
A Workload-Aware, Eco-Friendly Daemon
for Cluster Computing

S. Huang and W. Feng
Department of Computer Science

Virginia Tech
{huangs,feng}@cs.vt.edu

Abstract—This paper presents an eco-friendly daemon that
reduces power consumption while better maintaining high per-
formance via a novel behavioral quantification of workload.
Specifically, our behavioral quantification achieves a more ac-
curate workload characterization than previous approaches by
inferring “processor stall cycles due to off-chip activities.” This
quantification, in turn, provides a foundation upon which we con-
struct an interval-based, power-aware, run-time algorithm that is
implemented within a system-wide daemon. We then evaluate our
power-aware daemon in a cluster-computing environment with
the NAS Parallel Benchmarks. The results indicate that our novel
behavioral quantification of workload allows our power-aware
daemon to more tightly control performance while delivering
substantial energy savings.

I. I NTRODUCTION

According to a recent IBM report [16], the annual budget
for power and cooling is fast approaching the annual bud-
get for new server spending. This is why companies like
Google located one of their new data centers in rural Oregon
on the Columbia River — to take advantage of the cheap
hydroelectric power generated by the nearby Grand Cooley
Dam [17]. Rapidly increasing utility bills, coupled with how
heat from excessive power affects reliability [5], motivates the
need for power awareness in cluster computers, whether in a
supercomputing center or a large-scale data center.

One way to address this growing problem is to improve
the energy and power efficiency of cluster computers at
different levels of abstraction: hardware [14], [4], systems
integration [5], systems software [8], [7], middleware [12],
and applications software [12]. In this paper, we use asystems-
software approach that leveragesaccurate workload charac-
terization via a unique synthesis of hardware performance
counters in order to determinewhen and how to use dynamic
voltage and frequency scaling (DVFS) to improve energy
efficiency while strictly maintaining performance. Because the
power consumption of a processor is proportional to its clock
frequency and the square of its voltage supply, we use DVFS,
available on virtually all modern processors, e.g., SpeedStep
on Intel and PowerNow! on AMD, to set the voltage and
frequency of the processor so as to reduce power consumption.

In a DVFS-enabled processor, a low (or high) power-
consuming mode corresponds to processor that runs at a low
(or high) frequency and voltage. Thus, a DVFS algorithm
should reduce the frequency and voltage of a processor
only when the processor is not needed to do useful work,

e.g., waiting for the completion of a large block of I/O
accesses. Application performance during such periods of off-
chip access is insensitive to processor performance. Thus,
we can reduce the processor voltage and frequency during
such periods to reduce power consumption while maintaining
application performance.

However, given that the time to scale voltage and frequency
takes O(10,000,000) clock cycles, sophsticated use of DVFSis
needed if energy savings is to be realized within a performance
bound. Enabling such use requires accurate workload charac-
terization, one of the main contributions of this work. Then,
the challenge is to make use of this workload characterization
to autonomically scale the frequency and voltage.

Thus, this paper presents a novel methodology for workload
characterization on a per-node basis that is then used to enable
intelligent power-aware computing across computational nodes
in a cluster, datacenter, or grid. For the purposes of this paper,
however, our focus will be on the former.

We refer to our power-aware, eco-friendly algorithm aseco
and its implementation asecod. Theecod system manages
application performance and power consumption in real time
based on an accurate measurement of CPU stall cycles due
to off-chip activities and doesnot require application-specific
information a priori. The paper will show thatecod controls
performance with only a 4.8% impact (if our performance-
bound knob is set to 5%) and less than 1% variance, both
better than the current state-of-the-art, while saving up to 50%
in CPU energy and 10% in overall system energy.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work on workload characterization
and power-aware algorithms. Section III presents our novel
behavioral quantification based on CPU stall cycles due to off-
chip activities. In Section IV, we present our power-aware,
run-time algorithm calledeco, which is implemented as a
daemon. Sections V and VI present our experimental setup and
results, respectively, followed by a conclusion in SectionVII.

II. RELATED WORK

The past few years has seen significant research in power-
aware cluster computing, which can be categorized into two
types [7]: off-line, trace-based scheduling [1], [6], [15]and on-
line, profile-based scheduling [8], [11], [7], [3]. For brevity,
the related work below focuses on the latter, which is the more
challenging problem.

With respect to on-line, profile-based scheduling, Lim [11]
designs an MPI runtime system that dynamically reduces CPU
performance during communication phases in MPI programs.
Matthew [3] presents a comprehensive framework for auto-
nomic power-performance adaptation of multi-threaded pro-
grams using thread throttling. However, these two works have
limited application in that they are designed only for MPI and
OpenMP applications, respectively. For power-aware research
using general workload characterization, Choi and Pedram [2],
Hsu and Feng [8] (β algorithm), and Ge et al. [7] possess the
current state-of-the-art for general computing systems.

Choi and Pedram proposed a DVFS approach based on
the ratio of off-chip access to on-chip computation time that
targeted embedded systems. It uses the number of instructions
and external memory accesses to compute the ratio of off-
chip computation time to on-chip computation time. However,
this workload characterization isCPU-frequency dependent.
On the one hand, the off-chip access time is constant no matter
what CPU frequency is used. On the other hand, on-chip
computation time will decrease as CPU frequency increases.
Hence, the ratio of off-chip access to on-chip computation time
depends on the CPU frequency. Moreover, Choi’s work only
considers memory access and ignores thread synchronization
in exploring energy-saving opportunities.

The β algorithm [8] of Hsu and Feng assumes that CPU
boundedness is indirectly reflected via the MIPS (millions
of instructions per second) rate. Since the MIPS rate only
approximately reflects CPU boundedness and is dependent on
CPU frequency, it cannot accurately characterize application
workload nore can it effectively bound performance loss. In
addition, another (arguable) drawback is that theβ algorithm
takes the entire history of workload into consideration when
making DVFS decisions. While appropriate for some applica-
tions, it is not for many other applications. Figure 1 provides
an example of significant workload variance in NPB FT
benchmark. Consequently, with the accuracy of the workload
characterization compromised, theβ algorithm misses poten-
tial opportunities to save energy. As such, theβ-adaptation
algorithm does not perform well on these benchmarks.

Fig. 1. MIPS of NPB FT benchmark

CPU MISER [7] relies on cache-access statistics to provide
information about the workload. It also assumes that the
number of instructions executed approximately equals the

number of on-chip accesses based on heuristics. As such, this
approach only accurately characterizes workload on average.

Finally, the Linux on-demand governor is the most widely
employed across laptops, desktops and servers. The Linux on-
demand governor is provided in theCPUFreq subsystem of
a recent Linux kernel. It dynamically changes CPU frequency
depending on CPU utilization [13]. Because CPU utilization
is misleading in terms of characterizing a program’s workload,
the on-demand governor cannot efficiently deliver both power
savings while controlling performance loss.

III. N OVEL WORKLOAD CHARACTERIZATION

From a power-aware perspective, the behavior of an appli-
cation can create opportunities for energy savings. Execution
phases with memory-intensive activities have been an attrac-
tive target for DVFS algorithms because the time for a memory
access is independent of how fast the processor is running.
When frequent memory or I/O accesses dominate a program’s
execution time, they limit how fast the program can finish
executing. It is thismemory wall that provides an opportunity
to reduce power and energy consumption while maintaining
performance. In cluster computing and grid environments,
there are further opportunities for power and energy savings,
particularly network process synchronization as well as I/O
synchronization, e.g., traditional collective I/O. During the
synchronization, CPUs are either waiting or idling.

Below we conduct a theoretical study on how to best control
performance and how to derive a parameterλ to characterize
application workloads, i.e., quantify application behavior. We
then present our methodology on how to measureλ using CPU
stall cycles due to off-chip activities.

A. Workload Characterization

At the systems level, any execution time of a program at
CPU frequencyf can be divided into two parts. One part
is frequency sensitive, and the other is frequency insensitive.
Correspondingly, we divide the CPU execution cycles into on-
chip cyclesCon and off-chip cyclesCoff .

Con + Coff = T (f) · f (1)

Con is the CPU cycles whose execution is affected by
frequency variation whileCoff is the CPU cycles whose
execution is not affected by frequency variation.

We defineToff to represent the execution time that is CPU
frequency insensitive.

T (f) = Con ·
1

f
+ Toff (2)

When a program runs at maximum frequencyfmax,

T (fmax) = Con ·
1

fmax

+ Toff (3)

Toff in Eq.̃(3) is the same as in Eq.(̃2) when executing the
same amount of program instructions sinceToff is not affected
by the change of CPU frequencyf .

To quantify the performance loss, we define a parameterδ

that indicates the performance bound in employing DVFS,

T (f) − T (fmax)

T (fmax)
< δ (4)

SubstitutingT (f) andT (fmax) from Eq. (2) and (3), respec-
tively, into Eq. (4), we get

Con

Con + Toff · fmax

·
fmax − f

f
< δ

The equation can be reformulated as

λ ·
fmax − f

f
< δ (5)

where
λ =

Con

Con + Toff · fmax

(6)

The workload characterization, denoted byλ in Eq. (6), can
be reformulated as

λ =
Con

Con + Coff · fmax

f

(7)

Combining Eq. (1) and (7), we obtain

λ =
f2T (f) − fCoff

f2T (f) − fCoff + fmaxCoff

(8)

where 0≤ λ ≤ 1. The value ofλ serves two purposes:

• Intrinsic workload characterization. From Eq. (6), the
workload characterizationλ is a parameter that is in-
dependent of the CPU frequency that the application
is running at.λ only depends on the application itself.
Eq. (7) shows thatλ characterizes the percentage of on-
chip cycles out of the total CPU cycles at frequencyfmax.
When λ equals to1, Coff is 0, which means that the
program spent all its time on on-chip activities. When
λ equals0, Con must be0, which means the program
spent all its time on off-chip activities. Eq. (8) gives us
a method to quantify the behavior of applications, even
if they are not running on frequencyfmax.

• Frequency schedule indicator. In Eq. (5), assuming the
required performance constraintδ is constant, running at
frequencyf is a decreasing function ofλ. The larger
theλ, the more opportunities that exist for saving energy
within the performance constraint. So,λ can direct us to
schedule the appropriate frequency for a given workload.

B. Methodology for Measuring CPU Off-Chip Stall Cycles

In this section, we present our methodology for measuring
SCoff . In order to achieve the desired accuracy, we obtain the
CPU stall cycles due to off-chip activities from two aspects:
on-chip (SCon

off) and off-chip (SC
off
off).

1) Measuring from the On-Chip Perspective:

SCon
off = SCtotal−SCon ≃ SCtotal−SCbranch−SCreorder

whereSCon
off is the on-chip measurement of CPU stall cycles

due to off-chip activities. For our platform, we measure

SCtotal using the CPU’s decoder/dispatch stall cycles and
measureSCon using the sum of the CPU’s decoder stall cycles
due to branch misprediction (SCbranch) and full reorder buffer
(SCreorder). Why choose these two events? They dominate
CPU stall cycles due to on-chip activities and hardly overlap
with each other. There are also other stall cycles contributors,
e.g. segment load, serialization, and so on. However, our
empirical results show that CPU stall cycles contributed by
these events are small; thus, we ignore them in our estimation.

2) Off-Chip Measurement:

SC
off
off = Nmem · τmem · f + Tio · f + Tidle · f

whereSC
off
off is the off-chip measurement of CPU stall cycles

due to off-chip activities.Nmen is the number of off-chip
memory accesses;τmem is the memory-access latency;Tio

is the CPU stall time for waiting on I/O completion; andTidle

is the CPU idle time. We use L2 cache misses to emulate the
number of off-chip memory accesses and useLMBench [10]
to measure the memory-access latencyτmem. Tio and Tidle

can be obtained through/proc/stat on Linux systems.

3) Synthetic Measurement: We obtain our final measure-
ment by taking the minimum of on-chip and off-chip mea-
surement of CPU stall cycles due to off-chip activities.

SCoff = min(SCon
off , SC

off
off)

Why take the minimum? Both measurements over-estimate
the number of CPU stall cycles. On the one hand, for on-
chip measurement, many events can cause CPU stalls, e.g.
branch abortion, serialization, full reorder buffer [9], but there
is no such hardware event that can measure CPU stall cycles
due to off-chip activities directly. Moreover, most of the
events involve both on-chip activities and off-chip activities.
Therefore, an event cannot be simply treated as an event due
to on-chip activities or off-chip activities. To exacerbate the
problem, the events sometimes overlap with each other. On the
other hand, off-chip measurement is also not accurate enough.

Let us take CPU stall cycles due to off-chip memory
accesses as an example. Both off-chip memory accesses and
memory latency are hard to determine precisely. The L2 cache
misses measured by the hardware counter usually includes
some due to speculative execution. Additionally, due to CPU
prefetching and block transfer, some L2 cache misses will
be combined and transferred together. Thus, it is not exactly
accurate to measure off-chip memory accesses using L2 cache
misses. The actual number of memory accesses will be smaller
than the measured value.

Two facts lead us to combine on-chip and off-chip mea-
surements. For CPU-bound applications, L2 cache misses are
smaller and the opportunity for combining and overlapping
cache misses is small. Thus, off-chip measurement works
better for CPU-bound applications. For non-CPU-bound ap-
plications, however, CPU stall cycles due to off-chip activities
dominate the total CPU stall cycles. Therefore, on-chip mea-
surement fits non-CPU-bound applications well.

IV. ECO ALGORITHM

Here we present our workload-aware, eco-friendly algorithm
called eco. The algorithm consists of multiple components:
(1) the high-level algorithm itself that periodically determines
whether to scale the frequency and voltage, (2) workload
prediction to enable the decision of what to scale the frequency
(and voltage) to, and (3) once a frequency is determined, how
to schedule and emulate the frequency (and voltage) if the
platform does not explicitly support the frequency.

A. Overview of Algorithm

Theeco algorithm is an interval-based, run-time algorithm,
whose execution time is divided into intervals that span the
running time of an application program. Within each interval,
the algorithm performs the following:

1) Characterizes the workload for the current interval, as
noted in Section III. As stated before, frequent memory
and I/O access, network process synchronization, as well
as CPU idling constitute the three main opportunities for
power-aware computing. However, these three opportu-
nities vary from application to application and change
from time to time. In short, theeco algorithm quantifies
the application behavior at run time for each interval.

2) Predicts the workload characterization for the next
interval. The eco algorithm predicts the workload for
the next interval based on that of previous intervals. It
uses the average of aλ window of previous intervals
to predict the workload, since we observe that workload
tends to be constant for short periods of time.

3) Schedules the frequency for the next interval. The eco
algorithm schedules the CPU frequency based on the
predicted workload characterization in order to maintain
the performance bound while saving as much energy as
possible. However, we must address two problems in
frequency scheduling for real systems in this step: (1)
CPUs only support discrete frequencies, and (2) CPU
frequencies have a lower and upper bound.

B. Workload Prediction

Though workloads may vary from application to applica-
tion, the workloads can still be predictable at some level. For
example, we set a window size ofL and use the average across
the window to predict theλ in current interval. The window
size cannot be too large so that the DVFS scheduler is reactive
to workload variation, but the window size cannot be too small
either as it risks significant prediction error. Empirically, we
set the window size to be3 by default inecod.

Because there will always exist some error in any workload
prediction, we integrate a rectifying mechanism to monitor
and control the global performance slowdown. The basic
idea is to calculate the workload prediction error in each
interval and make some correction in the future scheduling
of frequencies to compensate for the prediction error. Initially,
the performance boundδ equals a user-defined performance
constraint∆, e.g. 5%. During execution, if the predictedλ is

larger than the measuredλ, we increase the value ofδ for the
next interval and vice versa.

Consider an interval ofT (f) in a program execution.
Assume λp is the predicted workload characterization of
the program in an interval. The actual measured workload
characterization is denoted asλm. Let fp be the frequency
based onλp, which is the frequency the program has been
running on and letfm be the frequency based onλm, which
is the frequency the program should have been running on.

The error in execution time over the interval is

ζ = T (fp) − T (fm) = Con · (
1

fp

−
1

fm

) (9)

whereCon can be measured directly for current interval.fp is
already known in the current interval andfm can be obtained
after completing this interval via frequency scheduling, i.e.,
Eq. (10). To compensate for the prediction error, the perfor-
mance constraint for next interval becomes

δ = ∆ +
ζ

T (f)

whereT (f) is the time for next interval,∆ is the standard per-
formance constraint without compensation, andζ is calculated
via Eq. (9).

C. Frequency Scheduling and Emulation

Assuming that̄λ is the predicted workload characterization
for the current interval, then based on Eq. (5), the ideal
frequency for the current interval is

f∗ =
λ̄ · fmax

λ̄ + δ
(10)

However, due to the physical constraints of the processor
itself, the available frequencies in a real system are bounded.
Thus,f∗ needs to be calculated as

f∗ = max(fmin,
λ̄ · fmax

λ̄ + δ
)

Finally, the calculated frequencyf∗ may not be directly
supported on a real system. So, we apply the method proposed
in [8] to emulate the calculated frequencyf∗.

D. The eco Algorithm

Synthesizing the steps shown above, we design oureco
algorithm. Figure 2 presents the pseudocode for theeco
algorithm. Steps 1 and 2 encompass workload characterization.
Step 3 is workload prediction, and Steps 4 and 5 deal with
frequency scheduling and emulation.

V. EXPERIMENTAL SET-UP

Here we detail the experimental set-up for evaluating our
eco algorithm, including hardware and software platform,
power and energy measurement, andecod implementation.

A. Experimental Platform

The hardware platform in our experiment includes a four-
node cluster for computing and an additional node for record-
ing the power and energy consumption. Each compute node

Hardware:

n frequenciesf1, · · ·, fn

Parameters:

I: time-interval size
δ: performance bound
L: prediction window size

Algorithm:

Initialize theλ window
Repeat

1. Measure CPU stall cycles due to off-chip
activities for current intervalCoff

2. Compute coefficientλ for current interval

λ =
f2I − fCoff

f2I − fCoff + fmaxCoff

3. Predict the workload for next interval
for all λ in window [0, L]

λ̄ = average(λ)

4. Compute the desired frequencyf∗

f∗ = max(fmin,
λ̄ · fmax

λ̄ + δ
)

5. Schedule next interval I atf∗

Fig. 2. Pseudocode foreco algorithm

TABLE I
POWER/PERFORMANCE MODES FORICE CLUSTER NODE

Frequency (GHz) Voltage (V)
2.6 1.30
2.4 1.25
2.2 1.20
2.0 1.15
1.8 1.15
1.0 1.10

contains two dual-core AMD Opteron 2218 processors and
4-GB main memory. Each CPU core includes one 128-KB
split instruction and data L1 cache. Two cores on the same
die share one 1 MB of L2 cache. Each processor supportssix
power/performance modes, as shown in Table I. Finally, the
nodes are interconnected with Gigabit Ethernet.

We run Red Hat Linux (kernel version 2.6.18) on each
compute node. The Linux kernelCPUFreq subsystem is used
for controlling DVFS andPERFCTR for hardware counter
monitoring. With respect to the benchmarks, we use the latest
NAS Parallel Benchmarks (NPB3.2-MPI). We usempich2
(version 1.0.6) to run the benchmarks.

B. Energy Measurement and Processing

We use the “Watts Up? PRO ES” power meter to measure
the total system energy for each node. Energy values are
recorded immediately before and after the benchmark runs.
The difference of the two energy values is the energy con-
sumed by the system when the benchmark ran. Since DVFS
scheduling only affects the power consumption of CPU, it is
(arguably) misleading to evaluate oureco algorithm based
on the energy consumption of total system. So, in addition to
reporting the total system energy, we also evaluate the effect
of eco on CPU energy by applying a CPU power model used
in [8] to isolate the CPU energy from the total system energy.

C. The ecod Implementation

Figure 3 illustrates the software architecture of ourecod
implementation. We implementecod as a lightweight daemon
that monitors all the cores in a node and schedules appropriate
frequencies for them. Whenecod starts up, it reads the
configuration file and dynamically detects processor settings,
e.g. available frequencies, number of cores, etc. In each
sampling interval, the master daemon fetches hardware-event
information from the “Hardware Event Monitor Module.”
Then, workload prediction and performance rectification are
performed. In the end, the master daemon dispatches the
desired frequency to “DVFS Scheduler Module,” which then
takes care of frequency scheduling of the cores.

Fig. 3. Software architecture ofecod

D. Parameters and Sensitivity Analysis

ecod is configurable and tunable. The configuration pa-
rameters as well as their default values for experiments in this
paper are shown in Table II. The user-configurable parameters
are sampling interval, performance bound, and prediction
window size. Below are the tradeoffs of these user-configurable
parameters.

• Sampling Interval. As sampling intervals increase in
length, the precision of workload characterization and
its prediction will worsen, resulting in performance that

TABLE II
CONFIGURATION PARAMETERS AND THEIR VALUES INECOD

Parameter Description Value
I sampling interval 1 second
δ performance bound 5%
L prediction window size 3

cannot be tightly controlled. Conversely, when the sam-
pling intervals get too short, the overhead of sampling the
workload and scheduling the frequency is not as easily
amortized.

• Performance Bound. The larger the performance bound
(or percentage slowdown), the more energy that will be
saved. However, once the frequency reaches the system’s
lowest frequency, it cannot save any more energy.

• Prediction Window Size. If the window size is large, the
algorithm will depend on a larger amount of historical
information, thus making more instantaneous workload
prediction inaccurate. If the window size is small, the
algorithm will be too sensitive to the workload variation.

In our experiments, we compareecod with the β-
algorithm [8] and the Linux on-demand governor [13]. The
performance constraint in theβ algorithm is set to 5%. As for
Linux on-demand governor, we use the default configuration
with a sampling rate of 560,000 ms and up threshold of 80%.

VI. EXPERIMENTS AND ANALYSIS

In this section, we first validate the workload characteri-
zation λ obtained by measuring the CPU stall cycles due to
off-chip activities against an off-line approach, described in the
Appendix. Then, we evaluate the workload prediction method
used ineco algorithm along with a sensitivity analysis of
the algorithm. Finally, we demonstrate the efficacy ofecod,
our power-aware daemon based oneco, on the NAS Parallel
Benchmarks (NPB3.2-MPI) in a cluster environment.

A. Validation of Workload Characterization

Before evaluatingeco on the NAS Parallel Benchmarks, we
first validate our workload characterization (λ) on a representa-
tive set of 10 SPEC CPU2000 benchmarks: three CPU-bound,
three memory-bound, and four in between. Specifically, by
evaluatingλ, we indirectly evaluate the measurement of CPU
stall cycles due to off-chip activities.

Figure 4 shows our evaluation of measuredλ to that of
an off-line approach (see Appendix), with the benchmarks
arranged in such a way that the CPU-boundedness (i.e., Y-
axis) of the benchmarks decrease going left to right. The error
of the measuredλ to off-line value is only 3.4% on average.

B. Evaluation of Workload Prediction

Here we use the workload characterization (λ) obtained by
CPU stall cycles due to off-chip activities as a baseline to
evaluate the effectiveness of our workload prediction method.
We chosecrafty, mcf, and bzip2 SPEC CPU2000 to

Fig. 4. Validation of measuredλ against that obtained offline

illustrate the predictive performance on CPU-bound, memory-
bound, and in-between benchmarks, respectively.

Figures 5, 6, and 7 show the comparison between measured
λ and predictedλ for thecrafty, mcf, andbzip2 bench-
marks, respectively, where the y-axis denotes the workload
characterizationλ. Over the execution time of the benchmarks,
the difference between measuredλ and predictedλ is within
2%. The figures also show that the predictedλ changes more
smoothly than measuredλ. This reflects the stability of our
algorithm, which in turn, avoids significant DVFS scheduling
overhead since the larger the frequency transition, the more
overhead that is induced in DVFS scheduling [8].

Fig. 5. Measuredλ versus predictedλ for crafty over execution time

Fig. 6. Measuredλ versus predictedλ for mcf over execution time

C. Sensitivity Analysis of Performance Bound

Because one of the contributions of this paper is thatecod
can more tightly control performance loss, we also evaluate
howecod behaves to differente performance bounds. Figure 8

Fig. 7. Measuredλ versus predictedλ for bzip2 over execution time

shows thatecod can bound the performance quite well; the
performance variances for all the performance bounds are
within 3%. Figure 9 shows that while maintaining perfor-
mance,ecod can also achieve up to 56% in energy savings.

Fig. 8. The performance control ofecod for various performance bounds

Fig. 9. The energy savings ofecod for various performance bounds

D. Parallel Experiment

With the validation of our workload characterization and
workload prediction, coupled with our sensitivity analysis, all
on a per-node basis as shown above, we are now ready to
evaluate oureco algorithm, implemented as an eco-friendly
daemon that we callecod in a cluster environment. In such an
environment, we expect the performance of our eco-friendly
daemon to be quite good given the additional opportunities
for energy savings due to frequent memory and I/O access,
network process synchronization, as well as CPU idling.

To evaluateecod, we use the NAS Parallel Benchmarks.
We run the benchmarks with a Class C workload on 16

TABLE III
STATISTICS ON PARALLEL EXPERIMENT

ecod β on-demand
Performance Mean 5.1% 10.6% 7.9%

Performance Standard Dev. 3.5% 10.3% 7.7%
Energy Mean 31.5% 32.9% 28.6%

cores across four compute nodes, with each compute node
containing four cores. Since the cores on the same die have
a common power/performance mode, we schedule the core
frequency according to the higher one on the same die in
order to guarantee performance.

Figures 10 and 11 show the performance control and energy
savings ofecod in comparison with theβ algorithm and
Linux on-demand governor, respectively. Table III summarizes
the statistics on performance loss and energy savings. The
performance loss averages 5.1%, which is better than theβ

algorithm (10.6%) and Linux on-demand governor (7.9%).
The standard deviation ofecod is also the best among the
three algorithms.

The CPU energy savings are comparable betweenecod
(average of 31.5%),β-algorithm (average of 32.9%) and
on-demand governor (average of 28.6%). Considering that
ecod achieves the same energy saving by sacrificing far
less performance,ecod clearly performs better than theβ
algorithm and Linux on-demand governor.

Finally, with respect to overall energy savings,ecod per-
forms better than theβ algorithm and the Linux on-demand
governor on average, as shown in Figure 12.ecod can achieve
11% energy savings on average across the NAS Parallel
Benchmarks. Bothβ and the Linux on-demand governor save
8% of energy for the same benchmarks on average.

Fig. 10. Performance loss on NAS parallel benchmarks

VII. C ONCLUSION

This paper presents a novel behavioral quantification of
cluster workloads using CPU stall cycles due to off-chip
activities. We leverage this quantification to create a power-
aware, eco-friendly, run-time algorithm calledeco. This algo-
rithm dynamically monitors processor states and obtains the

Fig. 11. CPU energy savings on NAS parallel benchmarks

Fig. 12. Overall energy savings on NAS parallel benchmarks

workload characterization at run time in order to guide the
appropriate scaling of frequencies and voltages in a parallel
computing environment. Results show that our implementation
ecod achieves the best performance control over theβ-
adaptation algorithm and Linux on-demand governor while
delivering an overall energy savings of 11%.

REFERENCES

[1] K. W. Cameron, R. Ge, and X. Feng. High-performance, power-aware
distributed computing for scientific applications. InIEEE Computer,
2005.

[2] R. Choi and M. Pedram. Fine-grained dynamic voltage and frequency
scaling for precise energy and performance trade-off based on the ratio
of off-chip access to onchip computation times.IEEE transactions on
computer-aided design of integrated circuits and systems, 24(1), 2005.

[3] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopou-
los. Online power-performance adaptation of multithreaded programs
using hardware event-based prediction. InInternational Conference on
Supercomputing (ICS06), Queensland, Australia, June 2006.

[4] J. Ebergen, J. Gainsley, and P. Cunningham. Transistor sizing: How
to control the speed and energy consumption of a circuit. In the 10th
International Symposium on Asynchronous Circuits and Systems, 2004.

[5] W. Feng and C. Hsu. Green destiny and its evolving parts. In Inno-
vative Supercomputer Architecture Award, International Supercomputer
Conference, Heidelberg, Germany, 2004.

[6] V. Freeh, D. Lowenthal, F. Pan, and N. Kappiah. Using multiple energy
gears in MPI programs on a power-scalable cluster. InPrinciples and
Practices of Parallel Programming (PPoPP), 2005.

[7] R. Ge, X. Feng, W. Feng, and K. W. Cameron. CPU MISER: A
performance-directed, run-time system for power-aware clusters. In
International Conference on Parallel Processing, 2007 (ICPP07), 2007.

[8] C. Hsu and W. Feng. A power-aware run-time system for high-
performance computing. InProceedings of the ACM/IEEE Supercom-
puting 2005 (SC05), 2005.

[9] AMD Inc. BIOS and kernel developer’s guide for AMD athlon64 and
AMD opteron processors. Feburary 2006.

[10] C. Staelin L. McVoy. lmbench: portable tools for performance analysis.
In Proceedings of the Annual Technical Conference on USENIX, 1996.

[11] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive, transparent
frequency and voltage scaling of communication phases in MPI pro-
grams. InProceedings of the ACM/IEEE Supercomputing 2006 (SC06),
2006.

[12] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubra-
manian. Integrated power management for video streaming to mobile
handheld devices. In Proceedings of the 11th ACM International
Conference, 2003.

[13] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand governor
– past, present, and future.Ottawa Linux Symposium Proceedings 2006.

[14] P. Penzes, M. Nustrom, and A. Martin. Transistor sizing of energy-delay-
efficient circuits. Technical Report. California Institute of Technology,
2002.

[15] B. Roundtree, D. K. Lowenthal, S. H. Funk, V. W. Freeh, B.R.
de Supinski, and M. Schulz. Adaptive, transparent frequency and voltage
scaling of communication phases in MPI programs. InProceedings of
the ACM/IEEE Supercomputing 2007 (SC07), 2007.

[16] Chris Scott. Energy efficiency in the data center. 2007.
[17] New York Times. Hiding in plain sight, google seeks more power. 2006.

APPENDIX

VIII. O FF-L INE MEASUREMENT OFOFF-CHIP CYCLES

Here we describe an off-line method to calculate the CPU-
boundedness for an application and use it as a baseline to
evaluate our measurement of CPU stall cycles due to off-chip
activities. The method is described below.

1) run the application for each available CPU frequency
and record the corresponding execution time.

2) normalize the execution time for each CPU frequency to
the execution time at maximum CPU frequencyfmax.

3) draw a graph canvas in which X-axis is CPU cycle time
and Y-axis is the execution time of the application.

4) draw points onto the canvas. X-coordinate of each point
is the reverse of its running CPU frequency and Y-
coordinate of each point is the execution time on that
CPU frequency.

5) take the point of maximum frequency as the fixed point
of trend line and use linear least square regression
method to determine the slope of the trend line. The
slope will minimize the least-square error:

min

n−1∑

i=1

||T (fi) − k(
1

fi

−
1

fmax

) − T (fmax)||2

6) the slope of the line is actually the CPU execution
cycle Con when the application is running at maximum
frequency for1 second. In other words, the slope is
the average CPU execution cycles when running on
maximum frequency.

7) use the equation (1) to calculateCoff .
8) use the equation (8) to calculateβ.

