
Accelerating Data-Serial Applications on Data-Parallel GPGPUs:
A Systems Approach

Ashwin M. Aji and Wu-chun Feng
Department of Computer Science

Virginia Tech
{aaji,feng}@cs.vt.edu

Abstract

The general-purpose graphics processing unit (GPGPU) continues to make significant
strides in high-end computing by delivering unprecedented performance at a commodity price.
However, the many-core architecture of the GPGPU currently allows only data-parallel appli-
cations to extract the full potential out of the hardware. Applications that require frequent
synchronization during their execution do not experience much performance gain out of the
GPGPU. This is mainly due to the lack of explicit hardware or software support for inter-thread
communication across the entire GPGPU chip.

In this paper, we design, implement, and evaluate a highly-efficient software barrier that
synchronizes all the thread blocks running on an offloaded kernel on the GPGPU without
having to transfer execution control back to the host processor. We show that our custom
software barrier achieves a three-fold performance improvement over the existing approach,
i.e., synchronization via the host processor.

To illustrate the aforementioned performance benefit, we parallelize a data-serial applica-
tion, specifically an optimal sequence-search algorithm called Smith-Waterman (SWat), that
requires frequent barrier synchronization across the many cores of the nVIDIA GeForce GTX
280 GPGPU. Our parallelization consists of a suite of optimization techniques — optimal
data layout, coalesced memory accesses, and blocked data decomposition. Then, when cou-
pled with our custom software-barrier implementation, we achieve nearly a nine-fold speed-up
over the serial implementation of SWat. We also show that our solution delivers 25× faster
on-chip execution than the naı̈ve implementation.

1 Introduction
While computational horsepower continues to double, it does so via doubling the number of cores
in both multi-core and many-core architectures. Among the increasingly commodity many-core
architectures are nVIDIA’s and AMD/ATI’s general-purpose graphics processing units (GPGPUs),
which until recently, were used mainly for accelerating only graphics-based applications. With the
elimination of key architectural limitations, the GPUs have evolved from the traditional graphics
pipeline model into programmable devices that are suited for accelerating scientific applications,
e.g., [9].

1



However, the many-core architecture of the GPGPU typically maps well only to data-parallel
applications that have minimal to no inter-thread communication. Applications that require fre-
quent synchronization during their execution do not experience much performance gain out of the
GPGPU. This is mainly due to the lack of explicit hardware or software support for inter-thread
communication across the entire GPGPU chip.

The current (implicit) barrier strategy for the CUDA platform is to simply re-launch a new
kernel, which is an expensive operation. In this paper, we design, implement, and evaluate a
custom software-barrier implementation for the CUDA platform that explicitly synchronizes all
the threads running in the kernel without having to transfer control to the host processor. We show
that our software-barrier implementation achieves a three-fold performance improvement over the
existing approach, i.e., synchronization via the host processor.

To illustrate the effectiveness of our software barrier, we parallelize a data-serial application,
specifically an optimal sequence-search algorithm called Smith-Waterman (SWat) [8], which re-
quires frequent barrier synchronization across the many cores of the nVIDIA GeForce GTX 280
GPGPU. The SWat algorithm is used extensively in a wide range of areas from estimating evolu-
tionary histories to identifying possible drugs to assisting in the cure of prevalent diseases. How-
ever, the exponential growth in the size of nucleotide and protein databases has made the optimal
sequence-search algorithms impractical to search on these databases because of their quadratic
time and space complexity. Thus, there exists a need to parallelize the Smith-Waterman algo-
rithm. In addition, parallelizing the SWat algorithm means parallelizing the dynamic programming
paradigm, which is one of the 13 dwarfs1 [2] of parallel programming.

In this paper, we present CUDA-SWat – a highly efficient parallelization of the Smith-Waterman
code on the CUDA programming platform [7] of the nVIDIA GeForce GTX 280 GPGPU. The ac-
celerated code makes use of a series of optimizations, including optimal data-layout strategies,
coalesced memory accesses, and blocked data decomposition techniques. First, we optimize the
data-layout strategy so that the data is compatible with the SIMD-processing style of the CUDA
platform. Next, we coalesce (align) the data accesses, according to the CUDA optimization guide-
lines. We then group data elements into tiles to improve the locality of computation. We show that
these optimizations, in tandem with our custom software-barrier implementation, significantly en-
hances the parallel performance of the algorithm.

Specifically, we show that the cumulative effect of our optimizations results in nearly a nine-
fold speed-up over the serial implementation of SWat. We also show that our solution delivers
25× faster on-chip execution than the naı̈ve implementation.

In summary, this paper will detail the strategies involved in efficiently mapping the (essentially)
data-serial Smith-Waterman algorithm onto the data-parallel GPGPU architecture of the nVIDIA
GeForce GTX 280 in order to extract the maximum performance out of the hardware.

1.1 Related Work
Smith-Waterman has previously been implemented on the GPGPU by using graphics primitives [5,
4], and more recently, using CUDA [6]. While the older implementations that use graphics prim-
itives report decent speedups over the serial implementation, they are now obsolete, and we will
not learn much from them in terms of developing general programming models on the current

1A dwarf is an algorithmic method that captures a pattern of computation and communication.

2



generation of GPGPUs, which mostly use regular C-style libraries.
The CUDA implementation of Smith-Waterman reports speed-ups of up to 30-fold, but it suf-

fers from the following limitations. First, its approach only follows a coarse-grained parallelization
by assigning a single problem instance to each thread on the device, thereby sharing the available
GPGPU resources among multiple concurrent problem instances. This approach severely restricts
the maximum problem size that can be solved by the GPGPU. Our implementation follows fine-
grained parallelization by distributing the task of processing a single problem instance across all
the threads on the GPGPU, thereby supporting realistic problem sizes. Lastly, to the best of our
knowledge, no other work has attempted to implement a barrier synchronization mechanism across
all the thread blocks in the CUDA programming environment.

The rest of this paper is organized as follows: Section 2 describes the nVIDIA GeForce GTX
280 architecture and the CUDA programming model. Section 3 presents the sequential Smith-
Waterman algorithm. Section 4 describes the various optimization strategies to parallelize Smith-
Waterman on the CUDA platform. Section 5 presents and discusses the results. Section 6 con-
cludes the paper.

2 The nVIDIA GeForce GTX 280 GPGPU
This section summarizes the many-core, SIMT (Single-Instruction, Multiple-Thread) architecture
of the nVIDIA Geforce GTX 280 GPGPU and the CUDA (Compute Unified Device Architecture)
programming model [7].

2.1 GTX 280 Architecture
The GTX 280 GPGPU (or device) is implemented as a set of 30 SIMT streaming multiprocessors
(SMs), where each multiprocessor consists of eight scalar processor (SP) cores running at 1.2 GHz,
16-KB on-chip shared memory, and a multi-threaded instruction unit.

The device memory, which can be accessed by all the SMs, consists of 1 GB of read-write
global memory, 64 KB of read-only constant memory and read-only texture memory. However,
all the device memory modules can be read or written to by the host processor. Each SM has on-
chip memory, which can be accessed by all the SPs within the SM and will be one of the following
four types: a set of 8192 local 32-bit registers; 16 KB of parallel, shared, and software-managed
data cache; a read-only constant cache that caches the data from the constant device memory; and
a read-only texture cache that caches the data from the texture device memory. The global memory
space is not cached by the device.

2.2 CUDA Programming Model
CUDA is the parallel programming model and software environment provided by nVIDIA to run
applications on their graphics cards. CUDA abstracts the architecture to parallel programmers
via simple extensions to C. For this paper, we have used CUDA version 2.0 as our programming
interface.

CUDA follows the code off-load model, i.e. data-parallel, compute-intensive portions of ap-
plications running on the host processor are typically off-loaded onto the device. The kernel is the

3



portion of the program that is compiled to the instruction set of the device and then downloaded to
the device before execution.

Each kernel executes as a bunch of threads, which are logically organized in the form a grid
of thread blocks. The dimensions of the blocks and the grid of thread blocks are specified as
parameters before each kernel launch. Threads can be identified in code by the built-in thread
and block identifiers that are generated by the CUDA run-time system. The kernel executes on
the device such that each SM processes batches of blocks, one batch after the other. A thread
block is mapped to execute on only one SM, but a single SM can execute multiple thread blocks
simultaneously, depending on the register and memory requirements of each block. The on-chip
shared memory of a SM can be accessed only by the thread block that is running on the SM, while
the global, constant and texture memory modules are shared across all the the thread blocks in
the kernel. The device memory can be read from or written to by the host via optimized direct
memory access (DMA) calls and are persistent across kernel launches by the same application.

Threads can communicate and can be synchronized only within a thread block via the shared
memory of the SM, but there exists no mechanism for threads to communicate across thread
blocks. If threads from two different blocks communicate via global memory, the outcome of the
memory transaction is undefined, and nVIDIA does not recommend inter-block communication.
Thus, the launch of a kernel from the host processor to the GPGPU currently serves as an implicit
barrier to all threads that were launched by the previous kernel.

The host machine, which housed the GPGPU, contains 4-GB RAM and an Intel Core 2 Duo
E4500 CPU, with each core running at 2.2GHz. The installed operating system was Ubuntu 4.1.2
with the Linux kernel version 2.6.20-16.

3 The Smith-Waterman (SWat) Algorithm
Biological sequence alignment is a method of determining similar regions between two nucleotide
or protein sequences. Local sequence alignment is a technique that compares sequence segments of
all possible lengths and optimizes the similarity measure, which is termed as the alignment score of
the sequences. The final step of the algorithm is to output the highest scoring local alignment. The
Smith-Waterman algorithm [8] is an optimal local sequence alignment methodology that follows
the dynamic programming paradigm, where the intermediate alignment scores are stored in a
matrix before the maximum alignment score is calculated. Next, the matrix entries are inspected,
and the highest-scoring local alignment is generated. The Smith-Waterman algorithm can thus be
broadly classified into two phases: (1) matrix filling and (2) backtracing.

To fill out the dynamic-programming (DP ) matrix, the Smith-Waterman algorithm follows a
scoring system that consists of a scoring matrix and a gap-penalty scheme. The scoring matrix,
M is a two-dimensional matrix containing the scores for aligning individual amino acid or nu-
cleotide residues. The gap-penalty scheme provides the option of gaps being introduced within
the alignments, hoping that a better alignment score can be generated; but they incur some penalty
or negative score. In our implementation, we consider an affine gap penalty scheme that consists
of two types of penalties. The gap-open penalty, o is incurred for starting (or opening) a gap in the
alignment, and the gap-extension penalty, e is imposed for extending a previously existing gap by
one unit. The gap-extension penalty is usually smaller than the gap-open penalty.

Using this scoring scheme, the dynamic-programming matrix is filled out following a wave-

4



front pattern, i.e. beginning from the northwest corner element and going toward the southeast
corner; the current anti-diagonal is filled after the previous anti-diagonals are computed, as shown
in Figure 1(a). Moreover, each element in the matrix can be computed only after the calculation
of its north, west and northwest neighbors are computed, as shown in Figure 1(b). Thus, elements
within the same anti-diagonal are independent of each other and can therefore be computed in
parallel.

The recursive data dependence of the elements in the dynamic-programming matrix, combined
with the scoring system can be explained by the Equations 1, 2 and 3.

DPN [i, j] = e + max


DPN [i− 1, j]
DPW [i− 1, j] + o
DPNW [i− 1, j] + o

(1)

DPW [i, j] = e + max


DPN [i, j − 1] + o
DPW [i, j − 1]
DPNW [i, j − 1] + o

(2)

DPNW [i, j] = M(Xi, Yj) + max


DPN [i− 1, j − 1]
DPW [i− 1, j − 1]
DPNW [i− 1, j − 1]

(3)

The backtracing phase of the algorithm generates the highest scoring local alignment. The
backtrace begins at the matrix cell that holds the optimal alignment score and proceeds in a direc-
tion opposite to that of the matrix filling, until a cell with score zero is encountered. The path thus
traced yields the optimal local alignment.

NW N

W

(a) (b)

FIGURE 1: The Smith-Waterman wavefront algorithm and its dependencies.

The GTX 280 GPGPU contains 1 GB of global memory for our computational purposes. For
all the tests, we chose eight randomly generated sequence pairs of sizes varying from 1 KB to
8 KB, thus covering most of the realistic sequence sizes [3]. The matrix-filling part took 99.9% of
the overall execution time of the algorithm, and therefore, it was the only stage of the algorithm
that had to be parallelized. We discuss the various parallelization strategies for the GPGPU in the
next section.

5



4 CUDA-SWat: Optimizing Smith-Waterman for the GPGPU
In this section, we present a series of four optimization techniques and compare the performance
of each method against each other and against the baseline naı̈ve implementation.

4.1 Simple Kernel Offload
The first step of this optimization technique is to arrange the data in a way that is suitable for the
SIMD-style processing of the streaming multiprocessors (SMs) of the GPGPU. The entire matrix
is therefore physically stored in memory as a flat one-dimensional array, by storing adjacent anti-
diagonals next to each other, as shown in Figure 2. We call this layout the diagonal-major data
format. Data-parallel computation is possible only within each anti-diagonal of the matrix, and
this data layout scheme significantly helps in achieving the end result.

Logical representation

Physical representation

FIGURE 2: Matrix representation in memory.

The next step in the optimization process is to offload the data-intensive, matrix-filling part
onto the GPGPU device. The dependence between consecutive anti-diagonals of the matrix force
a synchronization operation after each anti-diagonal is computed. However, in the CUDA pro-
gramming platform, only the threads within a thread block can be synchronized. Mapping the
entire matrix-filling module onto a single thread block results in only a single SM of the GPGPU
being utilized for computation. This causes the other 29 SMs to be idle and results in a massive
waste of GPGPU chip resources.

However, the launch of a kernel serves as an implicit barrier to all the threads that were
launched by the previous kernel. This forces us to re-map the problem, such that one kernel
is launched to compute each anti-diagonal of the matrix. Every kernel will be made up of a one-
dimensional grid of thread blocks, where each block further contains a single dimension of threads,
as shown in Figure 3. We distribute the computation of the elements in every anti-diagonal uni-
formly among all the threads in the kernel. This method ensures the complete utilization of all the
SMs available on the chip.

6



T1 T1 T1 T1 T1 T1

T2 T2 T2 T2 T2

T3 T3 T3 T3

T4 T4 T4

T5 T5

T6

Computational load for each Kernel

Mapping of threads (Ti) to matrix elements

FIGURE 3: (Left) Mapping of threads to matrix elements and the (Right) variation of the computational load that is
imposed on successive kernels.

The find max optimization The backtrace operation starts at the largest element in the matrix,
and it requires a find max operation to be performed. Initially, our implementation executed this
function on the host after the entire matrix was filled up and transferred to the host memory. We
optimized this further by parallelizing the find max function across all the threads of the kernel.
The best scores that are calculated locally by each thread are passed to the host at the end of
the matrix-filling phase. From this array of best scores, the host calculates the overall maximum
score by performing at most T if checks, where T is the number of threads in the kernel. We
achieve a five-fold speed-up over the naı̈ve implementation by offloading the kernel to the device
in conjunction with the diagonal-major data representation.

Once the entire matrix is filled in the device memory, it is completely transferred to the host
memory before the backtrace operation is performed by the host.

4.2 Coalesced Kernel Offload
Although the previous optimization scheme shows some improvement over the host-run code, the
approach still suffers from two major problems:

• Multiple kernel launches – A kernel launch per anti-diagonal means that a typical application
will have thousands of kernel invocations. We developed a microbenchmark that launches
empty kernels multiple times onto the device to characterize the effect of kernel invocations
in an application. The results show that, for the problem sizes chosen for CUDA-SWat – i.e.

7



for approximately 16,000 kernel launches, about 41% of the total execution time is being
spent in kernel launch alone.

• Non-coalesced global memory access – The effective global memory bandwidth signifi-
cantly depends on the memory access patterns because global memory is not cached unlike
the other memory modules on the device. Coalesced global memory accesses can some-
times have a significant improvement in performance over non-coalesced global memory
accesses [7]. About 99% of the memory accesses in our previous optimization scheme were
non-coalesced.

We deal with the non-coalesced global memory access in this section and discuss solutions for
the multiple kernel launch problem in the next.

Coalesced memory accesses require that (1) only 32-bit, 64-bit, or 128-bit words should be
accessed from global memory by each thread, (2) the global memory addresses that are simultane-
ously accessed by consecutively numbered threads during the execution of a single read or write
instruction should be arranged such that, all the memory accesses can be coalesced into a single
contiguous, aligned memory access and (3) when accessing x-byte words from global memory,
the address location that is accessed by the thread with ID = 0 should be a multiple of 16× x.

Since we currently launch separate kernels to compute every anti-diagonal and we are access-
ing integers (4-byte words), we make sure that the start address of every anti-diagonal is aligned
to 64-byte boundaries to ensure that all the writes are coalesced as shown in Figure 4. The skewed
dependence between the elements of neighboring anti-diagonals restrict the degree of coalescing
among the reads from global memory. Moreover, we make sure that the dimension of the blocks
and grid of blocks are all powers of 2, to enable all the thread blocks to enjoy coalesced memory
accesses.

We achieve a maximum of 5.2× speedup over the serial implementation by coalescing the
global memory accesses in conjunction with the optimizations discussed in the previous sections.

4.3 Tiled Wavefront
This section discusses the problem of multiple kernel launches and our solution to the issue. Mi-
crobenchmark results reveal that 41% of the total execution time is spent in kernel invocations.
To solve this problem, we revisit our previous work of the tiled-wavefront design that efficiently
mapped SWat to the IBM Cell Broadband Engine [1], and now apply the idea to the GPGPU ar-
chitecture. The tiled wavefront approach amortizes the cost of kernel launches by grouping the
matrix elements into computationally independent tiles.

Tile Scheduling and Processing Our scheduling scheme assigns a thread block to compute a
tile, and a grid of blocks (kernel) is mapped to process an entire tile-diagonal, thus decreasing
the number of kernel launches. New kernel launches serve as implicit barriers to the threads from
the previously executed kernel. Consecutive tile-diagonals are computed by different kernels one
after another from the northwest corner to the southeast corner of the matrix, in the form of a tiled
wavefront, as shown in Figure 5.

Also, the elements within a tile are computed in parallel by a thread block by following the
simple wavefront pattern, starting from the northwest element of the tile. The threads within

8



T1 T1 T1 T1 T1 T1

T2 T2 T2 T2 T2

T3 T3 T3 T3

T4 T4 T4

T T

Padded data for coalesced 

global memory access

Padded data

T5 T5

T6

Computational load for each Kernel

Mapping of threads (Ti) to matrix elements

FIGURE 4: (Left) Mapping of threads to matrix elements and the (Right) variation of the computational load that
is imposed on successive kernels. It also denotes the coalesced data representation of successive anti-diagonals in
memory.

B
1

B
2

B
1

B
3

B
2

B
1

B
4

B
3

B
2

B
1

B
5

B
4

B
3

B
2

B
1

B
5

B
4

B
3

B
2

B
1

B
5

B
4

B
3

B
2

B
1

B
5

B
4

B
3

B
2

B
1

B
5

B
6

B
5

B
7

B
6

B
5

B
8

B
7

B
6

B
5

FIGURE 5: Tiled Wavefront.

9



each block are synchronized after computing every anti-diagonal, by explicitly calling the CUDA
barrier function syncthreads().

Computation-Communication Pattern The step-by-step communication-computation pattern
performed by each thread block while processing a tile is shown in Figure 6 and explained as
follows:

1. To start computing a tile, a thread block transfers the corresponding tile elements from global
memory to the on-chip shared memory. This memory transfer will be coalesced because we
handcraft the allocation of each tile to follow the rules for coalesced memory accesses.
The boundary elements that are required for the current tile computation are assumed to be
already present within the tile at this stage. Later steps will explain how to populate the tile
boundary with the correct elements.

2. Next, the thread block proceeds with the tile computation within shared memory. The
threads use block synchronization primitives after computing every anti-diagonal within the
tile.

3. The processed tile is transferred back to its location in global memory.

4. Finally, boundary elements from the current tile are transferred to the boundaries of the
neighboring tiles on the west and south. This operation is performed in parallel by using as
many threads as the number of boundary elements per tile.

Shared Memory

Global Memory

Tiles

FIGURE 6: Computation-Communication pattern between tiles in global memory.

10



The above steps describe the method of processing non-boundary tiles. Boundary conditions
can be easily checked and the redundant steps can be avoided while processing the boundary-tiles.

We achieve a maximum of 6× speedup over the naı̈ve implementation by applying the tiled
wavefront design. The tiled wavefront approach achieves a 16.3% improvement in performance
over the coalesced kernel offload scheme.

4.4 Coalesced + Custom Barrier
While the tiled wavefront approach reduces the impact of multiple kernel launches, it explicitly and
implicitly serializes the computation both within and across tiles respectively. The ideal solution
to this problem would be to revert to the coalesced kernel offload method, but introduce some sort
of a synchronization mechanism across thread blocks. In this way, we avoid launching the kernel
multiple times, and yet maintain coalesced memory accesses.

However, nVIDIA discourages inter-block communication via global memory and its outcome
is undefined. A classic deadlock scenario can occur if multiple blocks are mapped to the same SM,
and the active block waits on a message from the block that is yet to be scheduled by the CUDA
thread scheduler [7]. CUDA threads do not yield the execution, i.e. they run to completion once
spawned by the CUDA thread scheduler, and therefore the deadlocks cannot be resolved in a way
that happens in the traditional processor environments, where one can yield the waiting process to
execute other processes.

How can we derive insights into the design of the CUDA thread scheduler to be able to avoid
the deadlock, and yet implement a custom barrier between the thread blocks? We can ensure that
all threads run to completion without deadlocks if and only if there exists a one-one mapping
between the SM and the corresponding thread block. For example, a kernel that is composed
of not more than 30 blocks can be launched on the nVIDIA GTX 280, which has 30 streaming
multiprocessors. We can also take a step further by spawning maximum permissible threads per
block or allocating all of the available shared memory to each block to make sure that no two
blocks can be scheduled to be executed on the same SM.

4.4.1 Custom Barrier Implementation

We implement the custom barrier by first identifying a global memory variable (g mutex) as a
shared mutex, initialized to 0. At the barrier synchronization step, each block chooses one repre-
sentative thread to increment g mutex by using the atomic function atomic add2. The barrier is
considered to be reached when the value of g mutex equals the number of blocks in the kernel.
The barrier can obviously be implemented as a decrementer as well. Code Snippet 1 shows the
pseudo-code for the incrementer barrier.

We ran microbenchmark tests that launched empty kernels multiple times and compared its
performance to a kernel that simply called the custom barrier function as many times. We found
that the custom barrier method of inter-block synchronization achieved 3× performance improve-
ment over the multiple kernel launch method.

We achieve a maximum of 8.6× speedup over the serial implementation by coalescing the
global memory accesses in conjunction with the custom barrier implementation. The coalesced +

2Atomic operations are available only on the nVIDIA graphics cards with compute capability 1.2 and up.

11



Code Snippet 1 Pseudo-code for the Custom Barrier (incrementer).

/* Mutex Declaration in Global Memory */
__device__ unsigned int g_mutex;

/* assume that g_mutex is already initialized to 0 */
__device__ void __barrier_incr()
{

int thread_id = threadIdx.x;
int thread_count = (gridDim.x * gridDim.y);
if(thread_id == 0)
{

atomicAdd(&g_mutex, 1);
while(g_mutex != thread_count)
{

/* do nothing */
}

}
__syncthreads();

}

custom barrier approach achieves a 42.5% improvement over the tiled wavefront implementation.
The tiled wavefront optimization has negligible number of kernel launches and therefore, the

custom barrier optimization on top of that is not expected to improve the performance of SWat any
further.

5 Results
Figure 7 presents the results from our optimization methods showing the speedup values for all
the possible execution configurations of the application kernel. The speedup is constant beyond 30
thread blocks for the kernel offload and the tiled wavefront optimization techniques, because the
high utilization of shared resources per block forces the CUDA thread scheduler to execute only
one active block per SM. This means that the performance of a kernel that has more thread blocks
than the number of available SM’s will not be better than the kernel with exactly 30 thread blocks
(where the chip has 30 SM’s). The speedup for the coalesced + custom barrier drops beyond
8 blocks because of increasing contention to the shared mutex resource. We also see that the
performance is always better when there are more threads per block.

Figure 8 shows the best running times, across all kernel execution configurations, for all the
presented optimizations. The coalesced + custom barrier optimization provides the best speedup
(8.6× quicker overall and 25.5× faster chip execution time) over the naı̈ve implementation. Also,
we can see that the kernel execution time for the custom barrier approach is roughly 3× quicker
than the (non-custom barrier) coalesced kernel offload method. We obtained all the above exper-

12



6

8

10

B
lo

ck
 D

im
e

n
si

o
n

 (
X

, 
1

, 
1

)

S
p

e
e

d
u

p

Simple Kernel Offload

8-10

6-8

8

32

128

0

2

4

1
2

4
8

16
24

30

B
lo

ck
 D

im
e

n
si

o
n

 (
X

, 
1

, 
1

)

S
p

e
e

d
u

p

Grid Dimension (X, 1)

4-6

2-4

0-2

6

8

10

B
lo

ck
 D

im
e

n
si

o
n

 (
X

, 
1

, 
1

)

S
p

e
e

d
u

p

Coalesced Kernel Offload

8-10

6-8

8

32

128

0

2

4

1
2

4
8

16
24

30

B
lo

ck
 D

im
e

n
si

o
n

 (
X

, 
1

, 
1

)

S
p

e
e

d
u

p

Grid Dimension (X, 1)

4-6

2-4

0-2

(a) (b)

6

8

10
B

lo
ck

 D
im

e
n

si
o

n
 (

X
, 

1
, 

1
)

S
p

e
e

d
u

p

Tiled Wavefront

8-10

6-8

8

32

128

0

2

4

1
2

4
8

16
24

30

B
lo

ck
 D

im
e

n
si

o
n

 (
X

, 
1

, 
1

)

S
p

e
e

d
u

p

Grid Dimension (X, 1)

4-6

2-4

0-2

6

8

10

B
lo

ck
 D

im
e

n
si

o
n

 (
X

, 
1

, 
1

)

S
p

e
e

d
u

p

Coalesced + Custom Barrier

8-10

6-8

8

32

128

0

2

4

1
2

4
8

16
24

30

B
lo

ck
 D

im
e

n
si

o
n

 (
X

, 
1

, 
1

)

S
p

e
e

d
u

p

Grid Dimension (X, 1)

4-6

2-4

0-2

(c) (d)

FIGURE 7: Speedup charts.

imental results while running the largest possible problem size, i.e. aligning sequences of 8KB
each. Similar results were observed (but not presented here) for other problem sizes as well.

The kernel pre- and post-processing times include allocating memory for the matrix in the
global memory and transferring the computed matrix back to the host memory. The non-computation
time amounts to 66% of the total execution time at the end of the final optimization technique. In
spite of this severe, but unavoidable extra cost, we have been able to achieve very good overall
speedup. The backtrace operation has negligible effects as expected.

6 Conclusions
The GPGPU’s of today are making rapid strides toward the HPC arena by delivering unprece-
dented high performance at commodity costs. They are packaged as simple accessories to existing
systems, making the GPGPU’s as viable accelerator alternatives in many supercomputing environ-
ments. However, lack of an explicit inter-block communication mechanism has made the GPGPU
useless for several classes of applications that are not data-parallel. Therefore, we contribute a cus-
tom barrier implementation that synchronizes all the threads running in the kernel without transfer-
ring control out of the GPGPU. We remove the non-deterministic behavior of inter-block interac-

13



10

15

20

25

30

4

6

8

10

12

S
p

e
e

d
u

p

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

0

5

10

0

2

4

Serial Simple Kernel 

Offload

Coalesced 

Kernel Offload

Tiled 

Wavefront

Coalesced + 

Custom Barrier

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Kernel Execution Pre/Post-processing

Speedup (Kernel Exec only) Speedup

FIGURE 8: Performance comparison chart.

tion within a kernel by maintaining a one-one mapping between the thread blocks and SM’s. Our
barrier implementation provides a 3× performance improvement over the non-barrier approach
with multiple kernel launches.

For our experimental study, we chose to parallelize the Smith-Waterman algorithm, which is a
highly popular and optimal biological sequence search algorithm. In this paper, we introduce and
present CUDA-SWat, which is a highly parallel implementation of the Smith-Waterman code on
the CUDA platform of the nVIDIA GeForce GTX 280 GPGPU. The parallelized code is cleverly
optimized in four stages, which include optimal data layout strategies, coalesced memory accesses
and blocked data decomposition techniques, to result in a highly efficient mapping of the non-data
parallel algorithm to the completely data parallel architecture of the GPGPU.

As a result, we achieved incremental performance improvements for each optimization, with
the coalesced + custom barrier method achieving a maximum speed improvement of 8.6× over
the serial implementation of the entire application. We also showed that our solution provides
25.5× faster on-chip execution than the naı̈ve implementation. Moreover, our experiments were
conducted on realistic problem sizes and provided a complete solution, i.e. computed all the matrix
entries and did a backtrace to output the actual sequence alignment.

As future work, we intend to integrate of our existing Smith-Waterman implementations into
existing sequence alignment toolkits. We would also like to extend our design and implementa-
tion methodologies to other wave-front algorithms in general. We plan to explore optimization
techniques to parallelize SWat, and other sequence search algorithms, such as BLAST and Pat-
ternHunter, within and across multiple GPGPU cards.

14



References
[1] Ashwin M. Aji, Wu-chun Feng, Filip Blagojevic, and D. S. Nikolopoulos. Cell-SWat: Modeling and Scheduling

Wavefront Computations on the Cell Broadband Engine. In Proc. of the ACM International Conference on
Computing Frontiers, May 2008.

[2] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt Keutzer,
David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The
Landscape of Parallel Computing Research: A View from Berkeley. Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, Dec 2006.

[3] Mark K. Gardner, Wu-chun Feng, Jeremy Archuleta, Heshan Lin, and Xiaosong Ma. Parallel Genomic Sequence-
Searching on an Ad-Hoc Grid: Experiences, Lessons Learned, and Implications. Proc. of ACM/IEEE SC 2006,
Nov. 2006.

[4] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-Wittig. Bio-Sequence Database Scanning on a GPU.
Proc. of the 20th International Parallel and Distributed Processing Symposium, April 2006.

[5] Yang Liu, Wayne Huang, John Johnson, and Sheila Vaidya. GPU Accelerated Smith-Waterman. In Vassil N.
Alexandrov, Geert Dick van Albada, Peter M.A. Sloot, and Jack Dongarra, editors, Computational Science –
ICCS 2006, volume 3994 of LNCS, pages 188–195. Springer, 2006.

[6] Svetlin A. Manavski and Giorgio Valle. CUDA Compatible GPU Cards as Efficient Hardware Accelerators for
Smith-Waterman Sequence Alignment. BMC Bioinformatics, 2008.

[7] NVIDIA. NVIDIA CUDA Programming Guide. URL:http://developer.download.nvidia.com/compute/cuda/
1 1/NVIDIA CUDA Programming Guide 1.1.pdf. Accessed: 2008-08-06. (Archived by WebCite at
http://www.webcitation.org/5ZrcTQQeV), 2007.

[8] Temple Smith and Michael Waterman. Identification of Common Molecular Subsequences. Journal of Molecular
Biology, 147:195–197, 1981.

[9] John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, and Klaus Schulten.
Accelerating Molecular Modeling Applications with Graphics Processors. Journal of Computational Chemistry,
28:2618–2640, 2007.

15


