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Abstract—This paper describes a new algorithm used to adaptely filter a remote sensing dataset based on
signal-to-noise ratios (SNRs) once the maximum noise fracn (MNF) has been applied. This algorithm uses
Hermite splines to calculate the approximate area underneh the SNR curve as a function of band number, and
that area is used to place bands into “bins” with other bands laving similar SNRs. A median filter with a
variable sized kernel is then applied to each band, with theame size kernel used for each band in a particular
bin. The proposed adaptive filters are applied to a hyperspdtal image generated by the AVIRIS sensor, and
results are given for the identification of three different pine species located within the study area. The adaptive
filtering scheme improves image quality as shown by estimatke SNRs, and classification accuracies improved
by more than 10% on the sample study area, indicating that theproposed methods improve the image quality,
thereby aiding in species discrimination.

I. BACKGROUND

Hyperspectral images provide a powerful tool as the wavetspa is finely discretized using hundreds of channels
on a scanner. The large dimensionality of a hyperspecttakdaoften requires a data transformation such as principa
components analysis (PCA) or the singular value deconipns{SVD) to reduce the number of variables, or bands,
within an image prior to further processing. Furthermoigese images tend to be noisy as a result of the fine
discretization and other factors such as the method of aitigui (small aircraft) [1]. Green et al. first proposed the
maximum noise transform (alternately called the minimurns@dransform, minimum noise fraction, or MNF) to align
a dataset in order of decreasing signal-to-noise ratio (Mg an eigenvalue decomposition similar to PCA [2]. Lee
et al. equivalently defined the MNF (or noise adjusted PCAMasPCA transformations, and used the MNF to reduce
the noise level in an image [3]. The MNF can be used to reduégerend the number of dimensions in an image.
Reduction in noise in imagery is essential to many remotesisgnapplications, as Landgrebe has documented the
relationship between noise in imagery and classificatiooref{4]. Furthermore, certain applications require a mimin
SNR, for example, estimating foliar biochemical concetitres [5].

Noise can be reduced using a variety of filters defined on thguincy or spatial domains [6]. While certain
frequency domain filters (using the Fourier transform) hbeen shown to be more effective than spatial filters with
respect to specific types of noise, a spatial filter such as diamefilter can produce similar results and requires
significantly less computation [7]. An adaptive filter catealthe size of the filter kernel (spatial domain) or change
the frequencies filtered (frequency domain) depending cagencharacteristics and noise levels. Lennon et al. used an
adaptive median filter on data transformed to MNF coords @&, and Pok et al. vary the kernel size between three
and five depending on the detected noise in a particular winiloa three-band image [9]. King et al. present an
adaptive frequency domain filter used on medical imagery. [10

The properties of the MNF are well suited to an adaptive filget adaptive spatial filtering is not commonly used
on MNF transformed data, although the idea was proposed byTjical data processing using the MNF truncates
the data, resulting in loss of signal; uses all bands in theFMNordinate system without noise removal, or applies a
spatial convolution with a uniform kernel size across alhdmdespite all bands having drastically different SNRss Th
paper introduces an algorithm for an adaptive median filpgliad to data transformed using the MNF in which the
filter support size varies with noise. To demonstrate theatiffeness of this technique, a real dataset is filteredgusin
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the algorithm presented in this paper, and the dataset isegulently used to identify three different species of pines
within a forest, an application for which the high spectedalution imagery is well-suited.

II. MaXiMUM NOISE FRACTION

Data transformations such as PCA and SVD transform an inagenew coordinate system without taking factors
such as noise into consideration [2]. PCA uses the eigeorge@t) resulting from an eigen decomposition:

Y =VAVL,

where ¥ is the covariance matrix of the image, andis a diagonal matrix containing the eigenvalues corresipgnd
to V, as a new coordinate basis for the image. This transformagéninas the property that each successive band is
aligned along an axis of decreasing overall variance in tigiral image; that is, as the component number increases,
the variance within the component decreases. When PCA i fasedata reduction, ideally these higher order bands
with decreasing variances are not necessary to represenn#jority of the original image, and these components
can be removed, resulting in a data reduction. Unfortupaiglh datasets that are particularly noisy (the case with
hyperspectral data), the first few components are not seffficd represent the image as they capture much of the noise
as well as the signal. The MNF is similar in spirit to PCA witietadditional quality that it considers image noise
when selecting a new coordinate system. While the PCA alibjasaxes along directions of the maximum variance in
the original image, the MNF aligns the axes along directiohthe maximum SNR.

Theoretically, the MNF orders the data along the axes of mari SNR using the eigen decomposition:

YsXy = VAV

whereX s is the covariance matrix of the signal,; is the covariance matrix of the noisE, is an (orthogonal) matrix
containing the eigenvectors afsX !, and A is a diagonal matrix containing eigenvalues that corredpony. V/
provides the basis for the transformed dataset. In praciigeand X are unknown and must be estimated from the
data [2]. Xg is generally taken to be the covariance matrix of the image X3, can be estimated using various
procedures [2][3]. The eigenvalues contained\iare the estimated variance of the sigfad) divided by the estimated

variance of the noiséoy ), and therefore the diagonal elemeytin A is an approximation for the SNR of baridin
the transformed image.

III. ADAPTIVE FILTER

The MNF is commonly used in remote sensing for data reductimhnoise removal. The MNF of an image can be
truncated while still preserving most of the informatiorthim the image, which is especially useful in the hypergéct
image processing domain as images contain hundreds ofyhéghielated bands and noise. The higher order bands that
are truncated commonly contain very low SNRs, and trungatie MNF can have the added effect of eliminating much
of the noise without losing much signal. Determining thecjse location to truncate the MNF is problematic, and a
judgement call is often made by looking at a plot of the eigdunes relative to the band number and determining where
this eigenvalue curve begins to approach an asymptote {). In practice, this truncation is performed as a means
of reducing the overall noise within the image, but this roetlidoes not fully take advantage of the properties of the
MNF. If the truncation includes too many bands, too much exdgsleft in the image, and if the truncation includes too
few bands, useful signal may be excluded from the resultimagie. A likely scenario would be that truncation includes
noise in the bands that are kept while discarding good sigithl the higher order bands that are discarded.

Green et al. suggest that with low SNR bands, all values carefflaced with the mean of the band, and the MNF
image can be retransformed to the original subspace, irgguft a less noisy image [2]. This is an example of a rather
extreme mean filter. Another approach to reducing the noismiimage is to apply a small (typically a three by three
window) spatial filter such as a mean or median filter. Howeapplying a filter uniformly to all bands within the MNF
will not take advantage of the specific ordering of the bands with lower SNRs might benefit from a filter with a
larger window, while bands with high SNRs require little ay filtration. Bands with low SNRs have comparatively
low signal relative to noise, yet may have enough signal toara smoothing of the noise. A large filter will degrade
that signal, but will hopefully affect the noise more, régg in a greater signal relative to noise.

Spatial median filters work by decreasing the variance withismall window (kernel) by assigning a pixel the
median value of the surrounding pixels. For example, usirigxa3 window, a median filter would assign a pixel the
median value of itself and its eight immediate neighborg,(teft, right, bottom, and four diagonal locations). As
geographic data is highly correlated, the variance of tgaadiwithin such a window should be small, and noise should
be random and not correlated within a neighborhood, makitayge variance probable. With the assumption that the
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Fig. 1. Typical MNF eigenvalue curve shape.
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Fig. 2. Dividing area under curve into bins.

variance of the noise is larger than that of the signal indt@sall windows, a spatial filter such as a median filter will
preserve most of the signal while eliminating much of thesaoiA filter with a larger window has a more dramatic
smoothing effect over a filter with a small window, resultiimya larger SNR at the expense of the signal. A median
filter has the property of preserving original values unkkenean filter.

The MNF is ordered such that for any two bands numberednd n (assumen > m), SNR,, > SNR,. Recall
that the eigenvalues associated with the MNF are estim&t8slB, meaning\,,, > \,,. Based on the reasoning offered
above, the sizé( of the filter kernel for bandn should not be greater than that for bamdK,, < K,. Similarly, the
same size filter should be applied to bands with the most aireigenvalues.

Consider the shape of the typical MNF eigenvalue curve, shimwig. 1. The first few bands with the largest
decrease in slope should be grouped together in smallepgrthan the last bands with very similar small negative
slopes. In order to divide the bands into bins in this mantier,area underneath the eigenvalue curve can be divided
evenly into a number of bins corresponding to the number fiérmdint sized filters to be applied, as shown in Fig. 2.
The three colors represent three different bins and thriéereint kernel sizes. A formal algorithm for the adaptivéefil
(AF) is given below.

Algorithm AF(M, A, nb)

input/output:

M (image transformed to MNF coordinates,
filtered upon exit)

input:

A (B eigenvalues wher® is number of bands id/)
nb (number of bins to use)

1 Dbegin

2 approximatef (b) = A with C'(b) = A



B
3 area ::/ C(b)db
1

4 area_per_bin := ared

n
5 sarea := 0
6 for i:=1 stepluntil B—1 do
7 begin

i+1

8 sarea = sarea + / C(b)db
9 bin := ceiling ( 2222 )
10 kernel; :=2- (bin—1)+1
11 end

12 kernelpg := kernelg_1

13 for i:=1 step1until B do

14 applykernel; x kernel; median filter
to band; in image M

15 end

Calculating the area under the curve will require a functimrapproximate the eigenvalues as a function of band
number, as indicated in line 2 of the above algorithm. A dpson of Hermite splines, which are recommended given
their suitability to this particular application, is indead in Section 3.1. The assignment of bins occurs in line €, an
warrants further explanation. Starting with the first batha, area under the curve is calculated as

/1 i C/(b)db.

The total area under the curve through barisl therefore

i+1
/ C(b)db.
1

The results of previously calculated integrals are storeskirea to prevent redundant calculations. Taking the ceiling
of the cumulative area under the curve divided by the areéimeresults in bands one throudgh— 1 being placed in
bins one througmb, and bandB is placed in the same bin @ — 1. Line 10 continues with the conversion of a bin
number to the size of a spatial filter kernel that correspdadsin number. The bands in bin one should have no filter
(equivalent to a kernel of size one) applied, and the bandsnirwo should have & x 3 filter applied.

This approach is valid for convex eigenvalue curves thatsargélarly shaped to Fig. 1, which is usually the case.
The properties of the MNF dictate that the eigenvalue fumcis strictly decreasing, but in the event that the eigareal
function is not convex, dividing up the area under the curfvthe derivative of the function will group the most similar
eigenvalues and their corresponding bands together. @amfinding the area under the curve of the derivative:

b
/ f(x)dz = f(b) - f(a)

according to the fundamental theorem of calculus. Thisutalion requires no approximation of the function as the
actual functions’ values can be used. Because the eigenfiahetion is monotonically decreasing, the area undehneat
the curve will be negative, and therefore the area will beated) to produce a positive result necessary for bin
determination. The above algorithm is modified to produeeftiiowing adaptive filter with derivative (AFD) algorithm
using the area underneath the curve of the derivative tardéte the location of bins.

Algorithm AFD(M, A, nb)

input/output;

M (image transformed to MNF coordinates,
filtered upon exit)

input:

A (B eigenvalues wher® is number of bands id/)
nb (number of bins to use)



begin
area := A(1) — A(B)
area

area_per_bin :=
n

for i:=1 stepluntil B—1 do
begin

sarea := sarea + A(i) — A(i+ 1)

1
2
3
4 sarea := 0
5
6
7
8

A(i
bin 1= ce|I|ng( sarea )

area_per_bin

9 kernel; :=2- (bin — 1) + 1

10 end

11 kernelpg := kernelg_1

12 for i:=1 step1until B do

13 applykernel; x kernel; median filter
to band; in image M

14 end

Finally, either of the above variations on the adaptive rilig algorithm may be used on a particular range of
bands. For example, if prior knowledge or analysis of the Mi#fAsformed dataset indicates that there is no usable
signal beyond a specific band, the MNF image can still be atettand filtered adaptively. The value Bfwould be
changed from the total number of bands in the image to the pumibbands desired after truncation. This is different
from simply truncating the MNF because the bands that aréwepld be filtered to decrease the noise, and the number
of bands kept could be larger to ensure that very little diggbost in the truncation.

A. Hermite Splines

The filtering algorithm requires a function that approxiesathe eigenvalue curve generated by the MNF. Cubic
splines are piecewise cubic polynomials that produce aallisappealing curve and interpolate a given set of points. |
particular, Hermite cubic splines have only one continudesvative (standard cubic splines have two) and produce a
monotone cubic spline curve interpolating a monotonic fiom; rendering this type of spline ideal for interpolatitig
monotonic SNR curve. The Hermite cubic splié§z) is composed oRn basis functionsg;(z), é;(z), i =1, ..., n,
wheren is the number of interpolation points. The function

Zyzcz ) + dici(x)

interpolates the pointée;, y;), i = 1,...,nif

ci(zi) = 1,¢i(x;) =0, j#i,
¢i(z;) =0, foralli,j.
Furthermore,
cj(xz;) =0, foralli,j,
&) =1,6(x;) =0, j#1,
making
C'(z;) = d;.
Only z;, y;, andd;, i = 1, ..., n are required to define a Hermite cubic spline, anddhare chosen to mak€'(x)

monotone (theoretically always possible for monotone gataRefer to [11] for a more detailed description of Hermite
cubic splines including definitions of the basis functieng:; ), ¢;(x;).

The derivative and the definite integral of Hermite cubidrg® can be easily obtained as the cubic polynomials
(and basis functions) are easily differentiated or integgtanalytically. Included in [11] is a set of subroutinesigaed
to define, evaluate, and integrate Hermite cubic splirf&${EZ, PCHEV, and PCHQA, respectively. PCHEZ defines
continuous derivativesl;, that result in a visually appealing functidbGHEV evaluates the function and the derivative at
a set of points, an#CHQA returns the definite integral of the function between twanpxiac andb.
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IV. STUDY AREA

The study area (as described by [12]) is located in the Appmxd@uckingham State Forest in Virginia, USA.
Three flight-lines of Airborne Visible/Infrared Imaging &gtrometer (AVIRIS) 224-band imagery were acquired in the
winter of 1999. The spatial resolution of this dataset is 1B.4and the spectral resolution is 10 nm, with the AVIRIS
sensor range being 400-2500 nm contiguously. Training danaisted of 142 field collected locations surrounded by
homogeneous areas of single pine species with differgntiarected global positioning system (GPS) coordinates.
Three pine species, loblollynus taeda), shortleaf Pinus echinata), and Virginia pine Pinus virginiana), with 64,

30, and 48 locations, respectively, were collected in Au@fisl999. The image (shown in Figs. 10-13 and hereafter
referred to as ABSF) contains various tree stands that diecthe three species of pines listed above, hardwoods, and
mixed (evergreens and hardwoods).

V. SNR ESTIMATION

To support the conclusion that the adaptive filter is impngvihe image, evidence is provided to show that the
filter is reducing the noise without drastically reducing #ignal, effectively improving the SNR. Estimating the SMR
an image is nontrivial, as most noise estimates are variaased and the naturally occurring variance within an image
will lead to overestimated noise. In order to minimize thepaut of signal variance on noise estimates, homogeneous
portions within an image are identified for noise estimati@urran and Dungan proposed SNR estimation of AVIRIS
images using a homogeneous line within an image [13]. Gapqgmed an alternative method that does not require
identifying homogeneous regions within an image, but mdtdivides the entire image into small blocks and uses local
standard deviations to estimate the standard deviatioheohbise for the entire image [14]. Smith and Curran found
both methods effectively estimated SNRs in AVIRIS imagd)oaigh both methods overestimated SNR [5]. As the
study area used for this paper lacks clearly defined homagsnegions, Gao’s whole image method of SNR estimation
will be used, as it does not require identification of homaerrs regions and it can be easily automated [14].

Gao’s method assumes that within a small blotk (4 or 8 x 8) the local standard deviation is either low because
of noise and a small amount of natural variance or high bec#lws block contains edges, etc. An image band is
broken into small blocks of equal size, and the local stathdiaviation is calculated for each block. A histogram is
created from the local standard deviations, and the moguénatly occurring standard deviation provides a reas@nabl
estimate of the standard deviation of the noise for the etand. Gao generated data with a known amount of noise
and showed that this method accurately estimated the nbi§e [

In this SNR estimation method, the signal in AVIRIS imagegénerally estimated using the mean values of each
band, however the mean values of MNF transformed bands dbawet the same magnitude as the mean values in the
original coordinate system. The original digital numbeii¢him the image are all positive, and MNF digital numbers
can be positive or negative, resulting in mean values thatarch lower in the resulting MNF coordinate system. In
order to study the effects of filtration on SNRs in MNF cooates, a estimate suggested by Schowengerdt is used:

2
SNR=7%,
N

whereos? is the variance of the signal ard, is the variance of the noise [15]. The variance of the sigaastimated
by the variance of the entire image, and the variance of tligeris determined using the method described previously.
Note that this method is not being suggested to estimate SNBler to evaluate whether an image can be used for a
certain application, or to compare an image to other imagesse SNRs are estimated using other procedures. This
estimation of the signal, noise, and SNR is needed only topapenunfiltered and filtered data to provide evidence that
the SNRs are improving as a result of filtration.

The behavior of the SNR was evaluated using the methodsidedaibove, and the test image was transformed to
MNF coordinate space and filtered using & 3, 5 x 5, 7 x 7, and9 x 9 median filter. Notice in Fig. 3 that as the filter
size increases, the SNR also increases compared to theeradfiitmage I x 1). Also, notice in Figs. 4 and 5 that since
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Fig. 3. SNR estimates of MNF bands 1-50 unfilteredx(1) and after 3x 3 through 9x 9 median filters applied.

the magnitudes of the signal are very different in bands ark %0, degrading the signal in the first band has more
impact on the total image signal degradation than removimgessignal in the 5¢ band.

VI. RESULTS

The AF, AFD, truncated AF, truncated AFD, and uniform ® median filters were applied to the MNF of ABSF.
Results for the 99 filter are reported as the® filter produced the best classification accuracies for r@fioun spatial
filters. Further evidence of improved image quality as a ltesluadaptive filtering is provided in a classification of
ABSF to identify loblolly, shortleaf, and Virginia Pines. nAadvantage of the technique used (discriminant analysis) i
that individual bands are selected by the method, showiagttgh order noisy MNF bands contain signal that impacts
applications such as classification.

A. Bin Creation

The adaptive filtering algorithms (using the approximatainthe curve and using the derivative of the curve to
establish bin locations) described above were applied t&FRAB-ig. 6 shows the eigenvalues (SNRs) generated by the
MNF. Figs. 7 and 8 show the resulting eigenvalue function dedvative curves (for the entire image and for the image
truncated to 80 MNF bands) approximated by Hermite splimg the area underneath the respective curves divided
into five equal partitions, representing median filter ké&srod size one through nine.

B. Classification

A discriminant analysis was used to generate classificdtiontions for each filtered and unfiltered dataset using
SAS) 9.1.3 [16]. First theSTEPDISC procedure was used to identify bands that contribute to fkerichination
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Fig. 6. Study area MNF SNRs (eigenvalues).

bands

between the three pine species. T$EEPDISC procedure (using stepwise selection) starts with no vesam the
model. The variable that contributes most to species discation enters the model if the significance level of an
F-test is above the specified threshold. In each subseqtegmtthe variable within the model that contributes least to
discrimination is first considered for removal (if the sifigance level of an F-test is beyond the specified threshold to
leave the model). If no variable is removed, of the remainiagables not included in the model, the variable that best
contributes to the discrimination of the model is addedt iheets the criteria to enter. At each step, either one Variab
leaves the model or one variable enters the model until tbeeplure terminates. The procedure terminates when no
more variables are eligible to enter or leave the model, omaimum number of steps is reached.

DISCRIM generates a discrimination function (classification) whgimven a set of quantitative variables and
corresponding classifications for each observation. @leason accuracies are determined by using the generated
discriminant function to classify each observation, whisha biased test. A better measure of accuracy is the
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Fig. 7a. Bins generated by AF on study area.  Fig. 7b. Bins generated by AF (truncated to 80 MNF
bands) on study area.
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Fig. 8a. Bins generated by AFD on study area, banég. 8b. Bins generated by AFD (truncated to 80 MNF
1-30 shown. bands) on study area, bands 1-30 shown.

cross validation accuracy, where each observation isifiabsising the classification model derived from the other
observations (not including itself).

The classification results in this paper were generateduIEPDISC with stepwise selection, and the variables
(bands) identified were used to generate the discriminamttion usingDISCRIM. The default value of .15 was used
as the threshold for entering and leaving the modedTEPDISC, and the default assumption of normality was used to
generate the discriminant function DISCRIM. In order to select different numbers of hyperspectral battike a-level
for the F-test was varied between .1 and .00001 for diffectadsifications reported in Tables 1 and 2. The data and
discriminant analysis procedure are identical to thosel igebtain maximum cross validation classification acciesac
of roughly 85% using a maximum of 10 bands in [12].

The first set of entries in Table 1 correspond to classificatiapplied to transformed data in the MNF coordinate
system. Accuracies for MNF data with no filter applied areorded for comparison purposes. The second set of
Table 1 entries are classification accuracies and parasnesang data that was filtered in the MNF coordinate system
and then inverse transformed to the original coordinatéesys The classifications in Table 2 are applied to data that
are transformed to MNF space, truncated or truncated aratefiltto remove noise, and inverse transformed. The
unfiltered MNF data are truncated at 40 or 60 MNF bands bedfese thresholds appear to be located near where the
eigenvalue curve approaches one (see Fig. 6). As more naisyshare included, the accuracies of the classification of
truncated MNF data decrease, and therefore results areepotted for the inverse of MNF data truncated at 80 bands,
corresponding to the adaptive filters applied to MNF trued&80 band images.

VII. DISCUSSION

Classification results in Table 1 indicate that using anyhef mentioned variations of adaptive filtering ultimately
improves the classification accuracy over not using anyrifigemethod, indirectly indicating that the adaptive filteas
improved the image quality, enabling better classificatiesults. Furthermore, considering the first six table eatri
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Table 1. Results of stepwise discriminant analysis andidigtant analysis on study area using various filtering sude
in both original and MNF coordinates (Legend: CV Acc. = Crd&didation Accuracy, Class Acc. = Classification

Accuracy).
Filter ‘ CV Acc. (%)‘ Class Acc. (%j a-level ‘ # Bands‘ Bands
MNF coordinates
none 85.92 88.03 .01 9 1,2,3,5,7,13,16,18,173
AF 91.55 93.66| .001 13 1,2,6,7,9,10,14,16,19,36,44,52,148
AFD 98.59 100.00| .00001 11 5,10,12,16,18,19,34,36,45,48,53
Trunc. AF 98.59 98.59| .0001 10 2,7,14,16,19,29,36,44,45,53
Trunc. AFD 98.59 100.00| .00001 11 5,10,12,16,18,19,34,36,45,48,53
9x9 97.89 100.00| .00001 11 5,10,12,16,18,19,34,36,45,48,53
original coordinates
none 76.76 79.58| .0001 4 19,24,116,213
9x9 91.55 92.25| .00001 4 3,19,27,164
9x9 90.85 92.96| .0001 5 3,19,26,27,164
AF 83.10 83.80| .001 5 19,26,27,126,158
AFD 91.55 92.25| .00001 4 3,19,27,164
AFD 87.32 92.25| .0001 6 4,9,19,23,27,44
9x9 95.07 97.89| .001 11 3,19,23,37,105,120,140,144,147,183,200
AF 92.25 97.89 .01 14| 11,16,19,26,27,30,43,120,158,161,183,194,197,222
AFD 92.96 96.48 .01 10 4,9,19,23,27,40,41,42,164,218
AFD 93.66 95.07| .001 8 4,9,19,23,27,41,44,164

Table 2. Results of stepwise discriminant analysis andridiggant analysis on study area using various truncated
filtering schemes in original coordinates (Legend: CV AccCross Validation Accuracy, Class Acc. = Classification

Accuracy).

Filter | # MNF | CV | Class| a-level| #
Bands| Acc. | Acc. Bands
Kept | (%) | (%)
none 401 88.03| 92.25 1 12
none 60| 84.51| 88.03 1 14
AF 80| 95.78| 97.89 .01 12
AFD 80| 93.66| 94.37 .01 10
none 60| 73.24| 77.47 .001 4
AF 80| 86.62| 89.45| .0001 4
none 401 83.10| 85.92 .01 8
AFD 80| 94.37| 95.07 .001 7

corresponding to classification in the MNF axes, the moreii@te classifications make use of high order MNF bands.
The least accurate classification (applied to unfiltered)dptimarily included bands from the first 20 MNF bands,
whereas the more accurate classifications consistently higger order bands in the 30-55 range. Many of the bands
identified to be important for pine species discriminatioa eonsistent across filtering schemes, but are not present i
the classification of the unfiltered dataset. These resufipat the hypothesis that there is signal in higher orderAVIN
bands that can be important for applications such as cleet$iin, and that applying a filter to reduce the levels of @ois
can make the weak signal in these bands usable.
Recall that the MNF maximizes SNR in each band where the kignestimated by the variance of the image,
making the transformation similar to PCA, which aligns tleadalong axes of maximum variance. In applications such
as this where the goal is discrimination between pine spedigher order MNF bands (and PCA bands) might be
expected to play a vital role as the variance between pinelepés likely small. Unfortunately these high order bands
in the MNF transformation that have little signal (variahtave relatively large amounts of noise. Simply truncating

the MNF to remove this noise will result in also removing sin
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Fig. 9. Percentage of signal lost by AF, AFD, anck® median filters.

The second set of entries in Table 1 corresponding to cleasdh results in the original coordinate system show
that the improved MNF image quality is consistent when thagmis inverse transformed. This set of classification
accuracies are not as high as those corresponding to the MbHédinate system, even when the same number of bands
is used to build each of these models. Although the numbersaofls used in these classifications are similar to
those used on the MNF coordinate data, the MNF coordinate stdk results in better classifications. However, some
classifications require that data not be transformed, aeddhults in Table 1 demonstrate that the MNF-based adaptive
filtering methods are relevant to images that are inversalystormed from MNF coordinate space.

For this particular dataset, the AFD usually produced betsssifications (indicated by classification accuracy and
cross validation classification accuracy) than the AF, h@refor other applications, the AF may be the better choice.
The following discussion shows that preserving image @uéignal) and achieving high classification accuracyase
equivalent — AF has better image quality (more preservedadjgbut worse classification/cross validation accuracy,
than AFD. Referring back to Figs. 7 and 8, recall that usirg dierivative curve to determine bin placement resulted
in larger spatial filters being applied to more bands withie tmage. In fact, the classification results for the 9
filter are consistently similar to results obtained using &FD filter because in this case, the filters are very similar.
As alluded to earlier, the low order bands containing mosthef signal (variance) of the entire image likely do not
greatly aid discrimination between spectrally similargspecies. These filters are substantially degrading timealsig
the image, as shown in Fig. 9. Because the first MNF bands icotita majority of the signal, applying a filter with
such a large window drastically degrades the signal of tregadimage. Fig. 9 shows that while the AF filter decreases
the variance of the original image by around 20% for most batfie AFD and thé x 9 filters decrease the variance
by around 40% for many bands. There is a noticeable differém¢he signal (variance) degradation between the AF,
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Fig. 10. Band 27 of ABSF in the original coordinate systemo(med).

AFD, and9 x 9 filters, indicating that using the AFD and, especially, ayéauniform filter substantially reduces the
image signal.

Further evidence of image quality can be observed qualtgtiby viewing and comparing the filtered images to
the original image and the unfiltered MNF image. Fig. 10 cimistdband 27 of the image in the original coordinate
system, a band that was used for the pine species discriomnatmany of the images. While Fig. 10b (the inverse of
the MNF ASF image) does not appear as crisp as the originajemtne texture is much greater than that of either
Fig. 10c (ASFD) or 10d (29). Fig. 11 compares the four filtering schemes applied todb@arof the MNF image,
providing insight into the obvious signal degradation im&&7. While the AF image (Fig. 11b) is relatively crisp<3
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Fig. 11. Band 5 of the ABSF MNF (zoomed).

filter used), the AFD image (¢7) and the %9 image have substantially degraded signal, resulting bstamtially
degraded signal for the overall image (band 5 contains mbtleeoimage’s signal than each subsequent band). A much
higher order band, band 36, is shown in Fig. 12. This band we#ected for each MNF filtered classification, but
was not part of the less accurate classification of the urddtémage. Although it is possible to distinguish a small
signal in Fig. 12a, the noise is clearly dominating this bafithe spatial filters are reducing the signal of the image,
but importantly reduce the noise to a level that revealsavae between individual portions of the image. The areas
marked by ground truth can be spectrally distinguished is tfand (which is important to the classification) even if
the signal does not appear to be strong. While this band wperiamt for this particular image and classification, the
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obvious signal contained in this noisy band supports thencthat high order MNF bands contain signal that may be
important to an application, but the signal is difficult toeusithout reducing the noise. The noisy band 36 was not

selected to discriminate pine species in the unfiltered an@ge Table 1), but was selectedaditi of the filtered MNF
images. Fig. 13 compares 9 filter for band 36 to the original band 36 for the full scenepwing that the variance
between features in the image is noticeable once the levabisk is reduced.

Evidence supporting adaptive filters over simply trunaatihe MNF to reduce the noise in an image is shown
in Table 2. The classification accuracies for the MNF truadatunfiltered images are consistently less than the
classification accuracies in Table 1 for both filtering sceemhen comparing classifications built using similar nurabe
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of bands. Combining the truncation of MNF with an adaptivéefihg method to entirely remove bands that have
no discernible signal while filtering bands containing sigheavily degraded by noise may be another viable noise
reduction technique. Since the truncated MNF will be filteie this case, the number of bands kept can be higher to
ensure that little or no signal is removed from the image.i¢d¢oin Table 2 that each adaptive filtering method using 80
MNF bands produces far better classification accuracias kkaping 40 or 60 unfiltered MNF bands. Also notice that
accuracies are lower for the image truncated at 60 bandstlilegaimage truncated at 40 bands. Bands 40-60 have low
SNRs, and including these bands without filtering them ohiices far more noise than signal to the image, resulting in
lower classification accuracies.

Figs. 10-13 show why adaptive filtering is necessary overumit®rm filter size for data transformed by the MNF.
While a large filter degrades strong signal in low order baitdsan be useful to remove noise from a high order band
with a weak signal. Even though the weak signal is inevitatigraded, it is practically useless when the noise is
comparatively strong. Using an adaptive filter allows threrg signal in the first few bands to be preserved while the
dominating noise is removed by a much larger filter in higheottsands. The results presented for this particular dataset
are intended to demonstrate a general technique, and aratantled to indicate the ideal filter sizes and number of
bins for other datasets and applications. This particudaagkt and classification appeared to benefit from spatiaisfil
with large windows, explaining why the AFD filter with a maxim filter window size of nine (very similar to a
uniform 9x 9 filter) produced such accurate classification results.

VIII. CONCLUSIONS AND FUTURE WORK

This work introduced an adaptive filter based on the MNF tialadts the ordering of the bands to apply median
filters of different sizes. This filtering scheme greatly anted the MNF image for the purposes of identifying pine
species, and accuracies were improved by more than 10% ftaircevariations of the filtering algorithm applied to
AVIRIS data in the original and MNF coordinate systems. Tésuits in this paper are substantially more accurate than
previously reported results for the same application aradyais performed on the same data in which no spatial filters
were applied [12].

The AFD version of the adaptive filter produced more accuctdssification results and higher estimated SNRs
than the AF version, however, there are indications that AR® degraded the signal quality significantly (while
also degrading the noise), perhaps making the AF more apptepn certain applications. Both variations led to
classifications that were substantially better than diaasions performed on unfiltered data. This paper does not
indicate how the number of bins should be selected. More vimrkeeded to identify the number of bins and the
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maximum size of filters that should be used for certain apfibois and on certain imagery. Furthermore, more study
is necessary to determine the relationship between SNRRasts and ideal filter size, and the suitability of adaptive
frequency domain filters in this context should be examined.
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