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Abstract—This paper describes a new algorithm used to adaptively filter a remote sensing dataset based on
signal-to-noise ratios (SNRs) once the maximum noise fraction (MNF) has been applied. This algorithm uses
Hermite splines to calculate the approximate area underneath the SNR curve as a function of band number, and
that area is used to place bands into “bins” with other bands having similar SNRs. A median filter with a
variable sized kernel is then applied to each band, with the same size kernel used for each band in a particular
bin. The proposed adaptive filters are applied to a hyperspectral image generated by the AVIRIS sensor, and
results are given for the identification of three different pine species located within the study area. The adaptive
filtering scheme improves image quality as shown by estimated SNRs, and classification accuracies improved
by more than 10% on the sample study area, indicating that theproposed methods improve the image quality,
thereby aiding in species discrimination.

I. Background

Hyperspectral images provide a powerful tool as the wave spectrum is finely discretized using hundreds of channels
on a scanner. The large dimensionality of a hyperspectral dataset often requires a data transformation such as principal
components analysis (PCA) or the singular value decomposition (SVD) to reduce the number of variables, or bands,
within an image prior to further processing. Furthermore, these images tend to be noisy as a result of the fine
discretization and other factors such as the method of acquisition (small aircraft) [1]. Green et al. first proposed the
maximum noise transform (alternately called the minimum noise transform, minimum noise fraction, or MNF) to align
a dataset in order of decreasing signal-to-noise ratio (SNR) using an eigenvalue decomposition similar to PCA [2]. Lee
et al. equivalently defined the MNF (or noise adjusted PCA) astwo PCA transformations, and used the MNF to reduce
the noise level in an image [3]. The MNF can be used to reduce noise and the number of dimensions in an image.
Reduction in noise in imagery is essential to many remote sensing applications, as Landgrebe has documented the
relationship between noise in imagery and classification errors [4]. Furthermore, certain applications require a minimum
SNR, for example, estimating foliar biochemical concentrations [5].

Noise can be reduced using a variety of filters defined on the frequency or spatial domains [6]. While certain
frequency domain filters (using the Fourier transform) havebeen shown to be more effective than spatial filters with
respect to specific types of noise, a spatial filter such as a median filter can produce similar results and requires
significantly less computation [7]. An adaptive filter can alter the size of the filter kernel (spatial domain) or change
the frequencies filtered (frequency domain) depending on image characteristics and noise levels. Lennon et al. used an
adaptive median filter on data transformed to MNF coordinates [8], and Pok et al. vary the kernel size between three
and five depending on the detected noise in a particular window in a three-band image [9]. King et al. present an
adaptive frequency domain filter used on medical imagery [10].

The properties of the MNF are well suited to an adaptive filter, yet adaptive spatial filtering is not commonly used
on MNF transformed data, although the idea was proposed by [8]. Typical data processing using the MNF truncates
the data, resulting in loss of signal; uses all bands in the MNF coordinate system without noise removal, or applies a
spatial convolution with a uniform kernel size across all bands despite all bands having drastically different SNRs. This
paper introduces an algorithm for an adaptive median filter applied to data transformed using the MNF in which the
filter support size varies with noise. To demonstrate the effectiveness of this technique, a real dataset is filtered using
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the algorithm presented in this paper, and the dataset is subsequently used to identify three different species of pines
within a forest, an application for which the high spectral resolution imagery is well-suited.

II. Maximum Noise Fraction

Data transformations such as PCA and SVD transform an image to a new coordinate system without taking factors
such as noise into consideration [2]. PCA uses the eigenvectors (V ) resulting from an eigen decomposition:

Σ = V ΛV −1,

whereΣ is the covariance matrix of the image, andΛ is a diagonal matrix containing the eigenvalues corresponding
to V , as a new coordinate basis for the image. This transformed image has the property that each successive band is
aligned along an axis of decreasing overall variance in the original image; that is, as the component number increases,
the variance within the component decreases. When PCA is used for data reduction, ideally these higher order bands
with decreasing variances are not necessary to represent the majority of the original image, and these components
can be removed, resulting in a data reduction. Unfortunately with datasets that are particularly noisy (the case with
hyperspectral data), the first few components are not sufficient to represent the image as they capture much of the noise
as well as the signal. The MNF is similar in spirit to PCA with the additional quality that it considers image noise
when selecting a new coordinate system. While the PCA alignsthe axes along directions of the maximum variance in
the original image, the MNF aligns the axes along directionsof the maximum SNR.

Theoretically, the MNF orders the data along the axes of maximum SNR using the eigen decomposition:

ΣSΣ−1
N = V ΛV −1

whereΣS is the covariance matrix of the signal,ΣN is the covariance matrix of the noise,V is an (orthogonal) matrix
containing the eigenvectors ofΣSΣ−1

N , and Λ is a diagonal matrix containing eigenvalues that correspond to V . V

provides the basis for the transformed dataset. In practice, ΣS and ΣN are unknown and must be estimated from the
data [2]. ΣS is generally taken to be the covariance matrix of the image, and ΣN can be estimated using various
procedures [2][3]. The eigenvalues contained inΛ are the estimated variance of the signal(σS) divided by the estimated
variance of the noise(σN ), and therefore the diagonal elementλb in Λ is an approximation for the SNR of bandb in
the transformed image.

III. Adaptive Filter

The MNF is commonly used in remote sensing for data reductionand noise removal. The MNF of an image can be
truncated while still preserving most of the information within the image, which is especially useful in the hyperspectral
image processing domain as images contain hundreds of highly correlated bands and noise. The higher order bands that
are truncated commonly contain very low SNRs, and truncating the MNF can have the added effect of eliminating much
of the noise without losing much signal. Determining the precise location to truncate the MNF is problematic, and a
judgement call is often made by looking at a plot of the eigenvalues relative to the band number and determining where
this eigenvalue curve begins to approach an asymptote (λ = 1). In practice, this truncation is performed as a means
of reducing the overall noise within the image, but this method does not fully take advantage of the properties of the
MNF. If the truncation includes too many bands, too much noise is left in the image, and if the truncation includes too
few bands, useful signal may be excluded from the resulting image. A likely scenario would be that truncation includes
noise in the bands that are kept while discarding good signalwith the higher order bands that are discarded.

Green et al. suggest that with low SNR bands, all values can bereplaced with the mean of the band, and the MNF
image can be retransformed to the original subspace, resulting in a less noisy image [2]. This is an example of a rather
extreme mean filter. Another approach to reducing the noise in an image is to apply a small (typically a three by three
window) spatial filter such as a mean or median filter. However, applying a filter uniformly to all bands within the MNF
will not take advantage of the specific ordering of the bands.Bands with lower SNRs might benefit from a filter with a
larger window, while bands with high SNRs require little or no filtration. Bands with low SNRs have comparatively
low signal relative to noise, yet may have enough signal to warrant smoothing of the noise. A large filter will degrade
that signal, but will hopefully affect the noise more, resulting in a greater signal relative to noise.

Spatial median filters work by decreasing the variance within a small window (kernel) by assigning a pixel the
median value of the surrounding pixels. For example, using a3 × 3 window, a median filter would assign a pixel the
median value of itself and its eight immediate neighbors (top, left, right, bottom, and four diagonal locations). As
geographic data is highly correlated, the variance of the signal within such a window should be small, and noise should
be random and not correlated within a neighborhood, making alarge variance probable. With the assumption that the

2



1 2 3 4 5
x

1

2

3

4

5
fHxL

Fig. 1. Typical MNF eigenvalue curve shape.
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Fig. 2. Dividing area under curve into bins.

variance of the noise is larger than that of the signal in these small windows, a spatial filter such as a median filter will
preserve most of the signal while eliminating much of the noise. A filter with a larger window has a more dramatic
smoothing effect over a filter with a small window, resultingin a larger SNR at the expense of the signal. A median
filter has the property of preserving original values unlikea mean filter.

The MNF is ordered such that for any two bands numberedm and n (assumen > m), SNRm ≥ SNRn. Recall
that the eigenvalues associated with the MNF are estimates of SNR, meaningλm ≥ λn. Based on the reasoning offered
above, the sizeK of the filter kernel for bandm should not be greater than that for bandn, Km ≤ Kn. Similarly, the
same size filter should be applied to bands with the most similar eigenvalues.

Consider the shape of the typical MNF eigenvalue curve, shown in Fig. 1. The first few bands with the largest
decrease in slope should be grouped together in smaller groups than the last bands with very similar small negative
slopes. In order to divide the bands into bins in this manner,the area underneath the eigenvalue curve can be divided
evenly into a number of bins corresponding to the number of different sized filters to be applied, as shown in Fig. 2.
The three colors represent three different bins and three different kernel sizes. A formal algorithm for the adaptive filter
(AF) is given below.

Algorithm AF(M, Λ, nb)
input/output:
M (image transformed to MNF coordinates,
filtered upon exit)
input:
Λ (B eigenvalues whereB is number of bands inM )
nb (number of bins to use)
1 begin
2 approximatef(b) = λ with C(b) = λ
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3 area :=

∫ B

1

C(b)db

4 area per bin :=
area

nb
5 sarea := 0
6 for i := 1 step 1 until B − 1 do
7 begin

8 sarea := sarea +

∫ i+1

i

C(b)db

9 bin := ceiling
(

sarea
area per bin

)

10 kerneli := 2 · (bin − 1) + 1
11 end
12 kernelB := kernelB−1

13 for i := 1 step 1 until B do
14 applykerneli × kerneli median filter

to bandi in imageM

15 end

Calculating the area under the curve will require a functionto approximate the eigenvalues as a function of band
number, as indicated in line 2 of the above algorithm. A description of Hermite splines, which are recommended given
their suitability to this particular application, is included in Section 3.1. The assignment of bins occurs in line 9, and
warrants further explanation. Starting with the first band,the area under the curve is calculated as

∫ 2

1

C(b)db.

The total area under the curve through bandi is therefore
∫ i+1

1

C(b)db.

The results of previously calculated integrals are stored in sarea to prevent redundant calculations. Taking the ceiling
of the cumulative area under the curve divided by the area perbin results in bands one throughB − 1 being placed in
bins one throughnb, and bandB is placed in the same bin asB − 1. Line 10 continues with the conversion of a bin
number to the size of a spatial filter kernel that correspondsto bin number. The bands in bin one should have no filter
(equivalent to a kernel of size one) applied, and the bands inbin two should have a3 × 3 filter applied.

This approach is valid for convex eigenvalue curves that aresimilarly shaped to Fig. 1, which is usually the case.
The properties of the MNF dictate that the eigenvalue function is strictly decreasing, but in the event that the eigenvalue
function is not convex, dividing up the area under the curve of the derivative of the function will group the most similar
eigenvalues and their corresponding bands together. Consider finding the area under the curve of the derivative:

∫ b

a

f ′(x)dx = f(b) − f(a)

according to the fundamental theorem of calculus. This calculation requires no approximation of the function as the
actual functions’ values can be used. Because the eigenvalue function is monotonically decreasing, the area underneath
the curve will be negative, and therefore the area will be negated to produce a positive result necessary for bin
determination. The above algorithm is modified to produce the following adaptive filter with derivative (AFD) algorithm
using the area underneath the curve of the derivative to determine the location of bins.

Algorithm AFD(M, Λ, nb)
input/output:
M (image transformed to MNF coordinates,
filtered upon exit)
input:
Λ (B eigenvalues whereB is number of bands inM )
nb (number of bins to use)
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1 begin
2 area := Λ(1) − Λ(B)

3 area per bin :=
area

nb
4 sarea := 0
5 for i := 1 step 1 until B − 1 do
6 begin
7 sarea := sarea + Λ(i) − Λ(i + 1)

8 bin := ceiling
(

sarea
area per bin

)

9 kerneli := 2 · (bin − 1) + 1
10 end
11 kernelB := kernelB−1

12 for i := 1 step 1 until B do
13 applykerneli × kerneli median filter

to bandi in imageM

14 end

Finally, either of the above variations on the adaptive filtering algorithm may be used on a particular range of
bands. For example, if prior knowledge or analysis of the MNFtransformed dataset indicates that there is no usable
signal beyond a specific band, the MNF image can still be truncated and filtered adaptively. The value ofB would be
changed from the total number of bands in the image to the number of bands desired after truncation. This is different
from simply truncating the MNF because the bands that are kept would be filtered to decrease the noise, and the number
of bands kept could be larger to ensure that very little signal is lost in the truncation.

A. Hermite Splines

The filtering algorithm requires a function that approximates the eigenvalue curve generated by the MNF. Cubic
splines are piecewise cubic polynomials that produce a visually appealing curve and interpolate a given set of points. In
particular, Hermite cubic splines have only one continuousderivative (standard cubic splines have two) and produce a
monotone cubic spline curve interpolating a monotonic function, rendering this type of spline ideal for interpolatingthe
monotonic SNR curve. The Hermite cubic splineC(x) is composed of2n basis functions,ci(x), ĉi(x), i = 1, . . ., n,
wheren is the number of interpolation points. The function

C(x) =
n

∑

i=1

yici(x) + diĉi(x)

interpolates the points(xi, yi), i = 1, . . . , n if

ci(xi) = 1, ci(xj) = 0, j 6= i,

ĉi(xj) = 0, for all i, j.

Furthermore,
c′j(xi) = 0, for all i, j,

ĉ′i(xi) = 1, ĉ′i(xj) = 0, j 6= i,

making
C′(xi) = di.

Only xi, yi, anddi, i = 1, . . ., n are required to define a Hermite cubic spline, and thedi are chosen to makeC(x)
monotone (theoretically always possible for monotone datayi). Refer to [11] for a more detailed description of Hermite
cubic splines including definitions of the basis functionsci(xi), ĉi(xi).

The derivative and the definite integral of Hermite cubic splines can be easily obtained as the cubic polynomials
(and basis functions) are easily differentiated or integrated analytically. Included in [11] is a set of subroutines designed
to define, evaluate, and integrate Hermite cubic splines,PCHEZ, PCHEV, and PCHQA, respectively. PCHEZ defines
continuous derivatives,di, that result in a visually appealing function,PCHEV evaluates the function and the derivative at
a set of points, andPCHQA returns the definite integral of the function between two points,a andb.
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IV. Study Area

The study area (as described by [12]) is located in the Appomattox Buckingham State Forest in Virginia, USA.
Three flight-lines of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 224-band imagery were acquired in the
winter of 1999. The spatial resolution of this dataset is 3.4m, and the spectral resolution is 10 nm, with the AVIRIS
sensor range being 400–2500 nm contiguously. Training dataconsisted of 142 field collected locations surrounded by
homogeneous areas of single pine species with differentially corrected global positioning system (GPS) coordinates.
Three pine species, loblolly (Pinus taeda), shortleaf (Pinus echinata), and Virginia pine (Pinus virginiana), with 64,
30, and 48 locations, respectively, were collected in August of 1999. The image (shown in Figs. 10–13 and hereafter
referred to as ABSF) contains various tree stands that include the three species of pines listed above, hardwoods, and
mixed (evergreens and hardwoods).

V. SNR Estimation

To support the conclusion that the adaptive filter is improving the image, evidence is provided to show that the
filter is reducing the noise without drastically reducing the signal, effectively improving the SNR. Estimating the SNRin
an image is nontrivial, as most noise estimates are variance-based and the naturally occurring variance within an image
will lead to overestimated noise. In order to minimize the impact of signal variance on noise estimates, homogeneous
portions within an image are identified for noise estimation. Curran and Dungan proposed SNR estimation of AVIRIS
images using a homogeneous line within an image [13]. Gao proposed an alternative method that does not require
identifying homogeneous regions within an image, but instead divides the entire image into small blocks and uses local
standard deviations to estimate the standard deviation of the noise for the entire image [14]. Smith and Curran found
both methods effectively estimated SNRs in AVIRIS images, although both methods overestimated SNR [5]. As the
study area used for this paper lacks clearly defined homogeneous regions, Gao’s whole image method of SNR estimation
will be used, as it does not require identification of homogeneous regions and it can be easily automated [14].

Gao’s method assumes that within a small block (4 × 4 or 8 × 8) the local standard deviation is either low because
of noise and a small amount of natural variance or high because the block contains edges, etc. An image band is
broken into small blocks of equal size, and the local standard deviation is calculated for each block. A histogram is
created from the local standard deviations, and the most frequently occurring standard deviation provides a reasonable
estimate of the standard deviation of the noise for the entire band. Gao generated data with a known amount of noise
and showed that this method accurately estimated the noise [14].

In this SNR estimation method, the signal in AVIRIS images isgenerally estimated using the mean values of each
band, however the mean values of MNF transformed bands do nothave the same magnitude as the mean values in the
original coordinate system. The original digital numbers within the image are all positive, and MNF digital numbers
can be positive or negative, resulting in mean values that are much lower in the resulting MNF coordinate system. In
order to study the effects of filtration on SNRs in MNF coordinates, a estimate suggested by Schowengerdt is used:

SNR =
σ2

S

σ2
N

,

whereσ2
S is the variance of the signal andσ2

N is the variance of the noise [15]. The variance of the signal is estimated
by the variance of the entire image, and the variance of the noise is determined using the method described previously.
Note that this method is not being suggested to estimate SNRsin order to evaluate whether an image can be used for a
certain application, or to compare an image to other images whose SNRs are estimated using other procedures. This
estimation of the signal, noise, and SNR is needed only to compare unfiltered and filtered data to provide evidence that
the SNRs are improving as a result of filtration.

The behavior of the SNR was evaluated using the methods described above, and the test image was transformed to
MNF coordinate space and filtered using a3× 3, 5× 5, 7× 7, and9× 9 median filter. Notice in Fig. 3 that as the filter
size increases, the SNR also increases compared to the unfiltered image (1× 1). Also, notice in Figs. 4 and 5 that since
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Fig. 3. SNR estimates of MNF bands 1–50 unfiltered (1× 1) and after 3× 3 through 9× 9 median filters applied.

the magnitudes of the signal are very different in bands one and 50, degrading the signal in the first band has more
impact on the total image signal degradation than removing some signal in the 50th band.

VI. Results

The AF, AFD, truncated AF, truncated AFD, and uniform 9×9 median filters were applied to the MNF of ABSF.
Results for the 9×9 filter are reported as the 9×9 filter produced the best classification accuracies for all uniform spatial
filters. Further evidence of improved image quality as a result of adaptive filtering is provided in a classification of
ABSF to identify loblolly, shortleaf, and Virginia Pines. An advantage of the technique used (discriminant analysis) is
that individual bands are selected by the method, showing that high order noisy MNF bands contain signal that impacts
applications such as classification.

A. Bin Creation

The adaptive filtering algorithms (using the approximationof the curve and using the derivative of the curve to
establish bin locations) described above were applied to ABSF. Fig. 6 shows the eigenvalues (SNRs) generated by the
MNF. Figs. 7 and 8 show the resulting eigenvalue function andderivative curves (for the entire image and for the image
truncated to 80 MNF bands) approximated by Hermite splines,with the area underneath the respective curves divided
into five equal partitions, representing median filter kernels of size one through nine.

B. Classification

A discriminant analysis was used to generate classificationfunctions for each filtered and unfiltered dataset using
SAS(R) 9.1.3 [16]. First theSTEPDISC procedure was used to identify bands that contribute to the discrimination
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Fig. 6. Study area MNF SNRs (eigenvalues).

between the three pine species. TheSTEPDISC procedure (using stepwise selection) starts with no variables in the
model. The variable that contributes most to species discrimination enters the model if the significance level of an
F-test is above the specified threshold. In each subsequent step, the variable within the model that contributes least to
discrimination is first considered for removal (if the significance level of an F-test is beyond the specified threshold to
leave the model). If no variable is removed, of the remainingvariables not included in the model, the variable that best
contributes to the discrimination of the model is added, if it meets the criteria to enter. At each step, either one variable
leaves the model or one variable enters the model until the procedure terminates. The procedure terminates when no
more variables are eligible to enter or leave the model, or a maximum number of steps is reached.

DISCRIM generates a discrimination function (classification) whengiven a set of quantitative variables and
corresponding classifications for each observation. Classification accuracies are determined by using the generated
discriminant function to classify each observation, whichis a biased test. A better measure of accuracy is the
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Fig. 7a. Bins generated by AF on study area.
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Fig. 7b. Bins generated by AF (truncated to 80 MNF
bands) on study area.
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Fig. 8a. Bins generated by AFD on study area, bands
1–30 shown.
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Fig. 8b. Bins generated by AFD (truncated to 80 MNF
bands) on study area, bands 1–30 shown.

cross validation accuracy, where each observation is classified using the classification model derived from the other
observations (not including itself).

The classification results in this paper were generated using STEPDISC with stepwise selection, and the variables
(bands) identified were used to generate the discriminant function usingDISCRIM. The default value of .15 was used
as the threshold for entering and leaving the model inSTEPDISC, and the default assumption of normality was used to
generate the discriminant function inDISCRIM. In order to select different numbers of hyperspectral bands, theα-level
for the F-test was varied between .1 and .00001 for differentclassifications reported in Tables 1 and 2. The data and
discriminant analysis procedure are identical to those used to obtain maximum cross validation classification accuracies
of roughly 85% using a maximum of 10 bands in [12].

The first set of entries in Table 1 correspond to classifications applied to transformed data in the MNF coordinate
system. Accuracies for MNF data with no filter applied are recorded for comparison purposes. The second set of
Table 1 entries are classification accuracies and parameters using data that was filtered in the MNF coordinate system
and then inverse transformed to the original coordinate system. The classifications in Table 2 are applied to data that
are transformed to MNF space, truncated or truncated and filtered to remove noise, and inverse transformed. The
unfiltered MNF data are truncated at 40 or 60 MNF bands becausethese thresholds appear to be located near where the
eigenvalue curve approaches one (see Fig. 6). As more noisy bands are included, the accuracies of the classification of
truncated MNF data decrease, and therefore results are not reported for the inverse of MNF data truncated at 80 bands,
corresponding to the adaptive filters applied to MNF truncated 80 band images.

VII. Discussion

Classification results in Table 1 indicate that using any of the mentioned variations of adaptive filtering ultimately
improves the classification accuracy over not using any filtering method, indirectly indicating that the adaptive filterhas
improved the image quality, enabling better classificationresults. Furthermore, considering the first six table entries
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Table 1. Results of stepwise discriminant analysis and discriminant analysis on study area using various filtering schemes
in both original and MNF coordinates (Legend: CV Acc. = CrossValidation Accuracy, Class Acc. = Classification
Accuracy).

Filter CV Acc. (%) Class Acc. (%) α-level # Bands Bands

MNF coordinates

none 85.92 88.03 .01 9 1,2,3,5,7,13,16,18,173
AF 91.55 93.66 .001 13 1,2,6,7,9,10,14,16,19,36,44,52,148
AFD 98.59 100.00 .00001 11 5,10,12,16,18,19,34,36,45,48,53
Trunc. AF 98.59 98.59 .0001 10 2,7,14,16,19,29,36,44,45,53
Trunc. AFD 98.59 100.00 .00001 11 5,10,12,16,18,19,34,36,45,48,53
9x9 97.89 100.00 .00001 11 5,10,12,16,18,19,34,36,45,48,53

original coordinates

none 76.76 79.58 .0001 4 19,24,116,213
9x9 91.55 92.25 .00001 4 3,19,27,164
9x9 90.85 92.96 .0001 5 3,19,26,27,164
AF 83.10 83.80 .001 5 19,26,27,126,158
AFD 91.55 92.25 .00001 4 3,19,27,164
AFD 87.32 92.25 .0001 6 4,9,19,23,27,44
9x9 95.07 97.89 .001 11 3,19,23,37,105,120,140,144,147,183,200
AF 92.25 97.89 .01 14 11,16,19,26,27,30,43,120,158,161,183,194,197,222
AFD 92.96 96.48 .01 10 4,9,19,23,27,40,41,42,164,218
AFD 93.66 95.07 .001 8 4,9,19,23,27,41,44,164

Table 2. Results of stepwise discriminant analysis and discriminant analysis on study area using various truncated
filtering schemes in original coordinates (Legend: CV Acc. =Cross Validation Accuracy, Class Acc. = Classification
Accuracy).

Filter # MNF CV Class α-level #
Bands Acc. Acc. Bands
Kept (%) (%)

none 40 88.03 92.25 .1 12
none 60 84.51 88.03 .1 14
AF 80 95.78 97.89 .01 12
AFD 80 93.66 94.37 .01 10
none 60 73.24 77.47 .001 4
AF 80 86.62 89.45 .0001 4
none 40 83.10 85.92 .01 8
AFD 80 94.37 95.07 .001 7

corresponding to classification in the MNF axes, the more accurate classifications make use of high order MNF bands.
The least accurate classification (applied to unfiltered data) primarily included bands from the first 20 MNF bands,
whereas the more accurate classifications consistently used higher order bands in the 30–55 range. Many of the bands
identified to be important for pine species discrimination are consistent across filtering schemes, but are not present in
the classification of the unfiltered dataset. These results support the hypothesis that there is signal in higher order MNF
bands that can be important for applications such as classification, and that applying a filter to reduce the levels of noise
can make the weak signal in these bands usable.

Recall that the MNF maximizes SNR in each band where the signal is estimated by the variance of the image,
making the transformation similar to PCA, which aligns the data along axes of maximum variance. In applications such
as this where the goal is discrimination between pine species, higher order MNF bands (and PCA bands) might be
expected to play a vital role as the variance between pine species is likely small. Unfortunately these high order bands
in the MNF transformation that have little signal (variance) have relatively large amounts of noise. Simply truncating
the MNF to remove this noise will result in also removing signal.
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Fig. 9. Percentage of signal lost by AF, AFD, and 9× 9 median filters.

The second set of entries in Table 1 corresponding to classification results in the original coordinate system show
that the improved MNF image quality is consistent when the image is inverse transformed. This set of classification
accuracies are not as high as those corresponding to the MNF coordinate system, even when the same number of bands
is used to build each of these models. Although the numbers ofbands used in these classifications are similar to
those used on the MNF coordinate data, the MNF coordinate data still results in better classifications. However, some
classifications require that data not be transformed, and the results in Table 1 demonstrate that the MNF-based adaptive
filtering methods are relevant to images that are inversely transformed from MNF coordinate space.

For this particular dataset, the AFD usually produced better classifications (indicated by classification accuracy and
cross validation classification accuracy) than the AF, however, for other applications, the AF may be the better choice.
The following discussion shows that preserving image quality (signal) and achieving high classification accuracy arenot

equivalent — AF has better image quality (more preserved signal), but worse classification/cross validation accuracy,
than AFD. Referring back to Figs. 7 and 8, recall that using the derivative curve to determine bin placement resulted
in larger spatial filters being applied to more bands within the image. In fact, the classification results for the9 × 9

filter are consistently similar to results obtained using the AFD filter because in this case, the filters are very similar.
As alluded to earlier, the low order bands containing most ofthe signal (variance) of the entire image likely do not
greatly aid discrimination between spectrally similar pine species. These filters are substantially degrading the signal in
the image, as shown in Fig. 9. Because the first MNF bands contain the majority of the signal, applying a filter with
such a large window drastically degrades the signal of the overall image. Fig. 9 shows that while the AF filter decreases
the variance of the original image by around 20% for most bands, the AFD and the9 × 9 filters decrease the variance
by around 40% for many bands. There is a noticeable difference in the signal (variance) degradation between the AF,
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Fig. 10. Band 27 of ABSF in the original coordinate system (zoomed).

AFD, and 9 × 9 filters, indicating that using the AFD and, especially, a large uniform filter substantially reduces the
image signal.

Further evidence of image quality can be observed qualitatively by viewing and comparing the filtered images to
the original image and the unfiltered MNF image. Fig. 10 contains band 27 of the image in the original coordinate
system, a band that was used for the pine species discrimination in many of the images. While Fig. 10b (the inverse of
the MNF ASF image) does not appear as crisp as the original image, the texture is much greater than that of either
Fig. 10c (ASFD) or 10d (9×9). Fig. 11 compares the four filtering schemes applied to band 5 of the MNF image,
providing insight into the obvious signal degradation in band 27. While the AF image (Fig. 11b) is relatively crisp (3×3
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Fig. 11. Band 5 of the ABSF MNF (zoomed).

filter used), the AFD image (7×7) and the 9×9 image have substantially degraded signal, resulting in substantially
degraded signal for the overall image (band 5 contains more of the image’s signal than each subsequent band). A much
higher order band, band 36, is shown in Fig. 12. This band was selected for each MNF filtered classification, but
was not part of the less accurate classification of the unfiltered image. Although it is possible to distinguish a small
signal in Fig. 12a, the noise is clearly dominating this band. The spatial filters are reducing the signal of the image,
but importantly reduce the noise to a level that reveals variance between individual portions of the image. The areas
marked by ground truth can be spectrally distinguished in this band (which is important to the classification) even if
the signal does not appear to be strong. While this band was important for this particular image and classification, the
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Fig. 12. Band 36 of the ABSF MNF (zoomed).

obvious signal contained in this noisy band supports the claim that high order MNF bands contain signal that may be
important to an application, but the signal is difficult to use without reducing the noise. The noisy band 36 was not
selected to discriminate pine species in the unfiltered image (see Table 1), but was selected inall of the filtered MNF
images. Fig. 13 compares a 9×9 filter for band 36 to the original band 36 for the full scene, showing that the variance
between features in the image is noticeable once the level ofnoise is reduced.

Evidence supporting adaptive filters over simply truncating the MNF to reduce the noise in an image is shown
in Table 2. The classification accuracies for the MNF truncated, unfiltered images are consistently less than the
classification accuracies in Table 1 for both filtering schemes when comparing classifications built using similar numbers
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Fig. 13. Band 36 of the ABSF MNF (full scene).

of bands. Combining the truncation of MNF with an adaptive filtering method to entirely remove bands that have
no discernible signal while filtering bands containing signal heavily degraded by noise may be another viable noise
reduction technique. Since the truncated MNF will be filtered in this case, the number of bands kept can be higher to
ensure that little or no signal is removed from the image. Notice in Table 2 that each adaptive filtering method using 80
MNF bands produces far better classification accuracies than keeping 40 or 60 unfiltered MNF bands. Also notice that
accuracies are lower for the image truncated at 60 bands thanthe image truncated at 40 bands. Bands 40–60 have low
SNRs, and including these bands without filtering them introduces far more noise than signal to the image, resulting in
lower classification accuracies.

Figs. 10–13 show why adaptive filtering is necessary over oneuniform filter size for data transformed by the MNF.
While a large filter degrades strong signal in low order bands, it can be useful to remove noise from a high order band
with a weak signal. Even though the weak signal is inevitablydegraded, it is practically useless when the noise is
comparatively strong. Using an adaptive filter allows the strong signal in the first few bands to be preserved while the
dominating noise is removed by a much larger filter in high order bands. The results presented for this particular dataset
are intended to demonstrate a general technique, and are notintended to indicate the ideal filter sizes and number of
bins for other datasets and applications. This particular dataset and classification appeared to benefit from spatial filters
with large windows, explaining why the AFD filter with a maximum filter window size of nine (very similar to a
uniform 9× 9 filter) produced such accurate classification results.

VIII. Conclusions and Future Work

This work introduced an adaptive filter based on the MNF that exploits the ordering of the bands to apply median
filters of different sizes. This filtering scheme greatly enhanced the MNF image for the purposes of identifying pine
species, and accuracies were improved by more than 10% for certain variations of the filtering algorithm applied to
AVIRIS data in the original and MNF coordinate systems. The results in this paper are substantially more accurate than
previously reported results for the same application and analysis performed on the same data in which no spatial filters
were applied [12].

The AFD version of the adaptive filter produced more accurateclassification results and higher estimated SNRs
than the AF version, however, there are indications that theAFD degraded the signal quality significantly (while
also degrading the noise), perhaps making the AF more appropriate in certain applications. Both variations led to
classifications that were substantially better than classifications performed on unfiltered data. This paper does not
indicate how the number of bins should be selected. More workis needed to identify the number of bins and the
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maximum size of filters that should be used for certain applications and on certain imagery. Furthermore, more study
is necessary to determine the relationship between SNR estimates and ideal filter size, and the suitability of adaptive
frequency domain filters in this context should be examined.
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