
required performance constraimis constant, running at memory latency are hard to determine precisely. The L2 cache
frequency f is a decreasing function ok. The larger misses measured by the hardware counter usually includes
the X, the more opportunities that exist for saving energyome due to speculative execution. Additionally, due to CPU
within the performance constraint. Sb,can direct us to prefetching and block transfer, some L2 cache misses will
schedule the appropriate frequency for a given workloabde combined and transferred together. Thus, it is not exactl
accurate to measure off-chip memory accesses using L2 cache
B. Methodology for Measuring CPU Off-Chip Sall Cycles  mjsses. The actual number of memory accesses will be smaller
In this section, we present our methodology for measurifigan the measured value.

SCoyy. In order to achieve the desired accuracy, we obtain theTwo facts lead us to combine on-chip and off-chip mea-
CPU stall cycles due to off-chip activities from two aspectgurements. For CPU-bound applications, L2 cache misses are
on-chip (SC27;) and off-chip GCJ11). smaller and the opportunity for combining and overlapping
1) Measuring from the On-Chip Perspective: cache misses is small. Thus, off-chip measurement works
on _ - B B better for CPU-bound applications. For non-CPU-bound ap-
of s = 5Ctotat = 5Con = SCiotat = SChranch = SCreorder plications, however, CPU stall cycles due to off-chip dtigs
whereSCy?, is the on-chip measurement of CPU stall cycledominate the total CPU stall cycles. Therefore, on-chip-mea
due to off-chip activities. For our platform, we measursurement fits non-CPU-bound applications well.



IV. ECOALGORITHM larger than the measured we increase the value éffor the

Here we present our workload-aware, eco-friendly algmithnext mtgrval and' vice versa. . .
called eco. The algorithm consists of multiple components; Consider an interval _OfT(f) In" a program ex_eCL_Itlon.
(1) the high-level algorithm itself that periodically daténes Assume ), is the predlcted workload characterization of
whether to scale the frequency and voltage, (2) WOI‘k|Oé$]e program in an interval. The actual measured workload
prediction to enable the decision of what to scale the fraque c aracter|zat|on.|s Qenoted as,. Let f, be the frequency
(and voltage) to, and (3) once a frequency is determined, h sed on,, which is the frequency the program has been

to schedule and emulate the frequency (and voltage) if tﬁ%r:r:"n? on and I?ﬁ’” be the freﬁuelr(;c%/ basgd O, Wh'Ch
platform does not explicitly support the frequency. IS the irequency the program should have beern running on.
The error in execution time over the interval is

A. Overview of Algorithm 1 1
wdortim | , C=T(fp) = T(fm) = Con (5= ) 9)
Theeco algorithm is an interval-based, run-time algorithm, P m
whose execution time is divided into intervals that span tlvehereC,,, can be measured directly for current intervgl.is
running time of an application program. Within each intérvaalready known in the current interval arfg, can be obtained

the algorithm performs the following: after completing this interval via frequency scheduling,.,i

1) Characterizes the workload for the current interval, as Ed. (10). To compensate for the prediction error, the perfor
noted in Section I11. As stated before, frequent memorymance constraint for next interval becomes
and I/O access, network process synchronization, as well 5= A4 ¢

as CPU idling constitute the three main opportunities for T(f)

power-aware computing. However, these three Opportvlf/hereT( f) is the time for next intervalA is the standard per-

nities vary frc_)m application to appl|cqt|on and C.h.ang?ormance constraint without compensation, grid calculated
from time to time. In short, theco algorithm quantifies via Eq. (9)

the application behavior at run time for each interval.
2) Predicts the workload characterization for the next C. Freguency Scheduling and Emulation

interval. The eco algorithm predicts the workload for  Assuyming that\ is the predicted workload characterization

the next interval based on that of previous intervals. {§; the current interval, then based on Eg. (5), the ideal
uses the average of & window of previous intervals frequency for the current interval is

to predict the workload, since we observe that workload _
tends to be constant for short periods of time. fr = )‘; frmaz (10)

3) Schedules the frequency for the next interval. The eco A+4
algorithm schedules the CPU frequency based on theHowever, due to the physical constraints of the processor
predicted workload characterization in order to maintaiitself, the available frequencies in a real system are bednd
the performance bound while saving as much energy @iRus, f* needs to be calculated as
possible. However, we must address two problems in

frequency scheduling for real systems in this step: (1) 1 =max(fmin, M)
CPUs only support discrete frequencies, and (2) CPU A+o
frequencies have a lower and upper bound. Finally, the calculated frequency* may not be directly
supported on a real system. So, we apply the method proposed
B. Workload Prediction in [8] to emulate the calculated frequengy.

Though workloads may vary from application to applicap. The eco Algorithm
tion, the workloads can still be predictable at some levet. F - .
; . Synthesizing the steps shown above, we design emo

example, we set a window size bfand use the average across

! . . . . algorithm. Figure 2 presents the pseudocode for ¢lo®
the window to predict the\ in current interval. The window : o
size cannot be too large so that the DVES scheduler is reac algorithm. Steps 1 and 2 encompass workload charactenizati

to workload variation, but the window size cannot be too $m %’tep 3 is workload prediction, and Steps 4 and 5 deal with

either as it risks significant prediction error. Empirigaive %requency scheduling and emulation.
set the window size to b by default inecod. V. EXPERIMENTAL SET-UP

Because there will always exist some error in any workload Here we detail the experimental set-up for evaluating our
prediction, we integrate a rectifying mechanism to monitdco algorithm, including hardware and software platform,

and control the global performance slowdown. The basiwer and energy measurement, @wbd implementation.
idea is to calculate the workload prediction error in each

interval and make some correction in the future schedulify Experimental Platform

of frequencies to compensate for the prediction errorialhyt The hardware platform in our experiment includes a four-
the performance bound equals a user-defined performanceaode cluster for computing and an additional node for record
constraintA, e.g. 5%. During execution, if the predictedis ing the power and energy consumption. Each compute node



Hardware: B. Energy Measurement and Processing

n frequenciesfy, - - - fn We use the “Watts Up? PRO ES” power meter to measure
the total system energy for each node. Energy values are
Parameters: recorded immediately before and after the benchmark runs.
The difference of the two energy values is the energy con-
I: time-interval size sumed by the system when the benchmark ran. Since DVFS
§: performance bound scheduling only affects the power consumption of CPU, it is
L: prediction window size (arguably) misleading to evaluate ogco algorithm based
on the energy consumption of total system. So, in addition to
Algorithm: reporting the total system energy, we also evaluate theteffe
of eco on CPU energy by applying a CPU power model used
Initialize the \ window in [8] to isolate the CPU energy from the total system energy.
Repeat

C. The ecod Implementation

Figure 3 illustrates the software architecture of earod
implementation. We implemeetc od as a lightweight daemon
that monitors all the cores in a node and schedules apptepria
frequencies for them. Wheecod starts up, it reads the

J21 — fCoss configuration file and dynamically detects processor sggtin
" 2 = fCoff + fmaxCors e.g. available frequencies, number of cores, etc. In each
sampling interval, the master daemon fetches hardwaneteve
information from the “Hardware Event Monitor Module.”
Then, workload prediction and performance rectificatioa ar
performed. In the end, the master daemon dispatches the
desired frequency to “DVFS Scheduler Module,” which then

1. Measure CPU stall cycles due to off-chip
activities for current interval,
2. Compute coefficienh for current interval

A

3. Predict the workload for next interval
for all A in window [O, L]

A = average(\)

4. Compute the desired frequengy takes care of frequency scheduling of the cores.
5‘ ! fma:n Confi - -
* . _ onfiguration & Detection
f max(fmm’ A+ 6 ) Module
5. Schedule next interval | gt* 4L

Master Daemon

Fig. 2. Pseudocode farco algorithm

Performance Workload
TABLE | Rectification Prediction
POWER/PERFORMANCE MODES FORCE CLUSTER NODE dispatch &~ \.\t‘etch
Frequency (GHz) \oltage (V) DVFS Scheduler Hardware Event
26 1.30 Module Monitor Module

24 1.25

2.2 1.20 ﬁ iL
ig 112 Core 0 m Platform m Core 2
1.0 1.10 Coel [505] [&:-5 ] Cor?

Fig. 3. Software architecture @fcod

contains two dual-core AMD Opteron 2218 processors and
4-GB main memory. Each CPU core includes one 128-K e .
split instruction and data L1 cache. Two cores on the san'?é Parameters and Sensitivity Analys's
die share one 1 MB of L2 cache. Each processor suplsbﬂs ecod is Configurable and tunable. The Configuration pa-
power/performance modes, as shown in Table I. Finally, th@meters as well as their default values for experimenthi t
nodes are interconnected with Gigabit Ethernet. paper are shown in Table Il. The user-configurable parameter
We run Red Hat Linux (kernel version 2.6.18) on eacfir® sampling interval, performance bound, and prediction
compute node. The Linux kernEPUFr eq subsystem is used Window size. Below are the tradeoffs of these user-configurable
for controlling DVFS andPERFCTR for hardware counter parameters.
monitoring. With respect to the benchmarks, we use thetlatese Sampling Interval. As sampling intervals increase in
NAS Parallel Benchmarks (NPB3.2-MPI). We uspi ch2 length, the precision of workload characterization and
(version 1.0.6) to run the benchmarks. its prediction will worsen, resulting in performance that



TABLE I Ny
CONFIGURATION PARAMETERS AND THEIR VALUES INECOD 0o 1|
0.8 1+
Parameter Description Value o7 H
I sampling interval 1 second o5 T

) performance bound 5% -1 e
L prediction window size 3 o5 ]
02 1
0.1 1
o L]

cannot be tightly controlled. Conversely, when the san crafty strack mem smmp parser  bup?  golgel equske  at  mof

pling intervals get too short, the overhead of sampling the
workload and scheduling the frequency is not as easily Fig. 4. Validation of measured against that obtained offline
amortized.

o Performance Bound. The larger the performance bound
(or percentage slowdown), the more energy that will bustrate the predictive performance on CPU-bound, mgmor
saved. However, once the frequency reaches the systehsind, and in-between benchmarks, respectively.
lowest frequency, it cannot save any more energy. Figures 5, 6, and 7 show the comparison between measured

« Prediction Window Size. If the window size is large, the A and predicted\ for thecraf ty, nmcf, andbzi p2 bench-
algorithm will depend on a larger amount of historicamarks, respectively, where the y-axis denotes the workload
information, thus making more instantaneous workloagharacterization.. Over the execution time of the benchmarks,
prediction inaccurate. If the window size is small, théhe difference between measurgdnd predicted\ is within
algorithm will be too sensitive to the workload variation2%. The figures also show that the predictedhanges more

In our experiments, we comparecod with the s- smoothly than measured. This reflects the stability of our

algorithm [8] and the Linux on-demand governor [13]. Thé&lgorithm, vyhich in turn, avoids significant DVF§ schedglin
performance constraint in the algorithm is set to 5%. As for overhead since the larger the frequency transition, theemor

Linux on-demand governor, we use the default configuratiGy€rheéad that is induced in DVFS scheduling [8].
with a sampling rate of 560,000 ms and up threshold of 80%

0995
VI. EXPERIMENTS AND ANALYSIS il B
In this section, we first validate the workload characteri: oo
zation \ obtained by measuring the CPU stall cycles due ti °*? pA=Y

off-chip activities against an off-line approach, desedlin the Yot |
Appendix. Then, we evaluate the workload prediction metho °;..

085

used ineco algorithm along with a sensitivity analysis of °s . ‘ ‘ ‘ . . . .
the algorithm. Finally, we demonstrate the efficacyeafod, T N R T T
our power-aware daemon basedexo, on the NAS Parallel

Benchmarks (NPB3.2-MPI) in a cluster environment.

measured

predicted

Fig. 5. Measured\ versus predicted for cr af t y over execution time
A. Validation of Workload Characterization

Before evaluatingco on the NAS Parallel Benchmarks, we
first validate our workload characterizatiok) on a representa- =~ °*

045

tive set of 10 SPEC CPU2000 benchmarks: three CPU-boun os

|
: S 035 - — 'J— —
three memory-bound, and four in between. Specifically, b 7 |z 7—{’jj -
evaluating\, we indirectly evaluate the measurement of CPL oz ‘rj‘;ﬂ%ﬁmq%qﬁt‘ﬂin i’_ﬁqf;“\ﬁ —
stall cycles due to off-chip activities. - r T
Figure 4 shows our evaluation of measurkdo that of 01
an off-line approach (see Appendix), with the benchmark *% [~~~
arranged in such a way that the CPU-boundedness (i.e., 1 st 1s1 oz 21 so1 ss

axis) of the benchmarks decrease going left to right. Thererr
of the measured to off-line value is only 3.4% on average.

Fig. 6. Measured\ versus predicted\ for ncf over execution time
B. Evaluation of Workload Prediction

Here we use the workload characterization ¢btained by C- Sensitivity Analysis of Performance Bound
CPU stall cycles due to off-chip activities as a baseline to Because one of the contributions of this paper is dwdd
evaluate the effectiveness of our workload prediction meth can more tightly control performance loss, we also evaluate
We chosecrafty, ncf, and bzi p2 SPEC CPU2000 to howecod behaves to differente performance bounds. Figure 8



09

08

.y
0.6

05

! \

0.4

0.3

02

0.1

1 1 21

31 41 51 61 71 81 51 101 111 121 131

=——measured

predicted

Fig.

7.

Measured\ versus predicted for bzi p2 over execution time

TABLE Il
STATISTICS ON PARALLEL EXPERIMENT

ecod 16} on-demand
Performance Mean 5.1% | 10.6% 7.9%
Performance Standard Dey. 3.5% | 10.3% 7.7%
Energy Mean 31.5% | 32.9% 28.6%

cores across four compute nodes, with each compute node
containing four cores. Since the cores on the same die have
a common power/performance mode, we schedule the core
frequency according to the higher one on the same die in
order to guarantee performance.

shows thatecod can bound the performance quite well; the Figures 10 and 11 show the performance control and energy
performance variances for all the performance bounds &&ings ofecod in comparison with the3 algorithm and
within 3%. Figure 9 shows that while maintaining perfort inux on-demand governor, respectively. Table Ill sumzesi
mance,ecod can also achieve up to 56% in energy savingshe statistics on performance loss and energy savings. The

25%

crafty  sixtrack mesa ammp parser bzip2 galgel equake art

m10%

m20%

mcf

Fig. 8.

The performance control efcod for various performance bounds

ammp parser bzip2Z  galgel equake art

crafty  sixtrack  mesa

Os5%
m10%

Mz0%

mcf

Fig. 9. The energy savings efcod for various performance bounds

D. Parallel Experiment

With the validation of our workload characterization and

workload prediction, coupled with our sensitivity anatysall

on a per-node basis as shown above, we are now ready to

performance loss averages 5.1%, which is better thanjthe
algorithm (10.6%) and Linux on-demand governor (7.9%).
The standard deviation adcod is also the best among the

three algorithms.

The CPU energy savings are comparable betweead
(average of 31.5%)5-algorithm (average of 32.9%) and
on-demand governor (average of 28.6%). Considering that
ecod achieves the same energy saving by sacrificing far
less performancegcod clearly performs better than the
algorithm and Linux on-demand governor.

Finally, with respect to overall energy savings;od per-
forms better than the algorithm and the Linux on-demand
governor on average, as shown in Figured@od can achieve
11% energy savings on average across the NAS Parallel
Benchmarks. Botl# and the Linux on-demand governor save
8% of energy for the same benchmarks on average.

35%

30%

25%

20%
Oecod

15% W beta

B ondemand

10%

3%

0% —

bt ep ft is lu sp

-5%

Fig. 10. Performance loss on NAS parallel benchmarks

evaluate oureco algorithm, implemented as an eco-friendly
daemon that we cadicod in a cluster environment. In such an

environment, we expect the performance of our eco-friendly

VIl. CONCLUSION

daemon to be quite good given the additional opportunitiesThis paper presents a novel behavioral quantification of
for energy savings due to frequent memory and I/O acces$jster workloads using CPU stall cycles due to off-chip
network process synchronization, as well as CPU idling.
To evaluateecod, we use the NAS Parallel Benchmarksaware, eco-friendly, run-time algorithm calledo. This algo-
We run the benchmarks with a Class C workload on Ithm dynamically monitors processor states and obtaies th

activities. We leverage this quantification to create a pewe



F0%

60%

50%

40%

30%

20%

10%

0% -

Oecod

W beta

B ondmeand

bt cg ep ft is lu mg 5p

Fig. 11. CPU energy savings on NAS parallel benchmarks

qes 4 I

-5

@ ecod

B bets

B ondemand

Fig. 12. Overall energy savings on NAS parallel benchmarks

[8] C. Hsu and W. Feng. A power-aware run-time system for high-
performance computing. IRroceedings of the ACM/IEEE Supercom-
puting 2005 (SC05), 2005.

[9] AMD Inc. BIOS and kernel developer’s guide for AMD athl@4 and
AMD opteron processors. Feburary 2006.

[10] C. Staelin L. McVoy. Imbench: portable tools for performea analysis.
In Proceedings of the Annual Technical Conference on USENIX, 1996.

[11] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive, treparent
frequency and voltage scaling of communication phases in M& p
grams. InProceedings of the ACM/IEEE Supercomputing 2006 (SCO06),
2006.

[12] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. \@alsubra-
manian. Integrated power management for video streaming to enobil
handheld devices. In Proceedings of the 11th ACM Internatio
Conference, 2003.

[13] Venkatesh Pallipadi and Alexey Starikovskiy. The oméad governor
— past, present, and futur@itawa Linux Symposium Proceedings 2006.

[14] P. Penzes, M. Nustrom, and A. Martin. Transistor sizihgreergy-delay-
efficient circuits. Technical Report. California Instiguof Technology,
2002.

[15] B. Roundtree, D. K. Lowenthal, S. H. Funk, V. W. Freeh, B.
de Supinski, and M. Schulz. Adaptive, transparent frequand voltage
scaling of communication phases in MPI programs.Phoceedings of
the ACM/IEEE Supercomputing 2007 (SC07), 2007.

[16] Chris Scott. Energy efficiency in the data center. 2007.

[17] New York Times. Hiding in plain sight, google seeks morevpo 2006.

APPENDIX
VIIl. OFF-LINE MEASUREMENT OFOFF-CHIP CYCLES

Here we describe an off-line method to calculate the CPU-
boundedness for an application and use it as a baseline to
evaluate our measurement of CPU stall cycles due to off-chip
activities. The method is described below.

1) run the application for each available CPU frequency
and record the corresponding execution time.

2) normalize the execution time for each CPU frequency to
the execution time at maximum CPU frequenty,...

workload characterization at run time in order to guide the 3) draw a graph canvas in which X-axis is CPU cycle time
appropriate scaling of frequencies and voltages in a prall and Y-axis is the execution time of the application.

computing environment. Results show that our implememtati
ecod achieves the best performance control over the

4) draw points onto the canvas. X-coordinate of each point
is the reverse of its running CPU frequency and Y-

adaptation algorithm and Linux on-demand governor while  coordinate of each point is the execution time on that
delivering an overall energy savings of 11%.

(1]

(2]

(3]

REFERENCES

K. W. Cameron, R. Ge, and X. Feng. High-performance, poaveare
distributed computing for scientific applications. IBREE Computer,
2005.

R. Choi and M. Pedram. Fine-grained dynamic voltage anduieaecy
scaling for precise energy and performance trade-off baseti@ratio
of off-chip access to onchip computation timd&EE transactions on
computer-aided design of integrated circuits and systems, 24(1), 2005.
M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D.N8kolopou-
los. Online power-performance adaptation of multithreadexfjrams
using hardware event-based prediction.International Conference on
Supercomputing (1CS06), Queensland, Australia, June 2006.

[4] J. Ebergen, J. Gainsley, and P. Cunningham. Transiszimgsi How

to control the speed and energy consumption of a circuit. énlifith
International Symposium on Asynchronous Circuits and 3yst€2004.

[5] W. Feng and C. Hsu. Green destiny and its evolving partsInho-

vative Supercomputer Architecture Award, International Supercomputer
Conference, Heidelberg, Germany, 2004.

[6] V. Freeh, D. Lowenthal, F. Pan, and N. Kappiah. Using mpigtienergy

(7]

gears in MPI programs on a power-scalable clusterPrimciples and
Practices of Parallel Programming (PPoPP), 2005.

R. Ge, X. Feng, W. Feng, and K. W. Cameron. CPU MISER:
performance-directed, run-time system for power-awaretealss In
International Conference on Parallel Processing, 2007 (ICPPQ7), 2007.

CPU frequency.

5) take the point of maximum frequency as the fixed point
of trend line and use linear least square regression
method to determine the slope of the trend line. The
slope will minimize the least-square error:

n—1
min 3 IT(£) = k(5 = =) = (eI
i=1 K3 max
6) the slope of the line is actually the CPU execution
cycle C,,, when the application is running at maximum
frequency for1l second. In other words, the slope is
the average CPU execution cycles when running on
maximum frequency.
7) use the equation (1) to calculadg .
8) use the equation (8) to calculate



