
Technical Report TR-08-08

Computational Science Laboratory

Department of Computer Science

Virginia Tech

On the discrete adjoints of adaptive time

stepping algorithms

Mihai Alexe Adrian Sandu

April 2008

1

On the discrete adjoints of adaptive time stepping algorithms ⋆

Mihai Alexe ∗ and Adrian Sandu
Computational Science Laboratory,

Department of Computer Science,

Virginia Polytechnic Institute and State University,

2202 Kraft Drive, Blacksburg, VA, 24060, USA.

Abstract

We investigate the behavior of adaptive time stepping numerical algorithms under the reverse mode of automatic
differentiation (AD). By differentiating the time step controller and the error estimator of the original algorithm,
reverse mode AD generates spurious adjoint derivatives of the time steps. The resulting discrete adjoint models
become inconsistent with the adjoint ODE, and yield incorrect derivatives. To regain consistency, one has to cancel
out the contributions of the non-physical derivatives in the discrete adjoint model. We demonstrate that the discrete
adjoint models of one-step, explicit adaptive algorithms, such as the Runge–Kutta schemes, can be made consistent
with their continuous counterparts using simple code modifications. Furthermore, we extend the analysis to cover
second order adjoint models derived through an extra forward-mode differentiation of the discrete adjoint code. Two
numerical examples support the mathematical derivations.

Key words: Runge - Kutta methods, discrete adjoints, automatic differentiation, adaptive time stepping, ordinary differential
equations (ODEs)

1. Introduction and motivation

Automatic differentiation (AD) [11] is a technique for augmenting computer programs with sensitivity

analysis features, e.g., the ability to compute gradients or other type of derivative information. Currently,

AD comes in two flavors. The implementation can either exploit programming language-specific features and

implement AD via operator overloading (ADOL-C [13], ADMIT/ADMAT [5]), or rely on source-to-source

transformations that generate tangent linear or adjoint codes from existing model implementations (ADI-C

[3], ADIFOR [2], TAF [10], TAMC [8], TAPENADE [16]).

Any computer program may be viewed as an ordered sequence of simple statements (such as additions,

multiplications, or simple function calls like exp()), for which derivative computations are trivial. AD tools

break each routine into these simple building blocks, differentiate the basic statements one by one, and then

put together the desired derivatives using the chain rule from differential calculus. The forward mode of AD

allows one to compute derivatives of all program outputs with respect to a chosen input, by propagating

⋆ This work has been supported by the National Science Foundation through the award NSF CCF-0635194.
∗ Corresponding author. Phone: +1-540-231-6186. Fax: +1-540-231-6075.

Email addresses: malexe@cs.vt.edu (Mihai Alexe), sandu@cs.vt.edu (Adrian Sandu).
URLs: http://csl.cs.vt.edu (Mihai Alexe), http://people.cs.vt.edu/~asandu (Adrian Sandu).

Preprint submitted to Journal of Computational and Applied Mathematics 25 April 2008

gradient information from one program statement to the next. The resulting tangent linear model of the

forward algorithm preserves the control flow of the original program. Conversely, the reverse mode of AD

builds the discrete adjoint of the routine that is being differentiated, reversing the original control flow. This

allows the computation of derivatives of a single program output with respect to several input variables,

using one discrete adjoint call.

The behavior of numerical integration algorithms under automatic differentiation was first studied in the

broader context of general iterative solvers [1,12]. It has been shown that derivatives of iterative solvers

converge to the derivative of the original solution, under suitable assumptions [12]. Hager [14] investigated

Runge–Kutta adjoints for optimal control. He gave the general formulation for the continuous adjoint of a

Runge–Kutta scheme, and derived the constraints that need to be satisfied by the forward method coefficients

such that the continuous adjoint will retain the order of accuracy of the forward Runge–Kutta method, up

to methods of order four.

Discrete adjoints of numerical integration algorithms are attractive, because, unlike solvers for the con-

tinuous adjoint equations, they can be generated automatically using AD. Walther [25] proved that explicit

Runge–Kutta methods of order p ≤ 4 retain their order of accuracy under reverse mode AD. Sandu [20]

showed that discrete adjoints of explicit and implicit Runge-Kutta methods of any order p, give a p-th order

accurate solution to the continuous adjoint ODE. Hager, Sandu and Walther all assume that the time steps

are kept fixed throughout the integration.

Adaptivity features induce additional complications when differentiating a numerical integration algo-

rithm. This issue is of considerable importance, since all modern ODE integrators make use of time step

controllers, error estimators, or numerical extrapolation to maximize efficiency and speed. Forward mode

automatic differentiation of the adaptivity mechanism leads to spurious derivatives, as noted by Eberhard

and Bischof [7]. These non-physical gradients introduce large errors in the tangent linear model trajectory,

leading to incorrect numerical sensitivities. Analyzing explicit Runge–Kutta - like methods, Eberhard and

Bischof proposed a code correction that restores the accuracy of the discrete tangent linear model solution.

In this paper, we investigate the behavior of adaptive ODE integration schemes under reverse-mode

automatic differentiation. We show that the discrete adjoints of adaptive methods are inconsistent with the

adjoint ODE due to the differentiation of the time step controller. Adjoining results in more complex code

than forward mode differentiation, due to the reversal of the original control flow. We build the discrete

adjoint of a general adaptive, one-step explicit integration method, and quantify the perturbation introduced

by the adjoint time step gradients in the adjoint solution. The discrete adjoint solutions are shown to contain

a O(1) error. Hence, the naive invocation of reverse mode AD yields incorrect gradients. This also holds for a

p-th order Runge–Kutta method. One has to eliminate the perturbations induced by AD before one can trust

the discrete adjoint solution. We propose two equivalent and easy to implement code corrections, that make

the discrete adjoint consistent with its continuous counterpart. Moreover, we extend our analysis to second

order adjoints of adaptive integrators, and show how to cancel the influence of the spurious derivatives.

Finally, we present two numerical examples that support the mathematical derivations.

2. Forward and adjoint sensitivity analysis

We will consider a dynamical system modeled by an initial-value problem (IVP) of the form

ẋ= z
(
t, x(t, q), q

)
, t0 ≤ t ≤ tF ,

x(t0, q) = x0
(q) , (2.1)

where x ∈ Rnx denotes the system state, and q ∈ Rnq is a set of system parameters. We assume that the

IVP (2.1) is well-posed and z(t, x, q) : R1+nx+np → Rnx is at least twice continuously differentiable in all

arguments.

In a vast range of practical problems (arising e.g., in optimal control, mechanical engineering, parameter

identification, or sensitivity analysis) we are given a cost functional whose value depends on the dynamical

system trajectory:

2

J =

∫ tF

t0
γ(t, x, q) dt , (2.2)

We are then required to compute the sensitivities of J with respect to changes in a prescribed set of

parameters q, or in the initial conditions x0
. It is known [23] that these derivatives can be obtained from

the solutions si(t) = ∂x(t)/∂qi of the tangent linear model (TLM):

ṡi =
∂z

∂x
si +

∂z

∂qi
, t0 ≤ t ≤ tF ,

si(t
0
) =

∂x0

∂qi
, i = 1 . . . nq , (2.3)

or by solving the adjoint final value problem

ẇ=−

(
∂z

∂x

)T

w −

(
∂γ

∂x

)T

, tF ≥ t ≥ t0 ,

w(tF) = 0 . (2.4)

It can be shown [4,22,24] that

∂J

∂qi
=

∫ tF

t0
γxsi + γqi

dt , (2.5)

where S =
[
s1 s2 . . . snq

]
is the sensitivity matrix, and

∂J

∂q
=
(
wTS

)∣∣
t0

+

∫ tF

t0
γq + wT zq dt . (2.6)

Without loss of generality we consider only the case of computing sensitivities with respect to the initial

conditions. Assuming time-invariant parameters, we can write (2.1 – 2.2) as an extended ODE system:





ẋ(t)

q̇(t)

θ̇(t)




=





z(t, x, q)

0

γ(t, x, q)




, t0 ≤ t ≤ tF ,





x(t0)

q(t0)

θ(t0)




=





x0

q0

0




. (2.7)

It follows that

J = θ(tF) . (2.8)

We rewrite (2.7) as

ẏ= F (t, y) , t0 ≤ t ≤ tF ,

y(t0) = y0 , (2.9)

where

y=





x

q

θ




∈ RN , F =





z

0

γ




. (2.10)

3

The propagation of small perturbations δy0
in the initial conditions of (2.9) is governed by the tangent linear

model:

δẏ=
∂F

∂y
(t, y) δy , t0 ≤ t ≤ tF ,

δy(t0) =
∂y

∂y0
(t0) . (2.11)

A small perturbation δy0
in the initial condition of (2.9) will cause a small change in J :

δJ =
∂J

∂y0
δy0 , (2.12)

up to first order in δy0
. Thus, we will need N TLM integrations with N linearly independent perturbations

to obtain the complete gradient vector. On the other hand, the adjoint of (2.9) can yield the gradient at the

cost of a single backward-time integration:

λ̇=−

(
∂F

∂y
(t, y)

)T

λ , tF ≥ t ≥ t0 ,

λ(tF) =

(
∂J

∂y

)T (
y(tF)

)
, (2.13)

Then:
∂J

∂y0
= λ(t0) . (2.14)

Higher order derivatives [17] have proved to be useful in areas such as data assimilation and chemistry

transport modeling [23,26]. The second order adjoint framework provides sensitivity information in the form

of Hessian - vector products. The second order derivatives can be obtained from the final value problem [23]:

σ̇ =−

(
∂F

∂y
(t, y)

)T

σ −

(
∂2F

∂y2
(t, y)⊗ δy(t)

)T

λ

σ(tF) =
∂2J

∂y2
(y(tF)) · δy(tF) , (2.15)

where δy is the solution of the TLM (2.11). Note that the first and second order adjoint systems are coupled,

and their solutions depend on the forward and tangent linear model trajectories. The operator ”⊗” denotes

the tensor product

∂2F

∂y2
⊗ δy =

[
N∑

k=1

(
∂2F

∂y2

)

i,j,k

· δyk

]

1≤i,j≤N

. (2.16)

One can then show that

σ(t0) =
∂2J

∂y2
(y(t0)) · δy0 . (2.17)

For cost functionals such as (2.2) and large N , equations (2.11) and (2.13) show that it is considerably

more efficient to compute the gradient ∂J /∂y0
through the adjoint method, since only one adjoint model

solve is required. One can follow two strategies to compute adjoint sensitivities numerically:

a. Use the differentiate - then - discretize approach, i.e., derive the adjoint ODE (2.13) analytically, and

then solve it using a numerical method, e.g., a p-th order Runge-Kutta method [15]. Note that we can

use AD to generate the right-hand side of the adjoint ODE, but the Runge-Kutta method itself is not

differentiated [7]. Assuming the numerical scheme is stable, the algorithm will converge to a p-th order

accurate approximation to the adjoint λ(t). The main drawback of this approach is that it requires

the analytical derivation of the adjoint model. This can be a difficult task, and cannot be performed

in an automatic fashion.

4

b. The alternative is to discretize - then - differentiate the IVP (2.9). First, one discretizes the forward

model equations, and then integrates this discrete model using an adaptive time stepping method.

The next step is to build the discrete adjoint of the numerical integrator using reverse mode AD. This

approach is obviously attractive since discrete adjoints can be generated in an automated fashion. On

the other hand, it is not guaranteed that the discrete adjoint of a numerical method is a consistent

approximation to the corresponding continuous adjoint ODE.

Assume that the forward integration algorithm converges to a p-th order accurate approximation to

the exact solution y(tF). We investigate numerical methods that retain accuracy under adjoining if

the time step h is kept fixed, i.e. the discrete adjoint solution λn
satisfies

|λn − λ(tn)| ∼ O (hp
) , ∀n , (2.18)

as h → 0. This is true for Runge–Kutta methods [20,25], but not for multistep methods [21]. For

adaptive algorithms, the time steps taken during the forward integration will depend on the forward

solution y. Reverse mode AD will pick up this dependence and generate non-physical adjoint time step

gradients. We will show that these spurious derivatives lead to incorrect discrete adjoints. To recover

an accurate adjoint solution, one has to eliminate the AD artifacts from the discrete adjoint update,

as discussed in sections 3 and 4.

3. A general framework for adaptive-step differentiation

One-step, explicit adaptive integration schemes for (2.9) can be written as

yn+1
= f (yn, hn, tn) (3.1a)

hn+1
= g (yn, hn, tn) (3.1b)

tn+1
= tn + hn , 0 ≤ n ≤M − 1 . (3.1c)

Here M denotes the total number of integration steps, i.e. tM = tF . f : RN+2 → RN
is chosen according

to some prescribed accuracy criteria, and g : RN+2 → R is a step size controller, used to compute the new

step size hn+1
based on an estimate of the local error. The initial time step h0

is constant. Superscripts are

used to indicate discrete time moments, while subscripts denote partial derivatives, unless noted otherwise.

Since we are now dealing with discrete models, the cost function J has to be approximated in terms of the

numerical solution. We consider a discrete approximation of the form

Ĵ = Ĵ
(
yM
)
. (3.2)

We consider methods with the following properties. For a fixed time step hn
= h, the method

yn+1
= f(yn, h, tn) : (3.3)

a. is asymptotically consistent with the adjoint ODE (2.13),

b. is accurate of order p, and

c. retains its order of accuracy under forward or reverse-mode differentiation, i.e., its tangent linear and

adjoint formulations are p-th order accurate numerical schemes for the solution of the tangent linear

and adjoint ODE, respectively.

Any p-th order Runge–Kutta method satisfies these assumptions [20].

The discrete adjoint of an integration scheme with above properties reads [23]:

λn
=

(
∂f

∂y
(yn, hn, tn)

)T

λn+1 , M − 1 ≥ n ≥ 0 ,

λM
=

∂Ĵ

∂yM
. (3.4)

5

We will show that the reverse mode of AD applied to (3.1a – 3.1c) does not yield (3.4). Instead, the

AD engine introduces spurious derivatives of the time step controller into the discrete adjoint solution. Our

correction eliminates the AD artifacts.

Consider the integrator state vector for (3.1a – 3.1c):

v
n

=





yn

hn

tn




. (3.5)

The derivation of the tangent linear model of (3.1a – 3.1c) amounts to constructing the local Jacobian matrix

[9] for the state evolution

v
n→ v

n+1 . (3.6)

Thus, the TLM of (3.1a) – (3.1c) has the following form (see the appendix for the convention used to

represent function derivatives):





δyn+1

δhn+1

δtn+1




=





∂f

∂y

∂f

∂h

∂f

∂t
∂g

∂y

∂g

∂h

∂g

∂t

01×N 1 1









δyn

δhn

δtn




, 0 ≤ n ≤M − 1 . (3.7)

All partial derivatives are evaluated at (yn, hn, tn). The adjoint model is built by transposing the Jacobian

of (3.6). Denote the adjoint state vector at step n by

λ̄
n

=





λn

µn

νn




. (3.8)

The n-th step in the discrete adjoint of (3.1a – 3.1c) can be written as





λn

µn

νn




=





(
∂f

∂y

)T (
∂g

∂y

)T

0N×1

(
∂f

∂h

)T
∂g

∂h
1

(
∂f

∂t

)T
∂g

∂t
1









λn+1

µn+1

νn+1




. (3.9)

This leads to:

λn
=

(
∂f

∂y

)T

λn+1
+

(
∂g

∂y

)T

µn+1
(3.10a)

µn
=

(
∂f

∂h

)T

λn+1
+
∂g

∂h
µn+1

+ νn+1
(3.10b)

νn
=

(
∂f

∂t

)T

λn+1
+
∂g

∂t
µn+1

+ νn+1 , M − 1 ≥ n ≥ 0 . (3.10c)

The last term in the adjoint update (3.10a) is a side-effect of AD, generated by the differentiation of the time

step controller mechanism (3.1b). µ is a spurious adjoint derivative of the time step h. These perturbations

can generate O(1) errors in the discrete adjoint solution at t0:

λ0
= λ(t0) +O(1) . (3.11)

6

In section 4 we prove that this happens with Runge-Kutta methods. The numerical experiments in section

6 confirm this conclusion (see Figure 1 and Figure 2).

We present two approaches to eliminating the spurious derivatives. One can:

(i) zero out the non-physical adjoint derivatives:

µn+1← 0 , (3.12)

before the update (3.10a), or

(ii) implement a correction of the form:

λn← λn −

(
∂g

∂y

)
µn+1 . (3.13)

Suppose that (3.1b) is implemented in FORTRAN as

subroutine g (t,y,h,hNew)

with h = hn
and hNew = hn+1

. A source-to-source AD tool such as TAMC [8] or TAPENADE [16]

(with t = tn, y = yn
, and h = hn

chosen as independent variables, and hNew = hn+1
the dependent

variable) will generate:

subroutine adg (t,y,h,adh,ady,adt,adhNew) ,

with adh = µn
and adhNew = µn+1

. Since the value of adhNew is lost after the call to adg(), we need

to save it into a temporary variable and reuse it in (3.13):

tmp ← adhNew .

We now post-process the adjoint trajectory λn
right after the call to adg() inserted by AD by calling

call adg (t,y,h,0,ady,0,-tmp) .

This call implements (3.13). Since an evaluation of g is computationally inexpensive relative to a call

to f , and the additional cost of adjoining is not greater than that of a (small) constant number of

forward model evaluations [11], the overhead of (3.13) is small compared to the overall cost of an

adjoint Runge–Kutta step.

4. Explicit adaptive Runge–Kutta methods

We now focus on explicit Runge–Kutta methods. Let k1, k2 . . . kr ∈ RN
be the Runge–Kutta stages,

which are now part of the discrete integrator state. Also, k ≡ [k1 k2 . . . kr] ∈ RN×r
. As in the previous

section, we will identify the integrator state variables at tn by the superscript n.

The Runge–Kutta method can be written as follows:

k = τ (yn, hn, tn) (4.1a)

yn+1
= yn

+ hn
r∑

m=1

bm km (4.1b)

hn+1
= hn · g̃ (yn, tn, k) (4.1c)

tn+1
= tn + hn , 0 ≤ n ≤M − 1 . (4.1d)

Here b ∈ Rr
denote the Runge–Kutta weights. We assume that kn+1

are the stage values after the update

(4.1d), and kM
= 0. The time step controller (4.1c) has a form that is widely used in practice (see (6.1) for

an example). Therefore, the forward integrator state is described by the following vector:

7

v
n

=





kn
1

.

.

.

kn
m

yn

hn

tn





. (4.2)

The Runge–Kutta discrete adjoint consistent with the adjoint ODE (2.13) is computed using the chain

rule of differentiation:

λn
=

(
IN + hn

r∑

m=1

bm
∂km

∂y
(tn, hn, yn

)

)T

λn+1 , M − 1 ≥ n ≥ 1 ,

λM
=

∂Ĵ

∂yM
. (4.3)

Next, we will show that the discrete adjoint of (4.1a) – (4.1d) given by AD is different from (4.3).

Since both forward-mode differentiation and adjoining can be performed line by line [11], we can first

build the TLM for (4.1a) and then for (4.1b) – (4.1d). This mimics the behavior of AD, since it necessary to

account for the dependency arising between (4.1a) and (4.1b) through the stage values k. Hence, the n-th

step of the TLM reads:





δk
n+1/2
1

.

.

.

δkn+1/2
r

δyn+1/2

δhn+1/2

δtn+1/2





=





0N . . . 0N
∂k1

∂y

∂k1

∂h

∂k1

∂t
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0N . . . 0N
∂kr

∂y

∂kr

∂h

∂kr

∂t

0N . . . 0N IN 0N×1 0N×1

01×N . . . 01×N 01×N 1 0

01×N . . . 01×N 01×N 0 1









δkn
1

.

.

.

δkn
r

δyn

δhn

δtn





(4.4)





δkn+1
1

.

.

.

δkn+1
r

δyn+1

δhn+1

δtn+1





=





IN . . . 0N 0N 0N×1 0N×1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0N . . . IN 0N 0N×1 0N×1

hnb1IN . . . hnbrIN IN

∑

m

bmkm 0N×1

hn ∂g̃

∂k1
. . . hn ∂g̃

∂kr
hn ∂g̃

∂y
g̃ hn ∂g̃

∂t

01×N . . . 01×N 01×N 1 1









δk
n+1/2
1

.

.

.

δkn+1/2
r

δyn+1/2

δhn+1/2

δtn+1/2





. (4.5)

Here IN denotes the N -by-N identity matrix, 0N stands for the zero N -by-N matrix, and the index n+1/2
indicates an intermediate step. We note that all entries of the above Jacobian matrices are evaluated at

(tn, yn, hn
). The adjoint variables form the costate vector:

8

λ̄
n

=





ψn
1

.

.

.

ψn
r

λn

µn

νn





. (4.6)

The discrete adjoint follows immediately by transposing the Jacobian matrices and reversing the direction

of integration:

ψn+1/2
m = hnbmλ

n+1
+ hn

(
∂g̃

∂km

)T

µn+1 , m = 1 . . . r

λn+1/2
= λn+1

+ hn

(
∂g̃

∂y

)T

µn+1

µn+1/2
= µn+1

+ g̃µn+1
+

r∑

m=1

bmk
T
mλ

n+1

νn+1/2
= hn ∂g̃

∂t
µn+1

+ νn+1
(4.7)

ψn
= ψn+1/2

λn
=

r∑

m=1

(
∂km

∂y

)T

ψn+1/2
m + λn+1/2

µn
=

r∑

m=1

(
∂km

∂h

)T

ψn+1/2
m + µn+1/2

νn
=

r∑

m=1

(
∂km

∂t

)T

ψn+1/2
m + νn+1/2 , M − 1 ≥ n ≥ 0 . (4.8)

Thus AD computes the following discrete adjoint update:

λn
=

(
IN + hn

r∑

m=1

bm

(
∂km

∂y

)T
)
λn+1

+ hnµn+1

(
r∑

m=1

bm

(
∂km

∂y

)T (
∂g̃

∂km

)T

+

(
∂g̃

∂y

)T
)

=

(
IN + hn

r∑

m=1

bm

(
∂km

∂y

)T
)
λn+1

+O (hn
) . (4.9)

All partial derivatives are evaluated at (yn, hn, tn). The update (4.9) is clearly different from (4.3). The

O (hn
) perturbations introduced at each step in the discrete adjoint λn

add up to a O (1) perturbation in

the adjoint solution λ0
: ∣∣λ0 − λ(t0)

∣∣ = O(1) . (4.10)

To eliminate all perturbations, one can zero out the adjoint derivative µn+1
, as in (3.12). Alternatively,

we can insert

9

ψn+1/2
m = ψn+1/2

m − hn

(
∂g̃

∂km

)T

µn+1 , m = 1 . . . r

λn+1/2
= λn+1/2 − hn

(
∂g̃

∂y

)T

µn+1 . (4.11)

after (4.7). The FORTRAN implementation of (4.11) is based on a second call of adg (the adjoint of (4.1c)),

and is very similar to the one described in the previous section. Both correction strategies will result in

a discrete adjoint solution that is a p-th order accurate approximation to the true adjoint λ(t0). Section

6 shows the divergent AD adjoint, as well as the convergence of the corrected solution, for a 5-th order

Runge-Kutta method.

5. Discrete second order adjoints

It is known that second order adjoints can be computed either by two reverse-mode differentiations

(adjoint-over-adjoint) or, more efficiently, through a forward mode differentiation of the original model’s

adjoint (forward-over-adjoint) [11,18]. Thus, it is natural to ask if we can couple the adjoint corrections

(3.13) or (4.11) with the tangent linear code modifications described in [7]. We will show that this approach

leads to accurate discrete second order adjoints of adaptive numerical integrators.

We will work within the general framework described in section 3. The second order discrete adjoint

system allows one to obtain second order derivative information for the cost function (3.2), in the form of

Hessian-vector products

∂2Ĵ

(∂y0)2
· δy0 , (5.1)

with δy0 ∈ RN
an arbitrary vector. We henceforth mark all discrete second-order adjoint variables by an

upper dot. Thus, the second order adjoint state vector at tn has the following structure (compare with 3.8):

λ̇ =





λ̇

µ̇

ν̇




. (5.2)

The discrete second order adjoint consistent with the ODE (2.15) reads:

λ̇n
=

(
∂f

∂y

∣∣∣∣
(yn,hn,tn)

)T

λ̇n+1
+

(
∂2f

∂y2

∣∣∣∣
(yn,hn,tn)

⊗ δyn

)T

λn+1 , M − 1 ≥ n ≥ 0

λ̇M
=

∂2Ĵ

(∂yM)2
· δyM . (5.3)

In (5.3) λn
satisfies the first order adjoint equation (3.4), and δyn

is solution of the discrete TLM model:

δyn
=
∂f

∂y
δyn−1 , 1 ≤ n ≤M . (5.4)

Note that the initial tangent linear model state is set to δy0
. Solving (5.3) yields [23]:

λ̇0
=

∂2Ĵ

(∂y0)2
· δy0 . (5.5)

We now investigate the second order adjoint model of (3.1a – 3.1c) given by two successive invocations of

AD. For efficiency [18], we take the forward-over-adjoint path, i.e., we differentiate (3.10a) – (3.10c) in the

direction

10

δv0
=





δy0

δh0

δt0





T

. (5.6)

Hence, the second order adjoint model generated by AD has the following structure:

λ̇n
=

(
∂2f

∂y2
⊗ δyn

)T

λn+1
+

(
∂f

∂y

)T

λ̇n+1

+ δhn

(
∂2f

∂y ∂h

)T

λn+1
+ δtn

(
∂2f

∂y ∂t

)T

λn+1
+

(
∂g

∂y

)T

µ̇n+1

+µn+1

(
∂2g

∂y2

)T

δyn
+ µn+1

(
∂2g

∂y ∂h

)T

δhn
+ µn+1

(
∂2g

∂y ∂t

)T

δtn (5.7a)

µ̇n
= (δyn

)
T

(
∂2f

∂h ∂y

)T

λn+1
+ δhn

(
∂2f

∂h2

)T

λn+1
+ δtn

(
∂2f

∂h ∂t

)T

λn+1

+µn+1 ∂2g

∂h ∂y
(δyn

)
T

+ δhn ∂
2g

∂h2
µn+1

+ δtn
∂2g

∂h ∂t
µn+1

+

(
∂f

∂h

)T

λ̇n+1
+
∂g

∂h
µ̇n+1

+ ν̇n+1
(5.7b)

ν̇n
= (δyn

)
T

(
∂2f

∂t ∂y

)T

λn+1
+ δhn

(
∂2f

∂t ∂h

)T

λn+1
+ δtn

(
∂2f

∂t2

)T

λn+1
+

+ (δyn
)
T ∂2g

∂t ∂y
µn+1

+ δhn ∂2g

∂t ∂h
µn+1

+ δtn
∂2g

∂t2
µn+1

+
∂f

∂t
λ̇n+1

+
∂g

∂t
µ̇n+1

+ ν̇n+1 , M − 1 ≥ n ≥ 0 . (5.7c)

The update (5.7) is not identical to (5.3): several spurious terms are added at each time step. Also, note

that δyn
gets updated by the AD-generated TLM model (3.7)

δyn
=
∂f

∂y
δyn−1

+
∂f

∂h
δhn−1

+
∂f

∂t
δtn−1 , 1 ≤ n ≤M , (5.8)

instead of (2.11). This mismatch is another source of errors in the second order discrete adjoint solution λ̇n
,

since the second order adjoint computations need to make use of an accurate tangent linear model trajectory.

To cancel out all the AD-induced perturbations in the discrete second order adjoint, one should:

(i) restore the TLM solution δyn
to the value given by (5.4). This can be done by setting

δhn← 0

δtn← 0 (5.9)

before the update (5.7). Alternatively, one can apply the post-processing strategy described in [7]

at each time step. Either one of these approaches will give an accurate TLM solution. Note that

(5.9) implies that the forward differentiation of (3.10a) – (3.10c) is now performed in the direction of

δv0
=

[(
δy0
)T

0 0

]T
.

(ii) zero out the non-physical first and second order adjoint derivatives of the time step:

µn+1← 0

µ̇n+1← 0 . (5.10)

11

After (5.9) and (5.10), the second order adjoint trajectory is restored to the value given by (5.3). For

completeness, we remark that an approach equivalent to (5.10) is to implement (3.13), and then post-process

[7] the second order adjoint solution.

It is important to note that any assignments to the TLM or first order adjoint variables, such as (5.9)

or (5.10), should be introduced after the second differentiation. Any assignments that happen before the

second order adjoint code generation may influence the behavior of the AD engine and result in unusable

code.

6. Numerical experiments

All numerical tests were performed on an Intel Pentium 4 Workstation running Fedora Core Linux, with

the Runge–Kutta routines coded in double precision Fortran 90.

We used the 5th order DOPRI5(4) Runge–Kutta method [6] with variable time - stepping in all numerical

experiments. DOPRI5(4) uses the stage values to compute two solution approximations of different accuracies

at every time step. The first of these two numerical solutions is used to advance the integrator state, and

the other (less accurate) solution serves to control the local error and the time step size. This approach

significantly lowers the cost of step rejections. The time step controller is based on the following formula

[15]:

hn+1
= hn ·min

{
5 , max

{
0.2 , 0.9 ‖en‖−1/5

}}
. (6.1)

Here ‖en‖ is an estimate for the weighted norm of the local error at step n. This estimate is computed based

on the relative (rtol) and absolute (atol) integration tolerances:

‖en‖ =

√√√√ 1

N

N∑

i=1

(
yn

err(i)

atol(i) + rtol(i) · |yn(i)|

)2

, (6.2)

with yerr approximating the local error of the Runge–Kutta method.

The reference solutions were obtained by integration of the analytical models, using MATLAB’s ode45,

with atol = 10
−13, rtol = 10

−12
.

6.1. First order adjoint sensitivity analysis

We first investigate the discrete adjoint of the Prothero - Robinson IVP [19]:

ẏ= γ (y − φ(t)) + φ̇(t) ,

t0 = 0 ≤ t ≤ tF = 2 ,

y(t0) = [0.5 0.5]
T
, (6.3)

with γ = −5, and

φ(t) = [sin t cos t]T . (6.4)

We choose:

J (y) = y1(t
F
) . (6.5)

Hence, the continuous adjoint of (6.3) reads:

λ̇= γλ , tF ≥ t ≥ t0 ,

λ(tF) = [1 0]
T
. (6.6)

12

0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

A
dj

oi
nt

 s
ol

ut
io

n

λ
1

λ
1
c

λ
1
ref

0 1 2
−0.1

0

0.1

0.2

0.3

0.4

Time

A
dj

oi
nt

 s
ol

ut
io

n

λ
2

λ
2
c

λ
2
ref

(a) (b)

16 25 42 70 120 200
10

−11

10
−7

10
−3

10
1

Number of steps [M]

A
dj

oi
nt

 R
M

S
 e

rr
or

λ
1

λ
1
c

M−5

(c)

Fig. 1. (a–b) Discrete adjoint trajectories (atol = rtol = 10−7), and (c) RMS errors for the system (6.3). The AD adjoints
λ1, λ2, and the corrected solutions λc

1
, λc

2
were computed with DOPRI5(4). The reference solution λref was obtained through

a backward time integration of the continuous adjoint (6.6), using MATLAB’s ode45 function. It is clear from (c) that the
AD discrete adjoint of the DOPRI method is inconsistent with the continuous system (6.6). After the correction, the adjoint
solution and the reference adjoint trajectory are visually indistinguishable. As seen in (c), post-processing restores the discrete
adjoint solution to full accuracy.

We differentiate our Runge–Kutta implementation using the reverse mode of TAMC. Figure 1 shows the

two discrete adjoint solution components and their root-mean-square (RMS) errors, both before (λ1, λ2)

and after (λc
1, λ

c
2) the adjoint correction (3.13) is applied. The RMS errors are computed using the formula:

ǫRMS =

√√√√ 1

M

M∑

n=0

(
|λref(tn)− λn|

max {|λref(tn)| , |λn| , tol}

)2

, (6.7)

with tol ≈ 10
−12

(to avoid divisions by zero). One can see in 1(a–b) that black-box invocation of AD

results in very large errors in both components of the discrete adjoint trajectory. This is consistent with

the behavior predicted by the mathematical derivations (4.9). All accuracy of the adjoint solution is lost.

After the correction is applied, the accuracy of the discrete adjoint solution matches that of the underlying

Runge–Kutta method, as Figure 1(c) illustrates.

13

Note that the two adjoint corrections (3.12) and (3.13) yield the same adjoint solutions (up to machine

roundoff). Figure 1 only shows the numerical results obtained with (3.12).

6.2. Second order adjoint sensitivity analysis

For second order sensitivity analysis, we introduce a nonlinear term in the right-hand side of (6.3):

ẏ1 = γ (y1 − sin t) + y3
2 cos t ,

ẏ2 = γ (y2 − cos t)− y3
1 sin t ,

t0 = 0 ≤ t ≤ tF = 2 ,

y(t0) = [0.5 0.5]
T . (6.8)

Let the cost function J be defined by (6.5), and

δy0
= [1 0]

T
(6.9)

in (5.1). Then, the first-order adjoint system for (6.8) has the form

λ̇1 =−γλ1 + 3y2
1λ2 sin t

λ̇2 =−3y2
2λ1 cos t− γλ2

λ(tF) = [1 0]
T
, (6.10)

whereas the second order adjoint model reads:

σ̇1 =−γσ1 + 3y2
1σ2 sin t+ 6y1δy1λ2 sin t

σ̇2 =−3y2
2σ1 cos t− γσ2 − 6y2δy2λ1 cos t

σ1(t
F
) = σ2(t

F
) = 0 . (6.11)

Here σ(t) denotes the second order adjoint variable, and δy is the solution of the tangent linear model:

δẏ1 = γδy1 + 3y2
2δy2 cos t

δẏ2 =−3y2
1δy1 sin t+ γδy2

δy(t0) = δy0 . (6.12)

We build the second order adjoint of our DOPRI5(4) implementation through forward over reverse differ-

entiation. The results are shown in Figure 2. As expected from (5.7), the second order adjoint of the DOPRI

method is inconsistent with its continuous counterpart (6.11). The reason for this is twofold: the errors in

the second order adjoint variables are generated both by the perturbations present in the first order adjoint

solution λ (see 4.9), and the spurious derivatives generated during the second (forward) differentiation [7].

Figure 2(a–b) contrasts the discrete solutions before – λ1,λ2 – and after – λc
1,λ

c
2 – the post-processing (5.9

– 5.10), for atol = rtol = 10
−7

. The corrected solution is visually indistinguishable from the reference λref
,

whereas the AD-computed adjoint is several orders of magnitude away from the true solution. Finally, Figure

2 shows the order of accuracy of the post-processed discrete adjoint, which matches that of the DOPRI pair

used in the forward model integration.

Figure 2 only shows the solutions obtained after zeroing out all spurious forward and adjoint time step

derivatives. Applying (4.11) gives virtually identical results.

7. Conclusions

In this paper, we investigate the behavior of adaptive numerical integration algorithms under the reverse

mode of automatic differentiation. To maximize efficiency and reduce computation time, such algorithms

14

0 1 2
10

−9

10
−6

10
−3

10
0

Time

S
O

A
 s

ol
ut

io
n

|σ
1
|

|σ
1
c|

|σ
1
ref|

0 1 2
10

−9

10
−6

10
−3

10
0

Time

S
O

A
 s

ol
ut

io
n

|σ
2
|

|σ
2
c|

|σ
2
ref|

(a) (b)

17 22 30 39 52 68
10

−7

10
−5

10
−3

10
−1

10
1

Number of steps [M]

S
O

A
 R

M
S

 e
rr

or

σ
1

σ
1
c

M−5

17 22 30 39 52 68
10

−7

10
−5

10
−3

10
−1

10
1

Number of steps [M]

S
O

A
 R

M
S

 e
rr

or

σ
2

σ
2
c

M−5

(c) (d)

Fig. 2. Discrete second order adjoints (a–b) and RMS errors (c–d) for the IVP (6.8). The AD discrete second order adjoint
σ1,2 differs from the reference trajectory σref by several orders of magnitude. However, the corrected solution σc

1,2
is visually

indistinguishable from σref (atol = rtol = 10−7). Also, the decrease in the RMS errors of the corrected trajectory (c–d) confirms
that canceling the spurious adjoint derivatives yields a 5th order accurate second order adjoint solution.

rely on time step controllers and local error estimators to keep the solution accuracy within user-specified

bounds. Since the time steps taken by the forward method now depend on the model solution, the AD

mechanism will pick up these dependencies and generate spurious adjoint time and time step derivatives.

These non-physical gradients influence the discrete adjoint trajectory at every time step. The perturbations

add up and generate a O(1) error in the final solution. Thus, running the discrete adjoint code as-is will give

incorrect sensitivities. Analyzing the adjoint of a general one-step (explicit) adaptive integration scheme,

reveals that simple code modifications result in a discrete adjoint solution that has the same order of accuracy

as the underlying numerical method. We also look at second-order adjoints of adaptive integrators, obtained

through forward-over-adjoint differentiation. The analysis shows that it is possible to obtain accurate second

order derivative information through straightforward post-processing of the second order adjoint code. We

give two examples that use Dormand and Prince’s DOPRI5(4) Runge–Kutta pair. The numerical results

fully support the mathematical derivations. The AD-generated Runge–Kutta adjoints are inconsistent with

the continuous adjoint ODEs. However, once the adjoint corrections are applied, the first and second order

discrete adjoint solutions have the same order of accuracy as the underlying Runge–Kutta algorithm.

15

APPENDIX: Derivative notation

We employ the following convention when representing function derivatives. Given a vector function of

several variables

f : Rm→Rp

f(v1, v2, . . . , vm) =





f1(v1, v2, . . . , vm)

f2(v1, v2, . . . , vm)

.

.

.

fp(v1, v2, . . . , vm)




, (7.1)

the Jacobian of f reads:

∂f

∂v
=





∂f1
∂v1

. . .
∂f1
∂vm

.

.

. . . .
.
.
.

∂fp

∂v1
. . .

∂fp

∂vm




. (7.2)

The Hessian of f is a symmetric 3-tensor containing the second order derivatives of f with respect to all

arguments:

Hi,j,k(v) =
∂2fi

∂vj ∂vk
, 1 ≤ i ≤ p , 1 ≤ j, k ≤ m. (7.3)

Two special cases occur frequently in practice. The derivative of a univariate function f (m = 1) is a column

vector:

∂f

∂v
=





∂f1
∂v1
.
.
.

∂fp

∂v1




. (7.4)

Similarly, if p = 1, then we define the gradient of the scalar function f as the row vector

∂f

∂v
=

(
∂f1
∂v1

· · ·
∂f1
∂vm

)
. (7.5)

References

[1] T. Beck, Automatic differentiation of iterative processes, in: ICCAM’92: Proceedings of the fifth international conference
on Computational and applied mathematics, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1994.

[2] C. H. Bischof, A. Carle, P. M. Khademi, A. Mauer, The ADIFOR 2.0 system for the automatic differentiation of Fortran
77 programs, Tech. Rep. MCS–P481–1194, Argonne, IL, USA (1994).

[3] C. H. Bischof, L. Roh, A. J. Mauer-Oats, ADIC: an extensible automatic differentiation tool for ANSI-C, Software: Practice
& Experience 27 (12) (1997) 1427–1456.

[4] Y. Cao, S. Li, L. Petzold, R. Serban, Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE
system and its numerical solution, SIAM Journal on Scientific Computing 24 (3) (2002) 1076–1089.

[5] T. F. Coleman, A. Verma, ADMIT-1: automatic differentiation and MATLAB interface toolbox, ACM Transactions on
Mathematical Software 26 (1) (2000) 150–175.

[6] J. R. Dormand, P. J. Prince, A family of embedded Runge-Kutta formulae, Journal of Computational and Applied
Mathematics 6 (1) (1980) 19–26.

16

[7] P. Eberhard, C. Bischof, Automatic differentiation of numerical integration algorithms, Mathematics of Computation
68 (226) (1999) 717–731.

[8] R. Giering, Tangent linear and Adjoint Model Compiler, Users manual 1.4 (1999).
[9] R. Giering, T. Kaminski, Recipes for adjoint code construction, ACM Transactions on Mathematical Software 24 (4) (1998)

437–474.
[10] R. Giering, T. Kaminski, Applying TAF to generate efficient derivative code of Fortran 77-95 programs, Proceedings in

Applied Mathematics and Mechanics 2 (1) (2003) 54–57.
[11] A. Griewank, Evaluating derivatives: principles and techniques of algorithmic differentiation, SIAM, Philadelphia, PA,

USA, 2000.
[12] A. Griewank, C. H. Bischof, G. F. Corliss, A. Carle, K. Williamson, Derivative convergence for iterative equation solvers,

Optimization Methods and Software 2 (1993) 321–355.
[13] A. Griewank, D. Juedes, J. Utke, Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written

in C/C++, ACM Transactions on Mathematical Software 22 (2) (1996) 131–167.
[14] W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system, Numerische Mathematik

87 (2) (2000) 247–282.
[15] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations: Nonstiff Problems, vol. I of Computational

Mathematics, Springer-Verlag, 1993.
[16] L. Hascöet, V. Pascual, TAPENADE 2.1 User’s guide, Tech. Rep. 0300, INRIA, Sophia Antipolis, France (2004).
[17] F. X. LeDimet, I. M. Navon, D. Daescu, Second order information in data assimilation, Monthly Weather Review 130 (3)

(2002) 629–648.
[18] D. B. Özyurt, P. I. Barton, Cheap second order directional derivatives of stiff ODE embedded functionals, SIAM Journal

on Scientific Computing 26 (5) (2005) 1725–1743.
[19] A. Prothero, A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential

equations, Mathematics of Computation 28 (125) (1974) 145–162.
[20] A. Sandu, On the properties of runge-kutta discrete adjoints, in: International Conference on Computational Science (4),

2006.
[21] A. Sandu, On consistency properties of discrete adjoint linear multistep methods, Tech. Rep. TR-07-40, Virginia Polytechnic

Institute and State University, Blacksburg, VA, USA (2007).
[22] A. Sandu, D. Daescu, G. R. Carmichael, Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part

I – theory and software tools, Atmospheric Environment 37 (36) (2003) 5083–5096.
[23] A. Sandu, L. Zhang, Discrete second order adjoints in atmospheric chemical transport modeling, Journal of Computational

Physics (In print).
[24] R. Serban, A. C. Hindmarsh, CVODES: the sensitivity-enabled ODE solver in SUNDIALS, Tech. Rep. UCRL-JP-200037,

Lawrence Livermore National Laboratory, Livermore, CA, USA (2003).
[25] A. Walther, Automatic differentiation of explicit Runge-Kutta methods for optimal control, Computational Optimization

and Applications 36 (1) (2007) 83–108.
[26] Z. Wang, I. M. Navon, F. X. LeDimet, X. Zou, The second order adjoint analysis: Theory and applications, Meteorology

and Atmospheric Physics 50 (1-3) (1992) 3–20.

17

	frontPage
	adaptive_adjoints

