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Abstract

Locally linear classification by pairwise coupling ad-
dresses a nonlinear classification problem by three basic
phases: decompose the classes of complex concepts into
linearly separable subclasses, learn a linear classifier for
each pair, and combine pairwise classifiers into a single
classifier. A number of methods have been proposed in this
framework. However, these methods have several deficien-
cies: 1) lack of a systematic evaluation of this framework, 2)
naive application of general clustering algorithms to gener-
ate subclasses, and 3) no valid method to estimate an op-
timal number of subclasses. This paper proves the equiv-
alence between three popular combination schemas under
general settings, defines several global criterion functions
for measuring the goodness of subclasses, and presents a
supervised greedy clustering algorithm to minimize the pro-
posed criterion functions. Extensive experiments has also
been conducted on a set of benchmark data to validate the
effectiveness of the proposed techniques.

1 Introduction
In recent years, there has been an emerging interest to

solve a complex (nonlinear) classification problem by using
locally linear classification (LLC) techniques [1–6]. The ba-
sic idea is to approximate a nonlinear decision boundary by
consecutive segments, each of which is determined by a lo-
cal linear classifier. A nonlinear classification problem can
be decomposed into a series of linear classification subtasks,
such that the problem can be solved linearly in the original
space. Results have shown that this approach can achieve
competitive generalization accuracy and higher training ef-
ficiency than other advanced approaches such as neural net-
work [3], generalized linear discriminative analysis [1, 5],
and nonlinear support vector machines [9, 17].

The effectiveness of LLC lies in the fact that each lo-
cal classifier requires estimating a much simpler target func-
tion, thus reducing the chance of overfitting. However, as
a potential disadvantage, more target functions need to be

estimated with less training data. An implicit assumption
of LLC is that the gain acquired by the reduced complex-
ity is more than the loss incurred by the “reduced” training
data. LLC includes three major categories: pairwise cou-
pling based (LLC-PC) [2, 3, 6, 8], local space based (LLC-
LS) [4], and model based (LLC-MD) [1, 5, 13]. LLC-PC
decomposes the classes of complex concepts into linearly
separable subclasses, then learns a linear prototype classifier
for each pair of subclasses, and finally combines the pair-
wise prototype classifiers into a single classifier. LLC-LS
divides the input space into several disjoint subspaces, and
then learns a linear classifier for each subspace. LLC-MD
assumes each class as a mixture of normals and learns a lin-
ear discriminant analysis (LDA) classifier by treating each
normal as a pseudo-class.

This paper focuses on LLC-PC, the Locally Linear
Classification by Pairwise Coupling. It is a natural gen-
eralization of the state-of-the-art multiclass classification
approach by pairwise coupling [10, 11]. As to the ma-
jor extension, LLC-PC differentiates the pairs of subclasses
with the same parent class label from those with different
parent class labels. Existing methods for LLC-PC apply
naive general clustering methods (e.g., k-means) to gener-
ate subclasses, and empoly different combination schemas
(e.g., voting, MinMax) to integrate pairwise prototype clas-
sifiers [2, 3, 6, 8]. Some empirical comparisons demonstrate
the similar classification accuracy between different combi-
nation schemas [3, 8]. However, there is no research pre-
sented to explain this phenomenon. As shown later, the ex-
planation will lead to a new reformulation of the pairwise
coupling problem as a voronoi diagram problem, thus intro-
ducing a new direction to further optimize LLC-PC.

In this paper, we address the following issues: First, the
generation of appropriate subclasses can not be optimally
solved by directly applying general clustering algorithms.
This is due to the main principle for solving problems us-
ing a restricted amount of information: “When solving a
given problem, try to avoid solving a more general prob-
lem as an intermediate step [16].” A supervised clustering
algorithm must be redesigned by considering the impacts of
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other phases. Second, there should exist some connections
between different combination schemas, in order to explain
the fact that they usually exhibit similar classification accu-
racy. Third, the existing methods require users to predefine
the number of subclasses per-class. However, it is difficult
to determine an optimal number of subclasses, such that the
predictive accuracy of the resulting classifier can be maxi-
mized. Our major contributions can be summarized as fol-
lows:

• Prove the weak equivalence between three popular
combination schemas on the generalization accuracy;

• Demonstrate the tradeoff correlation between the clus-
ter granularity and the generalization accuracy of
the resulting classifier, similar to the Bias-Variance
dilemma [17];

• Define several global criterion functions and evaluate
their major characteristics, such as the monotonicity
and computational cost;

• Propose an effective greedy algorithm to identify good-
quality subclasses, and present a method to estimate the
optimal number of subclasses for different subclasses
generation methods.

The rest of the paper is organized as follows. Section 2
reviews three categories of related methods. Section 3 in-
troduces preliminaries of LLC-PC, including the combina-
tion schemas and the correlation between cluster granularity
and generalization accuracy. Section 4 defines new crite-
rion functions and discuses their major characteristics. A
greedy subclasses generation algorithm is presented in Sec-
tion 5. Section 6 demonstrates experiment results on bench-
mark data sets. Finally, we conclude with future work in
Section 7.

2 Related Work
This section summarizes three major categories of works

on LLC, including pairwise coupling, local space, and
model based approaches.

Pairwise Coupling Based (LLC-PC). Schulmeister et
al. presented a method named hybrid piecewise linear clas-
sifier (DIPOL), which first uses k-means to generate sub-
classes, then applies a linear Perceptron model to build
pairwise prototype classifiers, and finally applies a voting
schema to perform combination [2]. This approach was later
extended to support vector machines by replacing the Per-
ceptron model with a linear SVM model [7]. Lu et al. pro-
posed a similar method for massively parallel training of
neural networks [3]. They used random and grid-space par-
tition algorithms as the clustering algorithm and employed
a new combination schema, named min-max module, to in-
tegrate the pairwise prototype classifiers. This method was

later extended to support vector machines by using a linear
SVM model to build prototype classifiers [8]. Wu et al. pro-
posed the general framework of LLC-PC and applied it to
the classification of rare classes [6].

Local Space Based (LLC-LS). Kim et al. proposed
an approach called locally linear discriminant analysis
(LLDA), which decomposes the training set into several lo-
cal clusters by using k-means, and then learns a LDA clas-
sifier for each local cluster [4]. Cheng et al. presented a
method named localized support vector machines, which
decomposes the training data into local clusters by using a
proposed supervised k-means algorithm (MagKmeans), and
then learns a support vector machine for each local clus-
ter [9].

Model Based (LLC-MD). Hastie et al. presented a
method named mixture discriminative analysis (MDA),
which uses a supervised EM algorithm to identify subclasses
and a linear discriminant analysis (LDA) model to build the
classifier by regarding each subclass as a pseudo-class [1].
Later, several improvements were proposed to alleviate the
constraints of the LDA model [13, 14]. Zhu et al. presented
several criterions to estimate the optimal number of sub-
classes (Gaussians) [5].

Differences and Advantages of LLC-PC: The major
difference between LLC-PC and LLC-LS is that LLC-PC
conducts a clustering process in each class to generate sub-
classes, whereas LLC-LS conducts only one clustering pro-
cess over all the training data, without differentiating the in-
stances of different class labels. Given a new object x, LLC-
PC applies pairwise classifiers to x and then ensembles the
results to classify x, whereas LLC-LS identifies the cluster
closest to x, and then applies the corresponding classifier to
x.

LLC-PC has some distinct advantages over the others.
First, LLC-LS has the restriction that each subclass only
contributes to a single local classifier, whereas in LLC-PC
each sub-class can contribute to multiple local classifiers.
Figure 1 shows a data set of the classic XOR problem. There
are two classes {C1,C2}, and suppose Ci is a mixture of two
normals {Ci1,Ci2}, where i = 1..2. Clearly, each normal con-
tributes to two local classifiers. For instance, C11 contributes
to the local classifiers between C11 and C22, and between C11

and C21. Unlike LLC-PC, it is difficult to apply LLC-LS to
this problem. A possible solution for LLC-LS is to divide
each normal into two subclasses, but it will unnecessarily
reduce the sample size of each subclass by half. Second,
because of the Gaussian assumption, LLC-MD may not per-
form well for non-Gaussian data [13]. Furthermore, LLC-
MD only learns a single LDA classifier for all subclasses.
In comparison, LLC-PC is useful for both Gaussian and
non-Gaussian data. It supports class specific feature extrac-
tion and classifier, and each local classifier can be regarded
as a completely separate classification problem and can be
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learned in parallel.

3 Preliminaries
This section discusses two basic components of LLC-PC,

including cluster granularity (e.g., the total number of clus-
ters generated) and combination schema. We introduce three
popular combination schemas, prove their weak equivalence
on classification accuracy, and then present the correlation
between cluster granularity and classification accuracy.

3.1 Combination Schemas

There are three popular strategies that can be used to
combine pairwise prototype classifiers into a single clas-
sifier, namely, the voting-based [2, 6], the probability-
based [11], and the minimum and maximization principles
based [3] (abbreviated as MinMax). Suppose there are N
classes {C1,C2, . . . ,CN}, each class Ci (i = 1, . . . ,N) is di-
vided into Ni pseudo clusters (Ci1,Ci2, . . . ,CiNi), and the sep-
arating hyperplane for Ci j and Ckp is fi j−kp(x) = wT

i j−kpx+b.
The preceding combination schemas can be summarized as
follows:

Voting based: The decision function for the subclass
Ci j can be defined by Fi j(x) = ∑N

k 6=i,k=1 ∑Nk
p=1(δ( fi j−kp(x))),

where δ(z) = 1 if z ≥ 0, and 0 otherwise. The deci-
sion function for the class Ci can be defined by Fi(x) =
max(Fi j(x)/∑N

o=1,o6=i No), where 1≤ j ≤ Ni, and the denom-
inator is used for normalization, since the number of sub-
classes generated for each class may be different. The new
point x is classified as follows: G(x) = arg max

i=1,...,N
(Fi(x)). If

a new object exists in an unclassified region, the object is
classified on the basis of the minimum distance to the class
regions.

Probability based: The decision function Fi j(x) can
be defined by Fi j(x) = Prob(y = Ci j|x), where the poste-
rior probability Prob(y = Ci j|x) can be estimated from the
available pairwise class probabilities Probi j−kp = Prob(y =
Ci j|y = Ci j or Ckp,x) [11]. The decision function Fi(x) is
defined by Fi(x) = max(Fi j(x)), where 1≤ j ≤ Ni. The new
point x is classified as follows: G(x) = argmax

i=1,,...,N
(Fi(x)).

MinMax based: The decision function Fi j(x) can be de-
fined by Fi j(x) = min( fi j−kp(x)), where k 6= i. The deci-
sion function Fi(x) is defined by Fi(x) = max(Fi j(x)), where
1≤ j ≤ Ni. The new point x is classified as follows: G(x) =
argmax
i=1,,...,N

(Fi(x)).

Theorem 3.1 (Equivalence). Given a new object x, if one of
the following conditions is true:

(1) ∃i, j(1≤ i≤ N,1≤ j ≤ Ni), Fi j(x)Voting = ∑N
k=1,k 6=i Nk;

(2) ∃i, j(1≤ i≤ N,1≤ j ≤ Ni), Fi j(x)MinMax > 0;

(3) ∃i, j(1 ≤ i ≤ N,1 ≤ j ≤ Ni), Fi j(x)Prob > Fkp(x)Prob,
where k 6= i;

then G(x)Voting = G(x)MinMax = G(x)Prob.

Proof: We first demonstrate the equivalence between
these three sufficient conditions, and then prove that
G(x)Voting = G(x)MinMax = G(x)Prob if the first condition
is satisfied. Equivalence: Suppose the first condition is
true: Fi j(x)Voting = ∑N

k=1,k 6=i Nk. It implies that the pseudo
class Ci j wins all competitions against others. Because
∀k, p(1 ≤ k ≤ N,k 6= i,1 ≤ p ≤ Nk), fi j−kp > 0, we have
that Fi j(x)MinMax = min( fi j−kp(x)) > 0. This justifies the sec-
ond condition. In addition, the fact fi j−kp > 0 indicates that
Fi j(x)Prob > Fkp(x)Prob. Thus, the third condition is also sat-
isfied. The reverse can be proven in a similar manner.

Sufficiency: Suppose the first condition is true. It im-
plies that ∀k, p(1≤ k ≤ N,k 6= i,1≤ p≤ Nk), fi j−kp(x) > 0
and fkp−i j(x) < 0. Then, Fkp(x)Voting <= ∑N

o=1,o 6=k No − 1.

Because Fi j(x)Voting

∑N
o=1,o6=i No

>
Fkp(x)Voting

∑N
o=1,o6=k No

, we have that Fi j(x)Voting >

Fkp(x)Voting, and G(x)Voting = i. The condition fi j−kp(x) > 0
is identical to the condition Prob(y = Ci j|x) > Prob(y =
Ckp|x), which implies that Fi j(x)Prob > Fkp(x)Prob and
G(x)Prob = i. In addition, based on the preceding deviations,
because fi j−kp(x) > 0, we have that Fi j(x)MinMax > 0 and
Fkp(x)MinMax < 0. That means, except for the pseudo class
Ci j, the decision functions of all other classes are smaller
than zero, and G(x)MinMax = i. Therefore, G(x)Voting =
G(x)MinMax = G(x)Prob.@

The inequivalence between these combination schemas
may occur in the case of conflicts when the pre-condition
of the above theorem is not satisfied. A conflict hap-
pens if inconsistent conclusions can be derived based on
the pairwise decisions (or probabilities). For example, in
Figure 1, suppose there are two classes C1 and C2. C1

contains two subclasses {C11,C12}, and C2 contains two
subclasses {C21,C22}. Given a new object x, suppose
the pairwise probabilities have the relations: Prob(y =
C11|x) > Prob(y = C22|x), Prob(y = C22|x) > Prob(y =
C12|x), Prob(y = C12|x) > Prob(y = C21|x), and Prob(y =
C21|x) > Prob(y = C11|x). From the last three relations, we
have that Prob(y = C22|x) > Prob(y = C11|x), which is in
conflict with the first relation Prob(y = C11|x) > Prob(y =
C22|x). To handle conflicts, the voting-based schema utilizes
the strategy of majority vote to determine the subclass with
the maximum posterior probability; the probability-based
schema directly estimates the posterior probabilities by us-
ing the Kullback-Leibler (KL) distance as the loss func-
tion [11]; the MinMax schema selects one representative
prototype classifier for each subclass and then uses their de-
cision values to determine the maximum probable subclass
to be returned.

These three schemas, as well as their equivalence, are il-
lustrated in Figure 1. There are two classes {C1,C2}, and
their subclasses are {C11,C12} and {C21,C22}, respectively.
For each object x inside the region ABCNMA, the sub-
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class C11 wins the competitions against the subclasses C21

and C22. Then, F11(x)Voting = 2, and G(x)Voting = C1. Be-
cause f11−22(x) > 0 and f11−21(x) > 0, F11(x)MinMax > 0 and
G(x)MinMax = C1. Also, because Prob(y = C11|x) is larger
than Prob(y = C21|x) and Prob(y = C22|x), G(x)Prob = 2.
Therefore, the three schemas are equivalent inside the region
ABCNMA. Similarly, the equivalence is held in the regions
CDEONC, EFGPOE, and GHAMPG. However, inside the
small center region MNOPM, the above conditions are not
satisfied and therefore the equivalence is not guaranteed.

Figure 1: An example of combination schemas

Theorem 3.1 indicates that the three combination
schemas are equivalent inside certain regions. As shown in
Section 5.1, we empirically verified that these equivalent re-
gions occupy in overall more than 99% of the whole input
space. That means, these combination schemas are equiv-
alent in most cases. It explains why different combination
schemas usually exhibit similar accuracy.

Another observation is that, since the conflicts rarely hap-
pen in practice, we can reasonably assume that Theorem
3.1 is true for the whole space. Under this assumption, the
pairwise coupling becomes equivalent to a voronoi diagram
problem [18]. Particularly, each subclass (Ci j) has a domi-
nated region (voronoi polytope), which is bounded by a sub-
set of the related linear prototype classifiers (separating hy-
perplanes). If a new object x is within the dominated region
of Ci j, then it is classified to the class Ci. Thus, the pairwise
coupling problem can be re-formulated as: “Given a new
object x, search for a class region (voronoi polytope), which
contains the object x.” Based on this reformulation, tradi-
tional voronoi techniques [18] can be conveniently adapted
to identify the dominated region for each subclass. The sig-
nificant (necessary) and insignificant (redundant) prototype
classifiers can also be identified. Redundant prototype clas-
sifiers refer to the prototype classifiers that do not contribute
to the decision boundary of the resulting combined classifier.
In addition, spatial indexing structures (e.g., R-tree) can be
utilized to index the subclass regions, such that the classifi-
cation time cost can be significant reduced.

3.2 The Impact of Cluster Granularity

Cluster granularity is an important parameter for most
existing clustering algorithms and is usually predefined by
users. For the problem of LLC-PC, there is a tradeoff be-
tween cluster granularity and generalization accuracy. If the
cluster granularity increases, more local features of the train-
ing set will be considered in the resulting classifier. Con-
versely, if the cluster granularity decreases, more global fea-
tures will be considered. As a result, a low granularity of
clusters may lead to the problem of underfitting, whereas a
high granularity may contribute to the problem of overfit-
ting. It is important to delve into their relationship, which
would provide a theoretical foundation to guide the possible
solutions of LLC-PC.

We first study two extreme cases. At the lowest cluster-
ing granularity, each class has only one single cluster. In this
case, the resulting classifier is equivalent to a linear classi-
fier. Because the training set is nonlinearly separable, it is
impossible to find a linear decision boundary that can cor-
rectly classify all the sample objects. The data set will be
underfitted. In another extreme case, where the clusters have
the highest granularity, each sample object is regarded as a
single cluster. As proved by Theorem 3.2, the resulting clas-
sifier is equivalent to a 1-nearest neighbor classifier, which
classifies a new object x based on its closest sample object in
the training set. According to the well-known characteristics
of 1-nearest neighbor classifiers [12], the resulting classifier
can easily lead to overfitting.

Theorem 3.2. Given a data set of N(N > 1) classes, if
the maximum number of subclasses are generated for each
class, then the resulting classifier is equivalent to a 1-
nearest-neighbor classifier.

Proof. First, consider the case when the voting-based is
selected as the combination schema. At the highest clus-
ter granularity, each class Ci j corresponds to a single ob-
ject xi j. Given a new object x, suppose its nearest object
is xi j. Clearly, a 1-nearest-neighbor classifier will classify
x to the class Ci. Because the optimal separating hyper-
plane for classes Ci j and Ckp is the bisection hyperplane be-
tween objects xi j and xkp, we have that ∀k, p(1 ≤ k ≤ N,
k 6= i,1 ≤ p ≤ Nk), x is closer to xi j than to xkp. That
means fi j−kp(x) > 0 and Fi j(x) = ∑N

o=1,o6=i No. The con-
dition fkp−i j(x) < 0 implies that Fkp < ∑N

o=1,o6=k No, since
there exists at least one sample object xi j that does not
belong to the class Ck and δ( fi j−kp(x)) = 0. Therefore,
Fk(x)Voting < Fi(x)Voting = 1. x is classified as the class Ci,
the same result of the 1-nearest neighbor classifier. Second,
consider the case when the probability-based or MinMax is
used as the combination schema. As derived in the preced-
ing, Fi j(x) = ∑N

o=1,o6=i No. From theorem 3.1, in this case, the
three combinations schemas are equivalent.@
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We have conducted extensive experiments on twenty
benchmark data sets. Figure 2 shows two abstract pat-
terns found based on the experimental results, which are
consistent with the preceding theoretical evaluations. Pat-
tern a) shows a relationship similar to the well-known Bias-
Variance Dilemma. When the number of clusters increases,
the prediction accuracy will first increase to a certain level,
then continuously decrease, and finally stabilize at a cer-
tain level. That means for a small number of clusters, this
approach could increase the accuracy of a linear classifier.
However, arbitrarily increasing the number of clusters would
have a nontrivial impact on the classification accuracy. Pat-
tern b) shows a different relationship. There exist some
data sets, where generating subclasses will only deterio-
rate the classifier performance. When the number of clus-
ters increases, the classification accuracy will first decrease
rapidly, then decline more slowly, and finally stablize at a
certain level.

Figure 2: Two patterns related to cluster granularity

4 Criterion Functions
This section addresses the criterion functions which can

measure the generalization accuracy of the combined classi-
fier, by considering a number of factors, such as the division
of original classes, the binary classifier model, the combi-
nation schema, and the computational cost. Many existing
methods directly use general clustering criterion functions
(e.g., total intra-cluster variance [17]) to measure the qual-
ity of the subclasses generated. However, the subclasses that
minimize the total intra-cluster variance do not necessarily
lead to the classifier of a high generalization accuracy.

For example, Figure 3 shows a data set of two classes
(circle and square) and the dotted curve refers to the true
decision boundary. For simplicity, we only conducted the
clustering process on the circle class. Figures 3 (a) and 3 (b)
show the results of two different partition strategies. The es-
timated decision boundary led by the right partition is much
more accurate than that by the left partition, even its total
intra-cluster variance is much larger than the left partition.
From the view point of classification, a good criterion func-
tion should be able to measure both the accuracy attained on
the training set and the structure capacity, that is, the ability
of the classifier to correctly predict class labels for future in-
stances. Following this direction, several new criterion func-
tions are presented.

Figure 3: An example of two different partitions

4.1 Mean Piecewise Error Function

The mean piecewise error function can be formalized as:

Q = ∑
(Ci j ,Ckp)∈U

(
Pi j−kpE(Ci j,Ckp)

)
, (1)

where U = {(Ci j,Ckp)|1 ≤ i,k ≤ N, i 6= k,1 ≤ j ≤ Ni,1 ≤
p ≤ Nk}, N refers to the total number of original (parent)
classes, Ni refers to the number of subclasses for the par-
ent class Ci, Pi j−kp denotes the prior probability of the sub-
class pair (Ci j,Ckp), and E(Ci j,Ckp) denotes the generaliza-
tion error between subclasses Ci j and Ckp. The prior proba-
bilities are used as the weights to balance the contributions
of different subclasses. We set Pi j−kp = Pi j ·Pkp

∑
(Ci j ,Ckp)∈U

Pi j ·Pkp
, where

Pi j = |Ci j|/S, the ratio of the sample size of subclass Ci j to
the total sample size.

The selection of the atomic error function E(Ci j,Ckp) de-
pends on the binary classifier model used for the subclasses
Ci j and Ckp. We consider two popular linear classifier mod-
els, including Fisher linear discriminant analysis (LDA) and
linear support vector machines (SVM). We select an iden-
tical classifier model for each pair of subclasses with de-
fault parameter settings. Depending on the specific classifier
model selected, we abbreviate the related mean piecewise er-
ror (MPE) function as MPE-SVM or MPE-LDA. The whole
category of MPE functions is abbreviated as MPE.

MPE-LDA selects the inverse of Fisher criterion [17], the
ratio of the between-class variance to the within-class vari-
ance, as the atomic error function. It can be formalized as
follows:

Q =∑(Pi j−kp(wt
i j−kpSW,i j−kpwi j−kp)(wt

i j−kpSB,i j−kpwi j−kp)−1)
(2)

, where SW,i j−kp = Si j +Skp and SB,i j−kp = (mi j− m̄)(mi j−
m̄)t +(mkp− m̄)(mkp− m̄)t are the within-class scatter ma-
trix and the between-class scatter matrix, respectively; Si j

is the within-class covariance matrix of subclass Ci j, mi j

is the mean vector of subclass Ci j, similar definitions are
used for Skp and mkp, m̄ = (mi j + mkp)/2, and wi j−kp =
S−1

W,i j−kp(mi j −mkp). The definitions of other symbols are
consistent with the related definitions for Equation (9).
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MPE-SVM selects the error function of a linear SVM
model, the addition of the inverse classifier margin to the
empirical error, as the atomic error function. It can be for-
malized as follows:

Q = ∑
(

Pi j−kp
1
2
‖wi j−kp‖2

)
+C∑

(
Pi j−kp

mi j−kp

∑
o=1

ζo,i j−kp

)
,

(3)
where 1

2‖wi j−kp‖2 and ζo,i j−kp refer to the inverse classifier
margin and the slack variables for subclasses Ci j and Ckp,
respectively; mi j−kp refers to the number of slack variables,
and C denotes the tradeoff parameter. For simplicity, we
assume that the tradeoffs of all SVM classifiers are identi-
cal. The left part of the equation is the weighted sum of the
inverse margins of pairwise SVM classifiers, which can be
regarded as the approximate structure error of the combined
classifier. The right part of the equation is the weighted sum
of the slack variables of pairwise SVM classifiers, which can
be viewed as the approximate empirical error of the com-
bined classifier. The parameter C is used to balance the con-
tributions of the classifier margin and the empirical error.

4.2 Major Characteristics

This subsection first evaluates the correlation between the
proposed criterion functions and the cluster granularity, and
then conducts a comparison between these criterion func-
tions.

Theorem 4.1 (Monotonicity of MPE-SVM). Given a data
set of N classes (C1, ...,CN), suppose each class Ci has Ni

subclasses, then the value of MPE-SVM can be decreased
by randomly decomposing one subclass into two smaller-
size subclasses.

Proof Sketch: For simplicity, we only consider the case
of binary classes (N = 2), and prove the theorem in two dif-
ferent scenarios. The case N > 2 can be proved similarly.

Linearly Separable Case. Suppose each pair of sub-
classes C1i and C2 j are linearly separable. Then there is no
classification error for each piecewise SVM and only mar-
gins need to be considered. The theorem becomes: “The
average margin will always increase if randomly decom-
pose a cluster into two clusters.” We prove it by using the
concept of convex hull [15]. As shown in Figure 4, sup-
pose the subclass C1k, 1≤ k ≤ N1, is randomly selected and
partitioned into two subclasses C1d and C1s. Their corre-
sponding prior probabilities are p1d and p1s, respectively.
p1d + p1s = p1k. For any subclass C2 j of the class C2, ac-
cording to the characteristics of convex hull , 1

2‖w1d−2 j‖2 <
1
2‖w1k−2 j‖2, and 1

2‖w1s−2 j‖2 < 1
2‖w1k−2 j‖2. Then p1d · p2 j ·

1
2‖w1d−2 j‖2 + p1s · p2 j · 1

2‖w1s−2 j‖2 < p1k · p2 j · 1
2‖w1k−2 j‖2.

It can be deduced that ∑ j(p1d · p2 j · 1
2‖w1d−2 j‖2 + p1s · p2 j ·

1
2‖w1s−2 j‖2)+∑i, j,i6=k(p1i · p2 j · 1

2‖w1i−2 j‖2)) < ∑ j(p1k · p2 j ·
1
2‖w1k−2 j‖2 +∑i, j,i6=k(p1i · p2 j · 1

2‖w1i−2 j‖2)).

Linearly Nonseparable Case. Suppose at least one pair
of subclasses C1i and C2 j are nonlinearly separable. Then
it is necessary to consider both margin and slack variables.
Let M(C1i,C2 j) and S(C1i,C2 j) denote the inverse margin
and the set of slack variables between C1i and C2 j, respec-
tively. Let Q(C1i,C2 j) = M(C1i,C2 j)+ Sum(S(C1i,C2 j)). A
subclass C1k is randomly selected from from C1, 1≤ k≤ N1,
and partitioned it into two clusters C1d and C1s. Given any
subclass C2 j of the class C2, if the same separating hyper-
plane and margin are used for C1k and C2 j as the candidate
hyperplane (M∗) and margin (S∗) for the classes C1d and
C2 j, then S(C1k,C2 j) = S∗(C1d ,C2 j)

⋃
S∗(C1s,C2 j). p1k · p2 j ·

Q(C1k,C2 j)≥ p1d · p2 j ·Q∗(C1d ,C2 j)+ p1s · p2 j ·Q∗(C1s,C2 j).
The optimal separating hyperplane for classes C1d and
C2 j can achieve equal or smaller classification error than
Q∗(C1d ,C2 j). That is: Q(C1d ,C2 j)≤Q∗(C1d ,C2 j). Similarly,
Q(C1s,C2 j) ≤ Q∗(C1s,C2 j). Then, p1d · p2 j ·Q(C1d ,C2 j) +
p1s · p2 j · Q(C1s,C2 j) ≤ p1k · p2 j · Q(C1k,C2 j). We have
that ∑ j(p1d · p2 j · Q(C1d ,C2 j) + p1s · p2 j · Q(C1s,C2 j)) +
∑i, j,i6=k(p1i · p2 j ·Q(C1i,C2 j)) ≤ ∑ j(p1k · p2 j ·Q(C1k,C2 j))+
∑i, j,i6=k(p1i · p2 j ·Q(C1i,C2 j)). @

(a) Before partition (b) After partition

Figure 4: An example of Theorem 4.1

Theorem 4.2. Given a data set of N classes, the crite-
rion functions MPE-SVM and MPE-LDA are minimized if
the maximum number of subclasses are generated for each
class.

Proof. According to Theorem 4.1, given k subclasses that
have been generated by any clustering algorithm, we can al-
ways find k + 1 subclasses that can achieve smaller MPE-
SVM than the k subclasses. By recursive theorem, the score
MPE-SVM can be minimized at the highest cluster granu-
larity. Consider the case of MPE-LDA, because at the high-
est cluster granularity, each training object is regarded as a
subclass and the variance of a single object equals zero, the
score MPE-LDA is identical to zero (the minimal value).@

MPE-LDA vs. MPE-SVM
First, we consider the case when each class only con-

tains one cluster (the lowest cluster granularity). In this
case, these two functions degeneralize to LDA and SVM,
respectively. Results have been shown that in overall SVM
can achieve higher classification accuracy than LDA [17].
The possible reason is that SVM considers both empirical
error and structure capacity and is based on recent advances
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in statistical learning theory [16]. In comparison, LDA as-
sumes that each class is normally distributed with common
covariances. This assumption is usually not held in real ap-
plications. However, LDA is much more efficient to com-
pute and easier to understand than SVM. Particularly, LDA
and SVM have the time complexities O(d2n) and O(d2nδ),
respectively, where d refers to the dimension cardinality, n
refers to the training sample size, and δ > 1.

Second, we consider the case when some classes have
more than one subclass. In this case, MPE-SVM appears
more stable than MPE-LDA. As proven by Theorem 4.1,
MPE-SVM has the important characteristic of monotonic-
ity, with respect to the total number of subclasses. It is also
more resilient to outliers. In comparison, MPE-LDA does
not have the feature of monotonicity (See examples in Sec-
tion 6.4) and requires calculating the inverse of the within-
class scatter matrix for each pair of subclasses. If some
subclasses have singular covariance matrixes (e.g., outlier
classes or the classes with correlated attributes), then the to-
tal score of MPE-LDA will be affected. The selection of
MPE-LDA or MPE-SVM is not necessarily dependent on
the classifier model used in the pairwise prototype classi-
fiers. For example, in the scenario of limited computation,
MPE-LDA may be used as the criterion function to guide the
generation of subclasses, even though SVM is used latter to
build the pairwise prototype classifiers.

Characteristics of MPE
As demonstrated in Section 6, MPE exhibits much higher

accuracy than general clustering criterion functions (e.g., to-
tal intra-cluster variance). However, it still has several limi-
tations: 1) Dependence on Cluster Granularity. Theorem
4.2 indicates that MPE can always get the minimal value
at the highest cluster granularity. As proved by Theorem
3.2, in this case the combined classifier degeneralizes to
a 1-nearest-neighbor classifier. It implies the requirement
of a predefined total number of subclasses to be generated.
Otherwise, the criterion functions may not be useful to find
meaningful subclasses.

2) Inappropriate for a Large Number of Subclasses.
The total number of prototype classifiers is quadratically in-
creasing with the increase of the total number of subclasses.
When the number is high, the differences between the er-
ror scores of prototype classifiers will be neutralized. As
a result, MPE will become insensitive to different general-
izations of subclasses. As shown in Figure 5, this effect is
demonstrated on a binary class benchmark data ringnorm,
which has twenty dimensions and 400 training instances.
We randomly generated 20 subclasses (10 subclasses for
each class). The histograms of the error scores (calculated
by LDA and SVM, respectively) of pairwise prototype clas-
sifiers are displayed in Figures 5 (a) and 5 (b). K refers to the
total number of subclasses generated. The results show that
the pairwise error scores are not well-differentiable. We fur-

ther ran 100 different random generalizations of subclasses
and obtained similar distributions in most cases. It indicates
that the value of MPE will not change significantly given
different generalizations of subclasses.

(a) LDA as the classifier model (b) SVM as the classifier model

Figure 5: Histograms of the error scores of pairwise pro-
totype classifiers (Ringnorm, K = 20)

4.3 Variants of MPE

To alleviate the negative impacts of the large number of
prototype classifiers, we can redefine the set U (see equa-
tion (1)) as a small set of representative prototype classifiers.
Depending on the different definitions of the representative
classifiers, several variants of MPE can be derived. Due to
lack of space, we only briefly present two major variants.

The first variant is called Refined MPE (R-MPE), which
defines U as the set of necessary prototype classifiers. As
discussed in Section 3.1, by assuming that Theorem 3.1 is
true for the whole space, the pairwise coupling can be refor-
mulated as a voronoi diagram problem. Based on this refor-
mulation, many prototype classifiers are actually redundant
when the data is in a low-dimensional space (e.g., smaller
than 10 dimensions). For example, suppose there are totally
N subclasses in a 2-dimensional space, then the number of
necessary prototype classifiers is smaller than (3N−6) [18].
That means, even there are O(N2) prototype classifiers, only
linearly many classifiers contribute to the decision boundary
of the resulting classifier.

Another variant is named Symmetric Nearest Neighbor
based MPE (SNN-MPE), which defines U as the pairs of
subclasses which are symmetric k-nearest neighbors. We de-
fine the Euclidean distance between the centers of two sub-
classes as the proximity metric. The subclasses of a same
parent class are not considered as neighbors. The effective-
ness of SNN-MPE is based on an important observation that
the significant prototype classifiers are usually related to the
pairs of subclasses, which are close to each other. SNN-
MPE provides a parameter k to allow users to balance the
tradeoff between the computational cost and the accuracy.

The proposed variants R-MPE and SNN-MPE are both
mainly appropriate for low-dimensional data. Because of
the curse of dimensionality, in a high dimensional space the
subclasses are neighbors to each other, and most pairwise
prototype classifiers become necessary classifiers. In this
case, R-MPE degeneralizes to MPE, and SNN-MPE degen-
eralizes to a random selection of subclass pairs for U. In

7



order to apply these criterion functions to high-dimensional
data, we can utilize dimension reduction techniques (e.g.,
PCA, LDA) to reduce the dimensionality.

5 A Greedy Clustering Algorithm
To evaluate the effectiveness of the proposed criterion

functions, this section presents a simple but effective super-
vised clustering algorithm named Greedy-MPE. It generates
the subclasses in a greedy manner to minimize the criterion
functions (MPE). The algorithm is described as follows:

Algorithm (Greedy-MPE). Given a data set of N classes
{C1, . . . ,CN} and the total number (K) of subclasses to be
generated,

1. Regard each class as a single cluster (subclass).

2. From the set U of subclass pairs, search for a
pair of subclasses (Ci j,Ckp) that has the maximum
weighted classification error F(Ci j,Ckp). The maxi-
mum weighted classification error indicates that this
pair of subclasses is currently most linearly insepara-
ble and hence can be regarded as the priority candidate
subclasses for further decompositions.

3. Select a subclass from Ci j and Ckp, which has the
highest intra-class variance, and decompose it into two
smaller-size subclasses.

4. If the total number of the subclasses generated is
smaller than K, then go to step 2. Otherwise, output
the current subclasses and terminate the algorithm.

The set U of candidate subclass pairs is determined by
a specific criterion function, which the algorithm greedily
minimizes. For example, for MPE, U refers to the pairs
of subclasses, which do not have the same parent class la-
bel. For SNN-MPE, U refers to the pairs of subclasses,
which are symmetric k-nearest neighbors. F(Ci j,Ckp) =
Pi j−kp ∗E(Ci j,Ckp), where Pi j−kp refers to the prior proba-
bility of the subclass pair (Ci j,Ckp), and E(Ci j,Ckp) refers
to the classification error between Ci j and Ckp. In the step
3, traditional clustering algorithms (e.g., k-means) can be
used to decompose the selected subclass into two smaller-
size subclasses.

The key issue of Greedy-MPE is to select an appropri-
ate subclass in each iteration for further splits. The current
selection bias is to prefer the subclass which is not well-
separatable from others and has a high intra-cluster vari-
ance. Two alternative selection biases may also be consid-
ered. The first is to prefer the subclass which has the high-
est aggregated classification error over the related subclass
pairs: argmaxCi j

(∑k 6=i Pi j−kpE(Ci j,Ckp)). The second is to
prefer the subclass which has the maximum gain of MPE
score: argmaxCi j

(Qbe f ore splitting Ci j −Qa f ter splitting Ci j), where
Qbe f ore splitting Ci j refers to the MPE score before splitting the
subclass Ci j, and Qa f ter splitting Ci j refers to the MPE score af-
ter splitting the subclass Ci j.

6 Experiment
This section demonstrates the equivalence between three

popular combination schemas under general settings (Theo-
rem 3.1), compares the performances of the resulting clas-
sifiers produced by different clustering methods, and evalu-
ates the application of the proposed criterion function MPE-
SVM to estimate the appropriate number of subclasses for
different generation methods.

6.1 The Experimental Setup

Experimental Tools. We used linear SVM and Fisher
LDA as the prototype classifiers, and four different clus-
tering algorithms to generate subclasses: Greedy-MPE, k-
means, hierarchical clustering (HC), and EM clustering. The
implementation of linear SVM is LIBSVM [20]. The clus-
tering algorithms k-means, HC and EM were implemented
in Matlab. The major settings were as follows: 1) Euclidean
distance was used as the proximity metric, 2) the parame-
ter “replicates” for k-means (number of times to repeat the
clustering) was set to 10, 3) the link metric in the HC clus-
tering algorithm was set to average link, and 4) the tradeoff
parameter (C) for linear SVM was set to 100. The default
classifier model and combination schema were linear SVM
and the voting-based, respectively. For k-means, HC and
EM, we generated the same number of subclasses for each
class.

Experimental Data Sets. In our experiments, we used
22 benchmark data sets provided by UCI [19], STAT-
LOG [21], DELVE [22], and LIBSVM [20] data reposi-
tories: flare solar, thyroid, breast cancer, breast-w, pima-
diabetes, heart, image, ringnorm, twonorm, waveform, ger-
man, diabetis, fourclass, svmguide1, vehicle, page-block,
segment, glass, satimage, pendigits, optdigits, and letter.
Among these data sets, the range of class numbers is [2,
26], and the range of dimensions is [2, 60]. Table 1 shows
the detailed information of six representative data sets. We
generated 100 random partitions into training and test sets
(mostly 60%:40%). On each partition, we trained a classifier
and then calculated its test set accuracy. The mean accuracy
over all partitions was reported. We considered the settings
of cluster granularity (the total number of subclasses) from
1 to 40. The experiments were conducted on the Matlab 6.5
framework running on Windows XP. The hardware platform
was a 2.8 GHz Pentium-D CPU with 1GB of RAM.

6.2 Combination Schemas

This subsection validates the equivalence between three
popular combination schemas (voting based, probability
based, and MinMax) on the generalization accuracy. As dis-
cussed in Section 3, these three combinations are provably
equivalent inside certain regions, that constitute a majority
of the input space. To evaluate the percentage of the prov-
able equivalent area to the whole space, we used k-means to
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(c) Thyroid
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(d) Image
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(e) Fourclass
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(f) Flare solar

Figure 7: Comparison on test classification accuracy

Table 1: Some characteristics of experimental data sets
Dataset Source #Objects #features #classes
Thyroid UCI 140:75 3 2

Flare solar UCI 666:400 9 2
Image UCI 1300:1010 18 2
Glass UCI 128:86 9 6

Ringnorm DELVE 400:7000 20 2
Fourclass LIBSVM 517:345 2 2

Note: The numbers before and after ”:” are for training and
testing, respectively.

generate subclasses and calculated the rate of training and
testing objects, which were within the provable equivalent
area. Figure 6 shows the experimental results on the twenty-
two benchmark data sets. The X-axis refers to the total num-
ber of subclasses generated and the Y-axis refers to the rate
of training and testing objects which are within the provable
equivalent area. In the figure, there are totally 306 sample
points, and each sample point denotes the result of a data set
under a specific cluster granularity. A linear regression line
was generated to show the correlation between the provable
equivalent rate and the cluster granularity. The results in-
dicate that on average more than 99% of objects are within
the provable equivalent area. Another observation is that the
provable equivalent rate has a tendency of decreasing when
the cluster granularity increases. That means, when the clus-
ter granularity is extremely high (e.g., 200), these schemas
will be significantly different. However, as shown later, the
optimal number of subclasses is usually smaller than 40 in
practice.

Theorem 3.1 is the sufficient but not necessary condi-

Figure 6: Provable equivalent rate vs. cluster granular-
ity

tion of the equivalence. The objects which do not satisfy
Theorem 3.1 are still possibly equivalent for these combi-
nation schemas. We observe that the actual equivalent rate
is much higher than the provable equivalent rate. For ex-
ample, among all the tested data sets, the actual equivalent
rate between the voting based and MinMax is 0.999±0.002.
As to the non-equivalent objects, in which the voting based
and MinMax reported different results, these two schemas
have the test accuracies close to a random assignment. For
instance, among fourteen binary data sets, the voting based
and MinMax schemas have the test accuracies of 0.52±0.33
and 0.48±0.33, respectively, on the non-equivalent objects.

6.3 Subclass Generation

This subsection compares the performances of the LLC-
PC classifiers led by Greedy-MPE and three popular clus-
tering algorithms, k-means, HC, and EM. Figure 7 shows
the results on test classification accuracy. The X-axis refers
to the total number of subclasses, and the Y-axis refers to
the test accuracy. Table 2 shows the comparison on opti-
mal test accuracy, which refers to the highest test accuracy
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over all the settings. The results indicate that Greedy-MPE is
more accurate and stable than general clustering algorithms
in most settings. For example, on the data set ringnorm, the
optimal test accuracy of Greedy-MPE is 10% higher than
those of the other algorithms. A possible explanation to
this superiority is that Greedy-MPE is guided by the crite-
rion function MPE. Because MPE is specifically designed to
measure the generalization error of an LLC-PC classifier, a
greedy division of the training data to minimize MPE can be
regarded as a greedy division strategy to minimize the gen-
eralization error. Thus, the overall good (but not optimal)
accuracy and stability are guaranteed.

In comparison, general clustering algorithms exhibit in-
consistent performances on different data sets. For exam-
ple, the EM clustering algorithm can achieve comparable
optimal test accuracies to the others on image and thyroid,
however, its performances on ringnorm and fourclass are
10% less than Greedy-MPE. As shown in Figure 7, this
pattern of inconsistency is also exhibited in other settings.
It is important to compare the algorithms over all the set-
tings, since in practice it is difficult to accurately estimate
the optimal number of subclasses. A possible explanation of
this inconsistency is that the criterion functions (e.g., total
intra-cluster variance) of general clustering algorithms are
not well-correlated to the generalization accuracy. As a re-
sult, the generated subclasses with high cluster quality do
not necessarily mean that the resulting classifier will have a
high generalization accuracy.
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Figure 8: Comparison on total computational cost (Im-
age)

Table 2: Comparison on optimal test accuracy
Dataset Greedy-MPE k-Means HC EM

Ringnorm 85.70(11) 75.20(2) 75.20(2) 75.95(16)
Glass 70.27(18) 67.86(30) 67.28(36) 66.22(24)

Fourclass 99.94(38) 99.95(22) 99.93(26) 90.93(40)
Image 95.34(11) 95.86(34) 92.06(40) 95.22(40)

Thyroid 95.75(5) 95.43(4) 95.12(34) 95.19(32)
Flare solar 67.61(2) 67.61(2) 67.61(2) 67.61 (2)

Note: # in “()” refers to the optimal number of subclasses.

Figure 8 shows the time comparison results on the data
set image. The X-axis refers to the total number of sub-
classes, subclasses, and the Y-axis refers to the total com-

putational cost, which contains the clustering, training, and
testing time costs. The total computational cost of the LLC-
PC classifier led by Greedy-MPE is competitive to those of
the classifiers led by k-means and EM, but much lower than
that of the LLC-PC classifier generated by HC. Other tested
benchmark data exhibit similar trends.

6.4 Estimating the Optimal Number of
Subclasses

This subsection demonstrates the application of MPE-
SVM to estimate the optimal number of subclasses for dif-
ferent subclasses generation methods. As illustrated in Fig-
ure 9 (a), we applied the LLC-PC classifier led by Greedy-
MPE to the data set ringnorm. The left Y-axis refers to the
test accuracy, the right Y-axis refers to the error score (calcu-
lated by MPE-SVM), and the X-axis refers to the total num-
ber of sub-classes. An important observation is that, if the
total number of sub-classes increases, the error score will
decrease rapidly in the beginning. After the error score re-
duces to a certain level, the decreasing speed will slow down
and stabilize. Consistently, the change of the test accuracy
matches this pattern. When the decreasing of the error score
clearly slows down, the test accuracy approaches a close-to-
optimal value. Therefore, we can estimate an appropriate
number of sub-classes around 8, which is close to the opti-
mal value 11.

This pattern was observed on all the data sets tested when
different subclasses generation methods (k-means, HC) and
classifier models (e.g., SVM, LDA) were used. For example,
in Figure 9 (b), we used LDA as the classifier model, instead
of SVM, and selected a different data set glass. The corre-
lation between the error score MPE-SVM and the test accu-
racy indicates an appropriate number of subclasses around
14, which is close to the optimal value 13. In Figure 9 (c),
we applied k-means, instead of Greedy-MPE, to the data set
image, and could estimate an appropriate number of sub-
classes around 18. A possible explanation to this pattern
is that MPE-SVM considers both classifier margin and em-
pirical error and is hence well correlated to the generaliza-
tion error. A rapid reduction on the MPE-SVM score would
expect a significant decreasing on the generalization error.
For the purpose of comparing MPE-SVM and MPE-LDA,
we also showed the related error scores calculated by MPE-
LDA in the preceding examples. By comparing the curves of
MPE-SVM with those of MPE-LDA, the indicated patterns
are consistent with the theoretical evaluations in Section 4.2.

7 Conclusion and Future Work
This paper conducts a systematic evaluation of LLC-PC

and presents several criterion functions to measure the good-
ness of subclasses with respect to the generalization accu-
racy. We evaluate their major characteristics, and demon-
strate how to apply these criterion functions to identify
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(b) Glass (LDA as the classifier model)
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Figure 9: Correlation between test classification accuracy and MPE

good-quality subclasses and to estimate the optimal number
of subclasses. Extensive experimental evaluations further
validated the effectiveness of the proposed techniques. In the
future, we plan to conduct empirical comparisons between
LLC-PC and other categories, LLC-LS and LLC-MD, and
summarize the appropriate applications for each one. We
will also study the theoretical connections between different
categories and design a general framework for them.
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