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Abstract    

This paper proposes a new computational approach based on the Extended Kalman Filter (EKF) in order to apply the 

polynomial chaos theory to the problem of parameter estimation, using direct stochastic collocation. The Kalman filter 

formula is used at each time step in order to update the polynomial chaos of the uncertain states and the uncertain 

parameters. The main advantage of this method is that the estimation comes in the form of a probability density function 

rather than a deterministic value, combined with the fact that simulations using polynomial chaos methods are much 

faster than Monte Carlo simulations. The proposed method is applied to a nonlinear four degree of freedom roll plane 

model of a vehicle, in which an uncertain mass with an uncertain position is added on the roll bar. A major drawback 

was identified: the EKF can diverge when using a high sampling frequency, which might prevent the use of enough data 

to obtain accurate results when a low sampling frequency is necessary. When applying the polynomial chaos theory to 

the EKF, numerical errors can accumulate even faster than in the general case due to the truncation in the polynomial 

chaos expansions, which is illustrated on a simple example. An alternative EKF approach which consists of applying the 

filter formula on all the observations at once usually yields better results, but can still sometimes fail to produce very 

accurate results. Therefore, using different sampling rates in order to verify the coherence of the results and comparing 

the results to a different approach is strongly recommended.     

 

Keywords - Parameter Estimation, Polynomial Chaos, Collocation, Halton/Hammersley Algorithm, Extended Kalman 

Filter (EKF), Vehicle Dynamics     

 

 

1. Introduction and background   

The polynomial chaos theory has been shown to be consistently more efficient than Monte Carlo simulations in order to 

assess uncertainties in mechanical systems (Sandu et al., 2006a–2006b). This paper extends the polynomial chaos 

theory to the problem of parameter estimation, and illustrates it on a nonlinear four degree of freedom roll plane model 

of a vehicle, in which an uncertain mass with an uncertain position is added on the roll bar.     
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Parameter estimation is an important problem, because many parameters simply cannot be measured physically 

with good accuracy, especially in real time applications. The method presented in this paper has the advantage of being 

able to deal with non-Gaussian parametric uncertainties. Parameter estimation is also a very difficult problem, 

especially for large systems, and a lot of effort devoted to it would be needed. Estimating a large number of parameters 

often proved to be computationally too expensive. This has led to the development of techniques determining which 

parameters affect the system’s dynamics the most, in order to choose the parameters that are important to estimate 

(Sohns et al., 2006). Sohns et al. (2006) proposed the use of activity analysis as an alternative to sensitivity-based and 

principal component-based techniques. Their approach combines the advantages of the sensitivity-based techniques 

(i.e., being efficient for large models) and the component-based techniques (i.e., keeping parameters that can be 

physically interpreted). Zhang and Lu (2004) combined the Karhunen–Loeve decomposition and perturbation methods 

with polynomial expansions in order to evaluate higher-order moments for saturated flow in randomly heterogeneous 

porous media.     

The polynomial chaos method started to gain attraction after Ghanem and Spanos (1990, 1991, 1993, 2003) applied 

it successfully to the study of uncertainties in structural mechanics and vibration using Wiener-Hermite polynomials. 

Xiu extended the approach to general formulations based on Wiener-Askey polynomials family (Xiu and Karniadakis, 

2002a), and applied it to fluid mechanics (Xiu et al., 2002; Xiu and Karniadakis, 2002b, 2003). Sandu et al. applied for 

the first time the polynomial chaos method to multibody dynamic systems (Sandu et al. 2004, 2005, 2006a,  2006b), 

terramechanics (Li et al., 2005; Sandu et al., 2006c), and parameter estimation (Blanchard et al., 2007a - 2007b).   

The fundamental idea of polynomial chaos approach is that random processes of interest can be approximated by 

sums of orthogonal polynomial chaoses of random independent variables. In this context, any uncertain parameter can 

be viewed as a second order random process (processes with finite variance; from a physical point of view they have 

finite energy). Thus, a second order random process , viewed as a function of the random event , can be 

expanded in terms of orthogonal polynomial chaos (Ghanem and Spanos, 2003) as:   

               (1) 

Here  are generalized Askey-Wiener polynomial chaoses, in terms of the multi-dimensional random 

variable . The Askey-Wiener polynomial chaoses form a basis. The multi-dimensional basis functions 

are tensor products of 1-dimensional polynomial basis:      

      (2) 

where ,  is the number of random variables , and  is the maximum order of the polynomial basis. 

The total number of terms increases rapidly with  and .  

The basis functions are selected depending on the type of random variable functions. For Gaussian random 

variables the basis functions are Hermite polynomials, for uniformly distributed random variables the basis functions 

are Legendre polynomials, for beta distributed random variables the basis functions are Jacobi polynomials, and for 

gamma distributed random variables the basis functions are Laguerre polynomials (Xiu and Karniadakis, 2002a, 2003). 

In practice, a truncated expansion of equation (1) is used,    

          (3) 

In the deterministic case, a second order unconstrained system can be described by the following Ordinary 

Differential Equation (ODE):    
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            (4)  

In the stochastic framework developed in this study, the displacement , the velocity , and the set of 

parameters (the set of  parameters being possibly uncertain) of a second order unconstrained system can be 

expanded using equation (3) as:    

      (5) 

Propagating equation (5) through the deterministic system of equations of the system, one obtains:    

     (6) 

To derive evolution equations for the stochastic coefficients  we impose that equation (6) holds at a given set of 

collocation vectors  for all . This leads to:     

                              (7) 

where  represents the matrix of basis function values at the collocation points:   

      (8) 

The collocation points have to be chosen such that  is nonsingular. The collocation system can be written as:    

                  (9) 

After integration, the stochastic solution coefficients are recovered using:     

                       (10) 

The mean values of  and  are  and , respectively.   

The standard deviations of  and  are given by:     

       ,         (11) 

where is  is the space of possible value for the unknown variables and where  is the probability distribution of 

the multi-dimensional random variable . 

When the basis functions are orthogonal polynomials, the standard deviations of  and are given by:    

  ,       (12) 

When the basis are orthonormal, the standard deviations of  and are given by:      
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  ,             (13) 

The Probability Density Functions (PDF) of  and  are obtained by drawing histograms of their values 

using a Monte Carlo simulation and normalizing the area under the curves obtained. This is not computationally 

expensive since the Monte Carlo simulation is run on the final result, and not for the whole process. For instance, the 

ODE is run the same number of times as the number of collocation points, which is typically much lower than the 

number of runs used for the Monte Carlo simulation.        

 

2. Extended Kalman Filter approach for parameter estimation    

Optimal parameter estimation combines information from three different sources: the physical laws of evolution 

(encapsulated in the model), the reality (as captured by the observations), and the current best estimate of the 

parameters. The information from each source is imperfect and has associated errors. Consider the mechanical system 

model (6) which advances the state in time represented in a simpler notation:   

        (14) 

The state of the model  at time moment  depends implicitly on the set of parameters , possibly 

uncertain (the model has  states and  parameters).  is the model solution operator which integrates the model 

equations forward in time (starting from state  at time  to state  at time ).  

For parameter estimation it is convenient to formally extend the model state to include the model parameters and 

extend the model with trivial equations for parameters (such that parameters do not change during the model evolution)   

                 (15) 

The optimal estimation of the uncertain parameters is thus reduced to the problem of optimal state estimation. We 

assume that observations of quantities that depend on system state are available at discrete times   

               (16) 

where  is the observation vector at ,  is the (model equivalent) observation operator and  is the 

linearization of  about the solution . Note that there are  observations for the -dimensional state vector, and 

that typically . Each observation is corrupted by observational (measurement and representativeness) errors 

(Cohn, 1997). We denote by  the ensemble average over the uncertainty space. The observational error is the 

experimental uncertainty associated with the measurements and is usually considered to have a Gaussian distribution 

with zero mean and a known covariance matrix .      

The Kalman filter (Evensen, 1992, 1993; Fisher, 2002, Kalman, 1960) assumes that the model (14) is linear, and 

the model state at previous time  is normally distributed with mean  and covariance matrix . The Extended 

Kalman Filter (EKF) allows for nonlinear models and observations by assuming the error propagation is linear. In the 

EKF approach, the nonlinear observation operators are linearized, .      

The state is propagated from  to  using model equations, and the covariance matrix is explicitly propagated using 

the tangent linear operator and its adjoint,  

        (17) 
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where the subscripts f and a stand for forecast and analysis, respectively.  is the model (14) propagator (from  to 

),  is the corresponding tangent linear propagator and  is its adjoint.  represents the covariance of the 

model errors.  

Under linear, Gaussian assumptions, the PDFs of the forecast and assimilated fields are also Gaussian, and completely 

described by the mean state and the covariance matrix. The assimilated field  and its covariance matrix  are 

computed from the model forecast , the current observations ,  and from their covariances using:  

        (18) 

One step of the data assimilation with the extended Kalman filter can be represented as:  

    (19) 

For parameter estimation extend the model state to formally include the model parameters: 

          (20)  

The covariance matrix of the extended state vector can be estimated from the polynomial chaos expansions of  and 

.   

            (21) 

Using this covariance matrix compute the Kalman gain matrix using the formula:   

           (22) 

The Kalman filter formula computes the assimilated state and parameter vector as:  

      (23) 

Assuming that no direct observations are made on the parameters, and only the state is observed, we obtain: 

       (24) 

Using the polynomial chaos expansions of the forecast state and the parameters: 

            (25) 

the Kalman filter formula is used to determine the polynomial chaos expansion of the assimilated model and 

parameters. For this, first insert the polynomial chaos expansions into the filter formula: 

     (26) 



Parameter Estimation for Mechanical Systems Using an Extended Kalman Filter 

Blanchard E., Sandu A., and Sandu C.                                    9/12/2008 6 

Note that the term with the observations does not depend on the random variables and is therefore associated with only 

the first (constant) basis function. By a Galerkin projection we see that the polynomial chaos coefficients of the 

assimilated state and parameters are:   

     (27) 

If all the observations are made only on the state of the system we have that:   

       (28) 

The covariance of the extended state vector is:     

  (29) 

The Kalman gain reads:   

      (30) 

The parameter estimate is then:   

         (31) 

In the polynomial chaos framework the covariance matrices  and  can be estimated from the polynomial chaos 

expansion of the solution and the parameters. Then the polynomial chaos coefficients of the parameters are adjusted as:  

     (32) 

Let’s note that the Kalman filter formula is optimal for the linear Gaussian case. For non-Gaussian uncertainties the 

Kalman filter formula is sub-optimal, but is still expected to work.  

Another possible approach is to apply the filter formula only once, on a vector containing all the observations from 

 to :       

             (33) 

where  

                                 (34) 

                (35) 
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             (36) 

, ,   with         (37) 

The original approach will be called the one-time-step-at-a-time EKF approach, and this alternative approach will be 

called the whole-set-of-data-at-once EKF approach. The two approaches are equivalent only for linear systems with 

Gaussian assumptions. Even in that case, they might not always be equivalent in practice, due to numerical issues.    

 

3. Insight into the EKF approach using simple mechanical systems   

3.1 Roll plane modeling of a vehicle    

The model used to apply the theory presented in this article is based on the four degree of freedom roll plane model of a 

vehicle used by Simon (1999) with the addition of a mass on the roll bar, as shown in Figure 1. The difference is that 

the suspension dampers and the suspension springs used in this study are nonlinear and that a mass is added on the roll 

bar, which represents the driver, the passenger, and other objects in the vehicle. The added mass  and its position 

 away from the left end of the roll bar are assumed to be uncertain. It is assumed that there is a passenger, and 

apriori distribution of the added mass will therefore be centered in the middle of the bar. This added mass will be 

represented as a point mass for the sake of simplicity. Measuring the position of the C.G. of the added mass physically 

is not straightforward. However, if a well defined road input can be used and sensors are available, these two parameters 

can be estimated based on the observed displacements and velocities across the suspensions.      

 

 

Figure 1. Four degree of freedom roll plane model (adapted from the model used by Simon (1999))  

 

The body of the vehicle is represented as a bar of mass  (sprung mass) and length  that has a moment of 

inertia . The unsprung masses, i.e., the masses of each tire/axle combination, are represented by  and . A mass 
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is added on the roll bar, which represents the driver and other objects in the vehicle. That added mass is represented as a 

point mass of value  situated at a distance  from the left extremity of the roll bar.        

The motion variables  and  correspond to the vertical position of each side of the vehicle body, while the motion 

variables  and  correspond to the position of the tires.   

The inputs to this system are  and , which represent the road profile under each wheel.      

If x is the relative displacement across the suspension spring with a stiffness  (i = 1, 2), the force across the 

suspension spring is given by:    

          (38) 

If v is the relative velocity across the damper with a damping coefficient  (i = 1, 2), the force across the damper is 

given by:   

         (39) 

For small angles, i.e. for  small, the equations of motion of the system are   

            (40) 

   (41) 

                (42) 

                 (43) 

where  are defined in equations (38) and (39).  

In these equations, the variables are expressed versus their position at equilibrium (if the added mass M is not in the 

middle, we have static deflections).  is relative to the position of the ground, which is fixed. It has to be 

estimated numerically because of the nonlinearities in the system.   

The parameters used in this study are shown in Table I. They are the parameters used by Simon (1999), with the 

addition of nonlinearities and uncertainties for  and . For the parameters shown in Table I, the minimum static 

angle (i.e., the angle of the roll bar with respect to a fixed reference on the ground) is - 1.21 degrees and the maximum 

static angle is 1.21 degrees, which corresponds to  . These values are obtained for  and 

, i.e.. for the maximum possible value of  with the added mass as far as possible from the center of 

the bar.         
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Table I. Vehicle parameters  

Parameter Description Value 

 Mass of the Roll Bar 580 kg 

,  Mass of the tire/axle 36.26 kg 

,  Damping coefficients 710.70 N s /m 

,  Spring constants – linear component 19,357.2 N/m 

,  Spring constants – cubic component 100,000 N/m
3
 

 Length of the Roll Bar 1.524 m 

 Inertia of the Roll Bar 63.3316 kg m
2
 

,  Tires vertical stiffnesses 96,319.76 N/m 

 Added Mass 
200 kg  +/-50%, with Beta (2, 2) 

distribution 

 
Distance between the C.G. of the mass and the left 

extremity of the roll bar 

0.7620 m  +/-25%, with Beta (2, 2) 

distribution 

    

The uncertainties of 50% and 25% on the values of  and  can be represented as:      

               (44) 

         (45) 

where  and  are the nominal values of the vertical stiffnesses of the tires ( and 

).      

It is assumed that the probability density functions of the values of  and  can be represented with Beta (2, 2) 

distributions (Sandu et al., 2006 a, 2006 b), with uncertainties of +/- 50% and +/- 25%, respectively. The distributions 

of the uncertainties related to the values of  and , defined on the interval , are represented in Figure 2. 

They have the following Probability Density Functions (PDFs):    

           (46) 

 

 

            (a)                   (b)     

Figure 2. Beta (2, 2) distribution 

Notes: a) for value of the mass, b) for value of the position of the C.G. of the mass  
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3.2 Collocation points     

The generalized polynomial chaos theory is explained by Sandu et al. (2006 a) in which direct stochastic collocation is 

proposed as a less expensive alternative to the traditional Galerkin approach. The collocation approach consists of 

imposing that the equations system holds at a given set of collocation points. If the polynomial chaos expansions 

contain 15 terms for instance, then at least 15 collocation points are needed in order to have at least 15 equations for 15 

unknown polynomial chaos coefficients. It is desirable to have more collocation points than polynomial coefficients to 

solve for. In that case a least-squares algorithm is used to solve the system with more equations than unknowns.   

Unless otherwise specified, in this study, the polynomial chaos expansions of  and  will use 15 terms. All 

the other variables affected by the uncertainties on  and  will be modeled by a polynomial chaos expansion 

using 15 terms as well. The collocation approach is the one used in this study. It requires at least 15 collocation points to 

derive the coefficients associated to each of the 15 terms of the different polynomial chaos expansions.   

Unless otherwise specified, 30 collocation points will be used in this study to derive the coefficients associated to 

each of the 15 terms of the different polynomial chaos expansions. The collocation points used in this study are obtained 

using an algorithm based on the Halton algorithm (Halton and Smith, 1964), which is similar to the Hammersley 

algorithm (Hammersley, 1960). These collocation points for a uniform distribution are shown in Figure 3(a).  

One of the advantages of the Hammersley/Halton points used in this study is that when the number of points is 

increased, the new set of points still contains all the old points. We therefore know that more points should result in a 

better approximation. The collocation points for a Beta (2, 2) distribution, which is used in this study, are shown in 

Figure 3(b).    

The transformation from the collocation points for a uniform distribution to the points for a Beta (2, 2) distribution 

is achieved by applying the inverse Cumulative Distribution Function of the Beta (2, 2) distribution. Let’s note that 

there is no collocation point at the boundary, i.e., no point associated with an uncertainty equal to -1 or 1, which is 

needed in order to avoid having a cost function equal to infinity.  

 

 

     (a)                 (b)    

Figure 3. Halton collocation points (2 dimensions, 30 points)   

Notes: a) for uniform distribution, b) for beta (2, 2) distribution   

 

3.3 Experimental setting – road input     

In order to assess the efficiency of the polynomial chaos theory for parameter estimation,  and  will be estimated 

using observations of four motion variables obtained for a given road input: the displacements across the suspensions 

(  and ), and their corresponding velocities (  and ). The road profile is shown in Figure 4, 

and the road input is obtained assuming the vehicle has a constant speed of 16 km/h (10 mph). The road profile can be 



Parameter Estimation for Mechanical Systems Using an Extended Kalman Filter 

Blanchard E., Sandu A., and Sandu C.                                    9/12/2008 11 

seen as a long speed bump. The first tire is subjected to a ramp at , and reaches a height of 10 cm (4”) for a 

horizontal displacement of 1m, then stays at the same height for 1m, and goes back down to its initial height. The 

second tire is subjected to the same kind of input, but with a time delay of 20% and it reaches a maximum height of 

only 8 cm.      

 

Figure 4. Road profile – speed bump   

 

The four motion variables are plotted from  to  seconds using  and  

(i.e.,  and ) and assuming these values can only be measured with a sampling rate of 

.    

However, for the proof of concept of the parameter estimation method presented in this paper, we pretend we do 

not know the values of  and , the objective being to estimate those values based on the plot of the four motion 

variables shown in Figure 5. Let’s note that three seconds of data correspond to a horizontal displacement of 13.33 

meters. The end of the speed bump occurs at .    

The excitation signal is supposed to be perfectly known. In other words, the road profile shown in Figure 4 is 

supposed to be exactly known and the speed of the vehicle is supposed to be exactly 16 km/h at all time, which enables 

us to use any desired sampling rate for the input signal. However, only 10 measurement points are used for the output 

displacements and velocities (not counting the measurements at , which give no useful information in order to 

estimate the unknown parameter).   

 

 

              (a)                   (b)      

Figure 5. Observed states - displacements and velocities:    

Notes: a) measured, b) for nominal values ( , )  
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Inaccurate estimates can be caused by different factors, including a sampling rate below the Nyquist frequency, non-

identifiability, non-observability, and an excitation signal that is not rich enough (Blanchard et al., 2007c). The four 

degree of freedom roll plane model used in this article is exactly the same than the one used by Blanchard et al. 

(2007d). The road inputs used in this article have also been used by Blanchard et al. (2007d), who showed it is possible 

to perform parameter estimation even when using only 10 time points for 3 seconds of data (i.e., a sampling rate of 

0.3s).    

The measurements shown in Figure 5(a) are synthetic measurements obtained from a reference simulation with the 

reference value of the uncertain parameter  and . Parameters estimation is performed 

using the EKF approach. In order to work with a realistic set of measurements, a Gaussian measurement noise with zero 

mean and 1% variance is added to the observations shown in Figure 5 (for the relative displacements and velocities) 

before performing parameter estimation.    

The state of the system at future times depends on the random initial velocity and can be represented by    

   (47) 

If we assume that only the displacements across the suspensions (  and ), and their corresponding 

velocities (  and ) can be measured, then   

            (48) 

and the measurements yield    

         (49) 

Measurement errors at different times are independent random variables. The measurement noise is assumed to be 

Gaussian with a zero mean and a variance 1% of the value of . The diagonal elements of the covariance matrix of 

the uncertainty associated with the measurements will still be set to at least  when necessary so that  can 

always be computed. Therefore, the covariance of the uncertainty associated with the measurements is     

                    (50) 

where      

          (51) 

             (52) 

             (53) 

             (54) 

The estimated values of  and  obtained using the one-time-step-at-a-time EKF approach, which are given by 

the first terms of the corresponding polynomial chaos expansions, are  and , i.e., 

 and , which seems to be a good estimation considering that only 10 
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measurement points were used and that there is noise associated to the measurements. The actual values were 

 and , i.e.,  and . The EKF estimations come in the 

form of PDFs, as shown in Figure 6(a) for , and Figure 6(b) for . The estimated values and the corresponding 

standard deviations at each time step are plotted in Figure 6(c) for , and Figure 6(d) for . Let’s remember that 

the standard deviations are given by equation (11).    

 

  

        (a)                (b)         

  

        (c)                 (d)         

Figure 6.  EKF estimation (one time step at a time) for speed bump input with 10 time points (noise = 1%):     

Notes: a) Mass in the form of PDF, b) Distance in the form of PDF; c) Mass for each term index, d) Distance for each 

term index     

 

With 100 sample points (i.e., with time steps of 0.03 s instead of 0.3 s) and a noise level of 1%, the estimated 

values of  and  obtained using the one-time-step-at-a-time EKF approach are  and , 

i.e.,  and .  This is illustrated in Figure 7, which shows that the one-time-step-at-

a-time EKF approach does not work anymore when using a time step of 0.03 s instead of 0.3 s. Figure 8 shows the 

absolute error for our two estimated parameters, i.e.,  and , with respect to the number of 

time points, and equivalently, the length of the time step, which is inversely proportional to the number of time points. It 

can be observed that a long time step is not really desirable, which one would expect since less information is available 

for longer time steps. However, a short time step is even less desirable. This seems to be counterintuitive since one 

would expect that more information would yield more accurate results. The problem is that the EKF can diverge when 

using a high sampling frequency. When applying the polynomial chaos theory to the Extended Kalman Filter (EKF), 
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numerical errors can accumulate even faster than in the general case due to the truncation in the polynomial chaos 

expansions. It is shown in Appendix that for the simple scalar system  with  (where  is known), the 

truncations in the polynomial chaos expansions can prevent the convergence of the covariance of the assimilated state 

. It is also shown in Appendix that the covariance of the error after assimilation  decreases with the 

time step  when there is no model error (which is the case for this study), meaning that using means a larger  

results in a smaller error (unless the covariance of  has not converged yet, which can happen when  is too large). 

Figures 7(c) and 7(d), which plot the estimated values of the two parameters +/- their standard deviations, show that the 

results with a time step of 0.03 s could not be trusted, because the EKF was diverging. Indeed, the range of values 

spanned by the estimated values +/- their standard deviations at time index  does not always include the range of 

values spanned by the estimated values +/- their standard deviations at time index . The curves representing the 

estimated values +/- the standard deviations of the estimations can decrease and suddenly increase with new 

observations or vice versa, unlike what was observed in Figures 6(c) and 6(d), where the curves representing the 

estimated values +/- their standard deviations smoothly decrease/increase. Therefore, it is judicious to look at the 

estimated values and their standard deviations at each time step. When the estimated values +/- their standard deviations 

display non-monotonous behaviors, it is a sign that the sampling frequency should be decreased. Sampling below the 

Nyquist frequency is usually a necessity in order to prevent the EKF from diverging. In most cases, sampling below the 

Nyquist frequency does not result in non-identifiability issues, but it can in a few rare cases, as illustrated in Blanchard 

et al., 2007c.     

 

 

        (a)               (b)         

 

        (c)               (d)         

Figure 7.  EKF estimation (one time step at a time) for speed bump input with 100 time points (noise = 1%):     

Notes: a) Mass in the form of PDF, b) Distance in the form of PDF; c) Mass at each time index, d) Distance at each 

time index     
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(a)              (b) 

Figure 8. Absolute error for the estimated parameters 1 and  2 with the nonlinear half-car model for the speed bump 

with respect to:  (a) the number of time points;  (b) the length of the time step     

 

Another possible approach is to apply the filter formula only once, on a vector containing all the observations from  to 

. Using this alternative approach, we get better results with a Gaussian measurement noise with zero mean and 1% 

variance, for both 10 time points (Figure 9) and 100 time points (Figure 10). Applying the EKF formula on the whole 

set of data at once with 10 time points yields  and , i.e.,  and 

. Applying the EKF formula on the whole set of data at once with 100 time points yields 

 and , i.e.,  and . For this particular road input, 

applying the filter formula only once, on a vector containing all the observations clearly yields better results, and this 

whole-set-of-data-at-once EKF approach still works with a sampling rate of 0.03 s, while the one-time-step-at-a-time 

EKF approach was clearly not working.     

 

 

        (a)               (b)         

Figure 9.  EKF estimation (whole set of data at once) for speed bump input with 10 time points (noise = 1%):     

Notes: a) Mass in the form of PDF, b) Distance in the form of PDF    
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        (a)              (b)         

Figure 10.  EKF estimation (whole set of data at once) for speed bump input with 100 time points (noise = 1%):   

Notes: a) Mass in the form of PDF, b) Distance in the form of PDF    

 

3.4 Experimental setting – out of phase sine input signals at 1 Hz    

In order to continue assessing the efficiency of the polynomial chaos theory for parameter estimation, the estimations 

will now be performed for a 1-Hz harmonic input, with amplitudes of +/- 0.05 m for  and . The input signal is 

supposed to be exactly known, which enables us to use any desired sampling rate for the input signal. Figure 11 shows 

the harmonic inputs that will be used at 1 Hz. The parameters  and  will still be estimated using a plot of four 

motion variables: the displacements across the suspensions (  and ), and their corresponding velocities 

(  and ). A Gaussian measurement noise with zero mean and 1% variance is still added to the 

observations.    

 

   

Figure 11. Road input at 1 Hz  

 

Figure 12 shows the results obtained when using the one-time-step-at-a-time EKF approach with 10 time points, i.e., 

with a sampling rate of 0.3 s. Figure 12(c) shows that the estimation of the mass should actually not be trusted for the 

reasons explained previously. It can also be observed in Figure 12(a): the PDF contains values above 300 kg, i.e., 

outside the range of the Beta(2,2) distribution, which means the filter has converge problems. Figure 13 shows the 

results obtained when using the whole-set-of-data-at-once EKF approach with the same 10 time points. It yields better 

results for the estimation of the distance, but not for the estimation of the added mass. This shows that this alternative 
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approach does not necessarily work better for every problem, even though it often yields better results, as it clearly did 

with the speed bump used in section 3.3.    

Figure 14 shows the results obtained when using the one-time-step-at-a-time EKF approach with 100 time points, 

i.e., with a sampling rate of 0.03 s. The filter clearly diverges and the estimations cannot be trusted, which is especially 

evident for the estimation of the mass. Figure 15 shows the results obtained when using the whole-set-of-data-at-once 

EKF approach with the same 100 time points. The estimation of the mass comes with a large standard deviation, but this 

approach actually yields an acceptable estimation for the mass:  ( ). In this case, the 

whole-set-of-data-at-once EKF approach yields better results with 100 time points than with 10 time points. However, 

the whole-set-of-data-at-once approach still does not solve all the drawbacks associated with the use of an EKF. It can 

be observed that the PDF contains values outside the range of the Beta(2,2) distribution, i.e., below 100 kg or above 300 

kg, so the convergence problems also appear to affect the whole-set-of-data-at-once approach. When the whole-set-of-

data-at-once approach yields a PDF with a large range of possible values, it is not clear how much it can be trusted. As a 

conclusion, the EKF estimation obtained when applying the filter formula only once on the whole set of data can 

sometimes yield much better results, but not always, so comparing the results to a different approach (e.g., a Bayesian 

approach) is strongly recommended.       

 

 

        (a)               (b)         

 

        (c)               (d)         

Figure 12.  EKF estimation (one time step at a time) at 1 Hz with 10 time points (noise= 1%):     

Notes: a) Mass in the form of PDF, b) Distance in the form of PDF; c) Mass at each time index, d) Distance at each 

time index       
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     (a)               (b)         

Figure 13.  EKF estimation (whole set of data at once) at 1 Hz with 10 time points (noise= 1%):     

Notes: a) Mass in the form of PDF, b) Distance in the form of PDF    

 

 

     (a)               (b)         

 

   (c)               (d)         

Figure 14.  EKF estimation (one time step at a time) at 1 Hz with 100 time points (noise= 1%):     

Notes: a) Mass in the form of PDF, b) Distance in the form of PDF; c) Mass at each time index, d) Distance at each 

time index        
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     (a)               (b)         

Figure 15.  EKF estimation (whole set of data at once) at 1 Hz with 100 time points (noise= 1%):     

Notes: a) Mass in the form of PDF, b) Distance in the form of PDF      

 

Parameter estimation can be performed for the same system using linear springs and dampers. Let’s use 

 for the dampers and  for the suspension springs (i = 1, 2). It can be observed that the PDFs 

obtained for the linear case and the nonlinear case are quite similar, as shown as in Figure 16 (which needs to be 

compared with Figure 13 for the nonlinear case) and Figure 17 (which needs to be compared with Figure 15 for the 

nonlinear case). For this 1Hz- road input, the problems we encountered do not seem to come from the nonlinearities in 

the springs and dampers. Nonlinearities can result in a non-identifiable system, but this was not the case for this 1-Hz 

input, as shown in Blanchard et al. (2007d).     

 

 

     (a)               (b)          

Figure 16.  EKF estimation (whole set of data at once) for the linearized system at 1 Hz with 10 time points (noise = 

1%):   Notes: a) Mass in the form of PDF, b) Distance in the form of PDF      
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     (a)               (b)          

Figure 17.  EKF estimation (whole set of data at once) for the linearized system at 1 Hz with 100 time points (noise = 

1%);   Notes:  a) Mass in the form of PDF, b) Distance in the form of PDF      

 

 

4. Summary and Conclusions         

In this study, a new computational approach for parameter identification is proposed based on the application of 

polynomial chaos theory. An Extended Kalman Filter (EKF) is used to recalculate the polynomial chaos expansions for 

the uncertain states and the uncertain parameters. Two variations of the approach are used: the one-time-step-at-a-time 

EKF approach, in which the Kalman filter formula is used at each time step in order to update the polynomial chaos 

expressions of the uncertain states and the uncertain parameters, and the whole-set-of-data-at-once EKF approach, 

which consists of applying the filter formula only once, on a vector containing all the observations until the last time 

sample. For linear systems with Gaussian assumptions, the two approaches are equivalent in theory, but not necessarily 

in practice due to numerical issues.      

Parameter estimation was performed on a nonlinear four degree of freedom roll plane model of a vehicle, in which 

an uncertain mass with an uncertain position is added on the roll bar. Uncertainties on the values of the added mass and 

its position were assumed to have a Beta (2, 2) distribution. The value of the mass and its position were estimated from 

periodic observations of the displacements and velocities across the suspensions, generated with synthetic 

measurements obtained from a reference simulation with the reference values of the uncertain parameters and with 

added noise. Two different inputs were used: a speed bump with the vehicle rolling over it at a constant speed, and a 1-

Hz sinusoidal roll input.    

The proposed method has several advantages. The polynomial chaos approach has been shown to be considerably 

more efficient than Monte Carlo methods in the simulation of systems with a small number of uncertain parameters, and 

the EKF approach gives more information about the parameters of interest than a simple estimated value: the estimation 

comes in the form of a probability density function. The one-time-step-at-a-time EKF approach usually yielded good 

estimations with a sampling rate of 0.3 s, with PDFs including the true values of the parameters. However, when using 

measurements with a sampling rate of 0.03 s, the one-time-step-at-a-time EKF approach yielded incoherent results. The 

erratic behavior of the PDF in function of the time was indicating that the results could not be trusted. The problem is 

that the EKF can diverge when using a high sampling frequency, which might prevent the use of enough data to obtain 

good results when a low sampling frequency is necessary. When applying the polynomial chaos theory to the Extended 

Kalman Filter, numerical errors can accumulate even faster than in the general case due to the truncation in the 

polynomial chaos expansions, which is illustrated on a simple example in Appendix. In most cases, the whole-set-of-

data-at-once EKF approach yielded accurate results, with standard deviations of the estimates usually much smaller than 

the ones obtained with the one-time-step-at-a-time EKF approach. The whole-set-of-data-at-once EKF approach usually 

also worked well with a sampling rate of 0.03 s as well, but not always: the case in which the uncertain mass was 

estimated using the 1 Hz input showed that it could sometimes yield results that should not be trusted since the PDF 

contains values outside the range of possible values, even though the corresponding probabilities are low. Therefore, 

using different sampling rates in order to verify the coherence of the results is strongly recommended.       
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Since comparing the results to a different approach is also strongly recommended, future work will compare the 

results obtained with EKF approach to results obtained with a polynomial chaos – based Bayesian approach. We also 

plan to apply the proposed techniques to identify parameters of a real mechanical system for which laboratory 

measurements are available.       
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Appendix:  EKF – Error Analysis      

 

The objective of this analysis is to show that the truncations in the polynomial chaos expansions can prevent the 

convergence of the covariance of the assimilated state and that the error can decrease with the length of the time step 

when there is no model error (which was the case for this study: the EKF approach assumes that the equations of motion 

of the system are perfectly known). This analysis will also show that when model errors are present, a nonzero optimal 

time step can exist.   

 

A1. Framework   

Consider the scalar system  with , which is considered to be the true system, with initial condition . 

It has a well-known analytical solution: . After  time steps  which are assumed to be constant, the 

“true” value of the state variable  is:    

                    (A1.1) 

Using the notation , it can also be written as:   

            (A1.2) 

Let’s notice that  is equivalent to .    

A perturbed model will be used:   

    ,              (A1.3) 

It is also assumed that the error model  is independent Gaussian with mean  (  is the bias) and covariance . 

For the sake of simplicity, it will also be assumed that  is fixed during each time interval , i.e., that it takes the 

fixed value  between time  and .     

 

A2. Recurrence relationships – Error and Covariance     

The state  is propagated using the model equations:      

           (A2.1) 

where the superscript f stands for forecast and the superscript a stands for assimilated.       

The assimilated state at step , , is given by:  

,           (A2.3) 

where  is the Kalman gain at step , given by  

         (A2.3) 

In the 1-dimentional case, each matrix becomes a scalar. For our case, we will assume that all the ’s can be replaced 

by , which means that the noise level associated with the measurements is assumed to be constant. We will also 

assume that , i.e., we can directly measure .  Therefore, the Kalman gain at step  is    
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          (A2.4) 

and the assimilated state at step , , is given by:   

            (A2.5) 

Using the notation , the model equation can be rewritten as     

               (A2.6) 

Let  be the error at step  after assimilation,  

                    (A2.7) 

Then, the “forecast” error at step  (before assimilation) is given by:      

              (A2.8) 

Therefore,  

         (A2.9) 

      (A2.10) 

    (A2.11) 

which can also be written as  

                   (A2.12) 

where  is the forecast variance a step .     

The objective of this analysis is to study the effect of the polynomial chaos approximation. Therefore, a term  due to 

the truncation in the polynomial chaos expansion will be added to the forecast covariance:       

         (A2.13) 

For the sake of simplicity,  will be assumed to be a constant.        

Using the notation  yields    

               (A2.14) 

Let’s note that  is a constant for a constant time interval .  An independent Gaussian noise  with mean zero and 

covariance  to the observations:  

         (A2.15) 

The assimilated state at step , , is given by  

          (A2.16) 
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Using the notation   (i.e.,  is the error after assimilation at step ), the error after assimilation at step  

is:   

         (A2.17) 

     (A2.18) 

       (A2.19) 

      (A2.20) 

             (A2.21) 

 

For our 1-dimentional example the Kalman gain at step  is   

             (A2.22) 

which yields   

          (A2.23) 

Replacing  by its expression given in equation (A2.14) yields:    

            (A2.24)  

 

The assimilated covariance at step , , is given by:   

          (A2.25) 

For our 1-dimentional case, it is assumed that , and  is given in equation (A2.22), which yields    

                (A2.26) 

Replacing  by it expression given in equation (A2.14) yields:    

              (A2.27)   
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A3. Convergence of the covariance of the assimilated state   

Using the recurrence for the error and the covariance after assimilation yields the following Jacobian matrix:    

         (A3.1) 

which yields the conditions for linear stability:    

            (A3.2) 

which is equivalent to the following two conditions    

  or          (A3.3) 

i.e..    

  or            (A3.4) 

The second case, , cannot result in the convergence of  because it is impossible to have 

 with . This has been proved with Mathematica, as shown below.   

 

 

 

It means that the only case for which the covariance converges is when:  

           (A3.5) 

or equivalently, when   

,                (A3.6) 

which also forces the following condition to be true     

 , i.e.              (A3.7) 

which can be proved by using Mathematica, as shown below.       
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We have just showed that the convergence , i.e., the convergence of the covariance of , is affected by the 

truncations in the polynomial chaos expansions. Let’s remind that . It means that overestimating the 

covariance is not a problem, but underestimating prevents the convergence of the covariance. It can be explained by 

looking at equation (A2.4) and seeing that a very large forecast covariance results in a Kalman gain close to 1, which 

means that the assimilated value of the state  will be very similar to the observation and the impact of the previous 

error will be gone, which can be seen by looking at equation (A2.16). When the forecast covariance is very small, the 

Kalman gain will be close to 0, and the assimilated value of the state  will be very similar to its forecast value, which 

means that the convergence of the covariance will be slow.   

Let us find the value  towards which the covariance  converges to when is converges. The assimilated 

covariance at step , , is given by:   

         (A3.8) 

which yields    

             (A3.9) 

Therefore, if the covariance convergences, it converges to  

       (A3.10) 

 

A4. Error after the covariance of the assimilated state has converged   

The recurrence relationship for the error after assimilation is:        

            (A4.1) 

Therefore, after convergence, the recurrence relationship for the error after assimilation becomes:    

           (A4.2) 

The EKF error recurrence after  convergences to  becomes:     

          (A4.3) 

with  

,  ,       (A4.4) 
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If we rename the steps so that the step  is the first step, the error  (  steps after  convergences to , 

after assimilation) can be written as:     

         (A4.5) 

 

The fact that  is the error at a new step and therefore has a different value does not matter when studying the 

convergence of equation (A4.5) since  as  .     

Therefore, for large values of , i.e., long after the covariance has converged.     

          (A4.6) 

For ’s independent Gaussian with mean  and covariance , the term  is Gaussian with mean 

 and covariance . When , the term  

is Gaussian with mean  and covariance . Similarly, for ’s independent Gaussian with mean zero and 

covariance ,  is Gaussian with mean zero and covariance . When 

, the term  is Gaussian with mean zero and covariance .     

Since the error model and the measurement noise are not correlated, the covariance of  is the sum of the 

covariance of  and the covariance of . The mean value of  is also the sum of the mean 

values of the different terms in the sum.  Therefore, when , the mean value of  is  and the covariance 

of  is , with ,  and  defined in equation (A4.4). In Appendix A6, these are expressed in terms 

of , , , ,  and , which is implicitly in terms of  , , , ,  and  since .       

 

Summary - Error after the covariance of the assimilated state has converged:     

 

For large values of , the error after assimilation  steps after the covariance has converged, , has a mean value 

 with a covariance   with:  

,  ,     

, , ,  
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A5. Possible optimal time steps    

Finding a simple analytical expression of the time step  that minimizes the expression of the mean or the covariance 

of , or even simply the covariance of  or the covariance of , is not possible in the 

general case, as illustrated in Appendix A6. With Mathematica, we cannot find analytical expressions for the ’s that 

set the derivatives of these expressions with respect to  to 0, which would yield an optimal time step 

 when the second derivative with respect to  is positive.  

However, in the case where there is no model error ( , ), it can be shown analytically that the derivative of 

the total covariance of  (which is also equal to the covariance of  in that case) with respect to  is 

positive, which means that the covariance increases with , so decreases with  since . The derivation is 

shown in Appendix A5 with Mathematica. A numerical example is shown in Figure A1, where the covariance of  is 

plotted for different time steps, assuming a perfect model ( , ). The scalar system used for this example is 

, i.e., .    

 

 

  (a)             (b)   

Figure A1. Covariance after convergence of the covariance with no model error (Q = 0,  B = 0);  

 (a)  R = 0.0001,  Mu = 0.0005,  a = -1,  ;   (b)  R = 0.0001,  Mu = 0.0050, a = -1    

 

Therefore, when there is no model error, it can be shown analytically that the error decreases with , which means a 

larger  results in a smaller error. Figure 8 showed the absolute error for our two estimated parameters, i.e., 

 and , with the nonlinear half-car model for the speed bump with respect to the different 

corresponding time steps. It is reproduced in Figure A2. There was no model error and a Gaussian measurement noise 

of mean 0 and variance 1% was added to the observation. It could be observed that for this case study with a perfect 

model, the error gets worse for small time steps . The fact that the error can get larger as the time step is increase too 

much was due to the fact that with very few observations, the covariance had not converged yet. For instance, with a 

time step of 1.5 seconds, only two significant measurements were available. The error for the case study , which 

was plotted in Figure A1, was calculated assuming the covariance had already converged.      

With numerical examples, it can be shown that a nonzero optimal time step can exist when , i.e., when there 

is a model error. Figure A3 shows an example where the model error has no bias, i.e., with . The covariance of 
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 is the sum of the covariance of , shown in Figure A3(a) and the covariance of , 

shown in Figure A3(b). For the example shown in Figure A3, the covariance of  is approximately equal to the 

covariance of , so it is not displayed in Figure A3 since it would impossible to notice any difference 

with the covariance of . For the example shown in Figure A3, there is a nonzero optimal time step that minimizes 

the covariance of the estimation error. Even though the covariance of  is very small compared with the 

covariance , the fact that  completely changes the shape of the covariance , and 

therefore the shape of the covariance of : there is a nonzero optimal time step that minimizes the covariance of the 

estimation error (0.015 s in this case).      

 

 

(a)              (b) 

Figure A2. Absolute Error for the Estimated Parameters 1 and  2 with the Nonlinear Half-Car Model for the Speed 

Bump with Respect to:  (a) the  Number of Time Points;  (b) the Length of the Time Step       

 

 

  (a)             (b)   

Figure A3. Covariance of EN after convergence for R = 0.0001, Mu = 0.0050, a = -1, Q = 0.01, B = 0 (i.e., model error, 

but with no bias);     

(a) Covariance due to Model Errors;  (b) Covariance due to Measurement Noise     
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Figure A4 shows an example where the model error has a bias, i.e., with . With a large bias, it can be 

observed that the error increases with the length of the time step.       

 

 

  (a)             (b)   

Figure A4. Error for R = 0.0001,  Mu = 0.0050, a = -1, Q = 0.01 B = 1;  (i.e., model error, but with bias)  

(a) Error due to Model Errors;  (b) Covariance of Error due to Measurement Noise     

 

 

A6.  Detailed expressions of the mean errors and the covariances - Possible optimal time steps    

The mean of , which is also the mean of  is:   

    

 

The covariance of  is:    

 

 

The covariance of  is:     

   

 

The covariance of  is:    
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In order to study the error and the covariances vs. the time step  , we need to replace  by  and  by 

 in order to have only one variable that depends on :  .     

Then we can take the derivative of the error and the covariances vs.  and try to find an optimal value of  

minimizing the expression we’re trying to minimize by finding a  resulting in the derivative equal to zero and by 

checking that the second derivative is positive at that point.   

If an optimal time step exists, it will be    

Replacing  by  and  by   yields the following expressions:   
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In the general case, we cannot find analytical expressions for the ’s  that set the derivatives of these expressions to 0, 

even though we can show an optimal time step  can exist with numerical examples. For instance, if 

we’re trying to set the derivative of the mean of  to 0, which is the simplest case, we obtain:     

 

 

 

However, in the case where there is no model error ( , ), it can be shown analytically that the derivative of 

the total covariance of  (which is also equal to the covariance of  in that case) with respect to  is 

positive, which means that the covariance increases with , so decreases with  since . The derivation 

with Mathematica is shown below. The expression calculated for the covariance of the error was defined only after  

converges to , which means that equation (A3.7), i.e., , has to be verified. In the case where there is no 

model error equation (A3.7) becomes equivalent to , which will therefore be used in the Mathematica code shown 

below.        
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