Revisiting the Speed-versus-Sensitivity Tradeoff
in Pairwise Sequence Search

Ashwin M. Aji and Wu-chun Feng
The Synergy Laboratory
Department of Computer Science
Virginia Tech
{aaji,feng} @cs.vt.edu

Abstract

The Smith-Waterman algorithm is a dynamic programming method for determining op-
timal local alignments between nucleotide or protein sequences. However, it suffers from
quadratic time and space complexity. As a result, many algorithmic and architectural en-
hancements have been proposed to solve this problem, but at the cost of reduced sensitivity in
the algorithms or significant expense in hardware, respectively. Hence, there exists a need to
evaluate the tradeoffs between the different solutions. This motivation, coupled with the lack
of an evaluation metric to quantify these tradeoffs leads us to formally define and quantify
the sensitivity of homology search methods so that tradeoffs between sequence-search solu-
tions can be evaluated in a quantitative manner. As an example, though the BLAST algorithm
executes significantly faster than Smith-Waterman, we find that BLAST misses 80% of the
significant sequence alignments.

This paper then presents a highly efficient parallelization of the Smith-Waterman algorithm
on the Cell Broadband Engine, a novel hybrid multicore architecture that drives the PlaySta-
tion 3 (PS3) game consoles, and emulates BLAST by repeatedly executing the parallelized
Smith-Waterman algorithm to search for a query in a given sequence database. Through an
innovative mapping of the optimal Smith-Waterman algorithm onto a cluster of PlayStation 3
nodes, our implementation delivers a /0-fold speed-up over a high-end multicore architecture
and an 88-fold speed-up over a non-accelerated PS3.

Finally, we compare the performance of our implementation of the Smith-Waterman al-
gorithm to that of BLAST and the canonical Smith-Waterman implementation, based on a
combination of three factors — execution time (speed), sensitivity, and the actual cost of de-
ploying each solution. In the end, our parallelized Smith-Waterman algorithm approaches the
speed of BLAST while maintaining ideal sensitivity and achieving low cost through the use of
PlayStation 3 game consoles.

1 Introduction

The Smith-Waterman algorithm determines optimal local alignments between nucleotide or pro-
tein sequences and is therefore used in a wide range of areas from estimating evolutionary histories
to predicting behaviors of newly found genes to identifying possible drugs to cure prevalent dis-
eases. However, the exponential growth in the nucleotide and protein databases has made the
Smith-Waterman algorithm impractical to search on these databases because of its quadratic time
and space complexity.

As aresult, this led to innovations on the non-algorithmic front — specifically, special-purpose,
but quite expensive, hardware solutions on FPGAs [11, 10, 5] and linear processor arrays [4]. Si-
multaneously, there were also developments on the algorithmic front that gave rise to heuristics
such as FASTA [7] and the BLAST [1] family of algorithms that sacrificed sensitivity for speed.
With the emergence of a wide range of homology search methods, the need to evaluate the trade-
offs between these solutions has become quite important. The speed of algorithms can be easily
compared by measuring their relative execution times. However, there exists no formal method in
which the sensitivity of a sequence search algorithm is quantified.

Previous works that have attempted to measure sensitivity have done so in an informal and
open-ended fashion [8, 6]. In this paper, we present a formal definition and method to measure the
sensitivity of sequence-search algorithms by analyzing the similarities between homology search
and web search methods and corresponding definitions. As an example, we use this quantifying
technique to measure the sensitivity of the BLAST algorithm, relative to Smith-Waterman, and
show it to be only 0.2 times as sensitive as Smith-Waterman, which means that the BLAST heuris-
tic misses 80% of the significant alignments that are produced by the optimal Smith-Waterman
algorithm. By quantifying both the speed and sensitivity of pairwise sequence-search algorithms
like Smith-Waterman and BLAST, we can concretely articulate our goal of accelerating Smith-
Waterman to approach the speed of BLAST while maintaining ideal sensitivity (as well as low
cost via the Playstation 3)

In addition to providing the means to compare sequence-search methods, we attempt to achieve
both high speed and ideal sensitivity by parallelizing the Smith-Waterman algorithm on the emerg-
ing (and arguably, commodity) Chip multi-processors like that Cell Broadband Engine (BE). The
Cell processor is a combined effort from Sony, Toshiba, and IBM, and it contains heterogeneous
cores and specialized accelerators on the same chip and also drives the Sony PlayStation 3 game
console.! The Cell BE possesses an aggregate single-precision floating-point performance of 204.8
Gflops, thus providing the necessary computational horsepower for scientific computing such as
the pairwise sequence searching found in Smith-Waterman.

We present an innovative scheme to implement Smith-Waterman on the Cell BE, that com-
pletely utilizes all the accelerator cores on the chip to the fullest capacity. We then emulate the
BLAST algorithm, by executing the parallel pairwise alignment algorithm multiple times to search
a query sequence through an entire sequence database. Further, we parallelize this scheme by uti-
lizing a cluster of PS3 nodes, so that each node searches a fragment of the database simultaneously.

In summary, to address the ever-increasing need to more quickly search biological databases,
computational scientists have proposed a plethora of faster homology sequence searches but at the
expense of using heuristics that reduce the sensitivity of the searches or using expensive hardware
to produce ideal sensitivity. This motivation has led us to define and quantify the sensitivity of ho-
mology search methods, so that trade-offs between solutions could be evaluated in a quantitative
manner. Further, we attempt to achieve both high speed and ideal sensitivity on the emerging (and
arguably, commodity) Cell BEs that drive the PlayStation game consoles. Through an innovative
mapping of the optimal Smith-Waterman algorithm onto the cluster of PlayStation 3 nodes, our
implementation delivers a 10-fold speed-up over a high-end multi-core architecture and an 88-fold
speed-up over a non-accelerated PS3. Finally, we compare the performance of our implementation
of the Smith-Waterman algorithm with that of BLAST and the naive Smith-Waterman implemen-
tation based on three factors — execution time (speed), sensitivity and the actual cost of deploying
each solution. Our solution is found to approach the speed of BLAST, at ideal sensitivity and low
costs, which is ideal to resolve the homology search problem.

The rest of this paper is organized as follows: Section 2 outlines the Cell Broadband Engine
(BE) architecture. Section 3 presents the sequential Smith-Waterman algorithm and our design

I'This computer is a game console that currently costs a mere $399.

to parallelize it for the Cell BE and architectures with asymmetric cores. Section 4 formally
defines and quantifies the ‘sensitivity’” of any sequence-search algorithm. Section 5 presents our
experimental set-up and methodology and discusses the results. Section 6 concludes the paper.

2 Experimental Platform

In this study, we used a cluster of 22 PlayStation 3 (PS3) nodes, out of which, 14 nodes were
available to us at all times. The PS3 nodes are connected to a 1000BASE-T Gigabit Etherent
switch, and they communicate via MPICH2-1.0.7 library calls. We used the IBM Cell SDK 2.1 to
program the individual PS3 nodes.

The Cell Broadband Engine (BE) is the main processing workhorse within the PS3. The Cell
is a hybrid muti-core processor combining a two-way SMT PowerPC core (also known as the
Power Processing Element or PPE), and eight SIMD-based processors (also known as the Syner-
gistic Processing Elements or SPEs) [2]. However, the Linux kernel on the PS3 runs on top of a
proprietary hypervisor that disallows the use of one of the SPE cores, while another SPE core is
hardware-disabled. Thus, we can effectively use only 6 SPE cores for computational purposes. All
the cores run at 3.2 GHz. The SPE cores are tightly coupled with the PPE via a high-bandwidth
Element Interconnect Bus (EIB). The EIB is a 4-ring structure, capable of transmitting 96 bytes
per cycle, for a theoretical memory bandwidth of 204.8 gigabytes/second (GB/s).

The PPE is a 64-bit SMT processor running the PowerPC instruction set architecture (ISA)
with vector/SIMD multimedia extensions. The PPE consists of two levels of on-chip cache, L1-1
and L1-D with a capacity of 32 KB each and L2 with a capacity of 512 KB.

Each SPE has two main components, the Synergistic Processor Unit (SPU) and the Memory
Flow Controller (MFC). The SPU has 128 registers, each of which is 128-bits wide, and 256 KB
of software-managed Local Storage (LS). Each SPU can only access its own local storage with
direct loads and stores. The MFC performs memory transactions between the local storage and
main memory by issuing DMA requests. The ISA of the SPU is different from that of the PPE,
using vector execution units that implement Cell-specific SIMD intrinsics on the registers local to
the SPU. Varying degrees of computation-communication overlap are possible due to the lack of
cohesion between the SPU and MFC.

3 Optimal Local Sequence Alignment on the Cell

This section describes the sequential Smith-Waterman algorithm, followed by the design and im-
plementation details of parallelizing Smith-Waterman for the Cell.

3.1 The Sequential Algorithm

The Smith-Waterman algorithm [9] is an optimal local sequence alignment methodology that fol-
lows the dynamic programming paradigm, where the intermediate alignment scores are stored in a
matrix before the maximum alignment score is calculated. Next, the matrix entries are inspected,
and the highest-scoring local alignment is generated. The Smith-Waterman algorithm can thus be
broadly classified into two phases: (1) matrix filling and (2) backtracing.

To fill out the dynamic programming matrix (D P), the Smith-Waterman algorithm follows a
scoring system that consists of a scoring matrix and a gap-penalty scheme. The scoring matrix, M
is a 2-dimensional matrix containing the scores for aligning individual amino acid or nucleotide
residues. The gap-penalty scheme provides the option of gaps being introduced within the align-
ments, hoping that a better alignment score can be generated; but they incur some penalty or

3

negative score. In our implementation, we consider an affine gap penalty scheme that consists of
two types of penalties. The gap-open penalty, o is incurred for starting (or opening) a gap in the
alignment, and the gap-extension penalty, e is imposed for extending a previously existing gap by
one unit. The gap-extension penalty is usually smaller than the gap-open penalty.

Using this scoring scheme, the dynamic-programming matrix is filled out following a wave-
front pattern, i.e. beginning from the northwest corner element and going towards the southeast
corner, the current anti-diagonal is filled after the previous anti-diagonals are computed, as shown
in Figure 1(a). Moreover, each element can be computed only after the calculation of its north,
west and northwest neighbors are computed, as shown in Figure 1(b).

The backtracing phase of the algorithm generates the highest scoring local alignment. The
backtrace begins at the matrix cell that holds the optimal alignment score and proceeds in a direc-
tion opposite to that of the matrix filling, until a cell with score zero is encountered. The path thus
traced yields the optimal local alignment.

5!- NW l,

=2

\

W —>

(a) (b)

FIGURE 1: The Smith-Waterman wavefront algorithm and its dependencies

3.2 The Parallel Algorithm

In this section, we present the design and implementation of our parallelized Smith-Waterman
algorithm to align a pair of sequences on the PlayStation 3.

3.2.1 Design

The wavefront computation pattern of the Smith-Waterman algorithm forces consecutive anti-
diagonals to be computationally dependent, as shown in Figure 1. However, the elements on the
same anti-diagonal are computationally independent and can be processed in parallel on separate
SPE cores of the Cell BE. However, this scheme creates high communication overhead between the
cores, which can be avoided by providing more computation to the individual cores. We achieve
this by grouping matrix elements into blocks of elements and call each block as a tile. This
strategy, however, does not change the wavefront pattern of the algorithm, i.e., the algorithm still
advances through the matrix by computing anti-diagonals, but each anti-diagonal will be composed
of multiple tiles, as shown in Figure 2. We call this pattern as the tiled-wavefront.

The most critical aspects of parallelizing the Smith-Waterman algorithm are (1) scheduling the
execution of the tiles on the SPEs, (2) communication among the SPEs that process the tiles, and
(3) the implementation optimizations required to execute a single tile on the SPE. These concepts
are explained in more detail below.

Tiled-wavefront scheduling: In mapping the tiled-wavefront pattern to the Cell, we process
independent tiles on different SPEs because each core can perform independent asynchronous

computations. For the sake of simplicity, we assume that the matrix is divided into square tiles.
The execution starts by processing tile ¢;, as noted in Figure 2. After the processing of tile ;
completes, the two tiles lying on the anti-diagonal ¢, are processed in parallel on two SPEs. In-
creasing numbers of SPEs are utilized in the subsequent stages of the tiled wavefront. From the
anti-diagonal tg onwards, the number of tiles available for parallel processing is equal to or ex-
ceeds the number of active SPEs on a single Cell chip in the PlayStation 3 (i.e., 6), and all SPEs
can be actively processing tiles.

FIGURE 2: Tiled wavefront

Our scheduling scheme allows static assignment of tiles to the SPEs, as outlined in the Figure 2.
The SPE that is labeled .S; computes the topmost row of tiles, Sy computes the row of tiles below
it, and so on. The SPEs choose the row of tiles in a cyclic fashion and process them, eventually
filling the entire matrix. This static scheduling policy achieves perfect load balancing among the
SPEs and also enables complete utilization of the Cell chip.

Communication-computation pattern: Figure 3 shows A detailed description of the com-
munication mechanism used to obtain the data necessary for tile computation by each SPE. First,
our algorithm fetches the elements on the north and west boundaries of the tile in order to com-
pute the non-boundary elements within the tile. The northwest boundary element is fetched while
collecting either the boundary elements from the north or west. Next, each SPE completes the
processing of the non-boundary elements. Finally, the SPE moves the processed tile to the main
memory for post-processing. The SPE simultaneously sends a notification to the SPE, which will
process the south tile, that the boundary elements are ready for transfer. The above process repeats
until all the non-boundary tiles of the matrix are processed. For the remaining tiles, the boundary
conditions can be easily checked, and the redundant steps can be avoided.

Implementation optimizations: Each tile is physically stored in memory as a one-dimensional
(1D) array, where consecutive anti-diagonals are stored as a continuous linear array. We call this
representation as the diagonal-major format. This storage mechanism is different from the tra-
ditional row-major or column-major storage formats that are typically used to represent multi-
dimensional arrays in physical memory. The diagonal-major format makes it easier to perform
vector operations on each anti-diagonal to compute the elements of the tile. The SPE is a vector
processor, where batches of four integers can be processed in a single clock cycle. If we do not
arrange the tile as described, the matrix elements cannot be grouped efficiently into batches of

North Tile

DMA tile

X X X ‘ X X X to main
| | 1 [owa] | memory
X 1 X X X X X =
X | X
1 \
X Buffer, X 3
X frorvy X 2 @9&\@
X | X <M \
X X
West Tile l 1= ‘Ready’ message | 1 Fast Tile
South Tile

FIGURE 3: Communication-computation pattern.

four integers before processing, which may cause many clock cycles to be wasted and cause a
performance hit over the sequential implementations.

4 Performance Metrics

In this section, we define and discuss the metrics that we use to estimate the performance of
sequence-search algorithms in general. Later, we use these metrics to compare the performance
of our parallel implementation of Smith-Waterman against that of BLAST. We also compare the
performance of the parallel Smith-Waterman on different configurations of the PS3 against Smith-
Waterman on a general-purpose CPU.

Sequence-search algorithms can be measured on many dimensions such as execution time
(or speed), sensitivity, complexity of implementation, and cost of deployment. In this paper, we
specifically consider execution time, sensitivity, and cost of deployment as the metrics of interest.
While measuring the execution time of an algorithm and estimating the cost of deployment of
the complete system are straightforward, there is no existing definition that clearly defines and
quantifies the ‘sensitivity’ of a sequence-search algorithm, which we discuss below.

4.1 Sensitivity

Previous work defined and measured sensitivity in an unconvincing and informal fashion [8, 6].
To address this, we propose a formal definition for sensitivity in the following way. Homology
search methods are similar to web search algorithms. In the web search domain, an input query
or keyword is searched against a large known document collection. The output will be a set of
relevant web pages that are sorted by closeness or rank. Similarly, in the realm of homology
search, an input query sequence is searched against a large known sequence database. The output
will be a set of relevant sequences similar to the query, which are sorted by the alignment score
or corresponding statistical quantifiers such as E-Value and P-Value of the alignment. Given the
analogy between the homology search and web search methods, we first explore some of the
many definitions and metrics that have been proposed to measure the performance of information
retrieval systems. We then analyze their relevance to sequence search, and later, modify and adapt
those definitions in order to quantify sensitivity. The information retrieval metrics that are of

interest are as follows:

e Precision: Among all the retrieved documents, the fraction of documents that is relevant to
the user’s information need is termed as precision. It gives an indication of the percentage
of false-positives that are included in the final result set of the search.

e Recall: Among all the documents relevant to the query, the fraction of the documents that
is successfully retrieved is termed as recall and can be represented by Equation (1). It gives
an indication of the percentage of false-negatives that are not included in the final result set
of the search. In other words, recall denotes the power of the search algorithm to retrieve all
the relevant documents.

lall relevant documents () retrieved documents|

6]

recall lall relevant documents|

Relevance to homology search: With respect to sequence-search algorithms, the universal
relevant document group or the absolute result set corresponds to all the sequence alignments that
are generated by the optimal Smith-Waterman algorithm, for a given threshold score. Different
threshold scores generate different absolute result sets of sequence alignments. False positives are
created by assigning a score that is greater than the optimum to a typically low-scoring (irrelevant)
alignment, which may cause the irrelevant alignment to cross the threshold score and appear in the
final result set. However, no sequence-search algorithm assigns a score that is higher than the opti-
mum to any alignment. Therefore, false positives cannot be generated by this class of algorithms,
thus eliminating ‘precision’ as a relevant metric to compare sequence-search algorithms.

False negatives, on the other hand, can be generated by those heuristic algorithms that are
willing not to output some high-scoring (relevant) sequences in order to obtain large speed im-
provements. This is typically the case with heuristics such as BLAST, FASTA, and PatternHunter,
for example. Therefore, we consider ‘recall’ as a relevant metric to compare homology search
methods. With this background, we can now define and quantify the term sensitivity.

Definition Among all the sequence alignments that are generated by the Smith-Waterman algo-
rithm for a given threshold score, the fraction of the alignments that is successfully generated for
the same threshold score by the algorithm under test is denoted as the sensitivity of that algorithm
for that threshold score.

Let represent the set of scores of all the statistically significant alignments® that are gener-
ated by the Smith-Waterman algorithm. If we consider each element of the set y as a potential
threshold score, then the sensitivity of the test algorithm at the different threshold scores in x can
be represented by the Equation (2).

sensitivity; = w 2)
|5l
where,
i € ¥, the set of threshold scores
sensitivity; = sensitivity at the threshold score 7
S; = result set generated by Smith-Waterman with alignment scores > ¢
T; = result set generated by the test algorithm with alignment scores > ¢

Since no sequence-search algorithm generates false positives, the result set generated by the
test algorithm is contained in the absolute result set generated by Smith-Waterman, i.e. 7; C 5.

’The statistical significance of an alignment can be inferred by examining the corresponding E-values and P-values.

7

Therefore, Equation (2) becomes
73|
|5l
Sensitivity is therefore a function of the threshold score. To assign a unified sensitivity value
to a sequence-search algorithm, we take the mean of sensitivity values at all the threshold scores
in x, as shown in Equation (4). Empirical results from Section 5.2 show that the sensitivity values
for different threshold scores have very low variance, and therefore, their mean value gives a good
estimate of the sensitivity of the algorithm.

3)

sensitivity; =

> sensitivity;

Sensitivity = 1ex N 4)

Therefore, the target for any sequence-search algorithm is to provide a result set that is iden-
tical to that of Smith-Waterman, thereby achieving a perfect sensitivity of 1. If the sensitivity
value is less than 1, it means that the sequence-search algorithm has missed generating significant
alignments.

5 Experiments

This section presents our experimental set-up and methodology, followed by our results.

5.1 Set-Up and Methodology

Our experiments were run on a cluster of 22 PlayStation 3 nodes, 14 of which were always avail-
able to us at all times. To test the performance of our implementation of Smith-Waterman to align
a pair of sequences, we executed our code on a single, dedicated node.

To evaluate the speedup obtained by our parallelized version of Smith-Waterman on the Cell,
we aligned sequences of realistic sizes as are currently present in the NCBI Genbank nucleotide
(NT) database. There are approximately 3.5 million sequences in the NT database. Of those,
95.66% are 5 KB in size or less [3]. For the purpose of conducting the experiment, we randomly
generated sequence pairs with sizes varying from 512 bytes to 3.6 KB, which spanned across most
of the realistic spectrum of sequence sizes. Moreover, the running time of the Smith-Waterman
algorithm is dependent only on the size of the sequence and not on its contents, and this justifies
our choice of randomly generated input sequences.

To emulate the execution of BLAST, we executed the sequential Smith-Waterman algorithm on
a PC, for each of the sequence pairs formed by a sample DNA query sequence and the sequences
in the Drosophila nucleotide database (provided by NCBI). We executed our parallel implemen-
tation of Smith-Waterman on the PS3 cluster. We first partitioned the Drosophila database into as
many fragments as the available nodes, and then distributed the fragments within the cluster such
that each PS3 console was responsible for searching through equal-sized fractions of the database.
Thus, we explore two levels of parallelism: coarse-grained parallelism where different portions
of the database are searched independently by different PlayStations and fine-grained parallelism
where 6 SPE cores of a single PS3 are utilized to speedup the process of aligning a single se-
quence pair. We repeated the above experiment for input queries of 4 different sizes, ranging from
512 bytes to 3.6 KB.

The BLAST program that was used was blastall where the same query sequences were searched
against the Drosophila database. The program with the parameter list used is as follows:

blastall —p blastn —d <database _file> —i <query_file> —o0 <output file> -F F -S 1 —e 100

The parameter list denotes that the blastn program is being executed with filtering the query
sequence being turned off, and only the top query strands are searched against the database. The
threshold expectation value (E-value) is set at 100.

5.2 Results

Below we present our results in two parts. In the first part, we show how our parallel implementa-
tion of Smith-Waterman on the Cell achieves linear speedup for up to 14 PlayStation 3 nodes. In
the second part, we compare the performance of Smith-Waterman on the Cell cluster to traditional
implementations of sequence search, i.e. BLAST and Smith-Waterman on a PC, respectively.

5.2.1 Speedup

We first tested our implementation of parallel Smith-Waterman on a single PS3 node by measuring
the execution time for different combinations of the input sequence sizes, number of SPEs, and
different tile sizes. We achieved optimum performance when we used all the available cores of the
PS3 Cell to perform a single pairwise sequence alignment for all sequence sizes up to 3.6 KB. We
observed that our version of Smith-Waterman was 7.7 times faster than the sequential version that
was executed on the PPE core of the PS3 and 1.75 times faster than the execution time measured
on a 2.8-GHz dual-core Intel processor with 2-GB memory. On inspecting these speedup values,
we note that the PPE has very limited computational capabilities, and thus, using the PPE core as
a basis for speedup calculation artifically inflates our results without much benefit. These speedup
values were consistent across the different input sequence sizes and chosen tile sizes. From the
results, we conclude that the tiled-wavefront scheme works well with the Cell architecture and
if more cores were available, then we might have seen a larger speedup for aligning a pair of
sequences. Also, we could align larger sequences on the PlayStations if more memory is made
available in them.

— — = Linear Speedup

Speedup

Query 1
Query 2

Query 3
Query 4

— — T
12 3 45 6 7 8 9 10111213 14

Number of PS3 nodes

FIGURE 4: Speedup chart for the PS3 cluster.

To emulate BLAST, we developed a scheme as discussed in Section 5.1 where we executed
our parallel Smith-Waterman implementation on the PS3 cluster comprising of up to 14 nodes. We
conducted the above experiment for four different query sizes ranging from 512 bytes to 3.6 KB
(named Query 1 through Query 4 respectively). Figure 4 (b) shows that we achieve a 10.5 times
speedup for all the query sizes and the scalability of our implementation is close to linear, i.e. we

9

get better performance as we employ more PS3 nodes and our design is highly scalable for larger
clusters. The above speedup values are measured by using the 2.8-GHz Intel processor as a basis.
We measured an 88-fold speedup of our parallel algorithm over the sequential implementation
when the PPE was the basis of calculation, which is an inflated value as discussed.

5.2.2 Smith-Waterman vs. BLAST

In this section, we compare our parallel Smith-Waterman implementation on the PS3 cluster to
BLAST on a PC and Smith-Waterman on a PC. The metrics of comparison are execution time,
cost of deployment and sensitivity of the algorithm as defined in Section 4.

Execution Times: In this section, the parallel execution times of Smith-Waterman from Sec-
tion 5.2.1 are used in comparison to the other two implementations. The sequential version of
Smith-Waterman and the blastall program (from the NCBI BLAST suite) were executed with the
same input query and database sequences. Figure 5 shows a 3-dimensional view of the execution
times that were recorded for searching the four input query sequences against the given database
using BLAST and the two flavors of Smith-Waterman.

Execution Time (in seconds)

B BLAST on PC Smith-Waterman on PS3 M Smith-Waterman on PC

FIGURE 5: Execution times of BLAST and flavors of Smith-Waterman for different query sizes.

We first note that BLAST on a PC is three orders of magnitude faster than Smith-Waterman on
a PC. However, by parallelizing Smith-Waterman on the PS3 cluster, we have moved an order of
magnitude closer to the execution times of BLAST.

Cost of deployment: A high-end PC is necessary to efficiently execute computationally inten-
sive applications such as BLAST or Smith-Waterman. On today’s date, the market rates for such
machines range from $2000 — $2500. On the other hand, a PlayStation game console is being sold
at a mere $399. Using many PlayStations, we can set-up highly powerful clusters for about the
same price as that of a single PC. Figure 6 depicts the relationship between the cost of deploy-
ment and the running times of the algorithms under consideration. A cluster of 7 PS3 nodes has
about the same cost of deployment as a PC, and yet we achieve about a 6.3-fold speedup over the
naive Smith-Waterman implementation. By bridging the gap between the execution times between
Smith-Waterman and BLAST, together with effectively tapping the potential of inexpensive and
fast hardware, we have provided a solution that tends towards the ideal — high speeds at affordable
costs, together with ideal sensitivity, about which we discuss next.

Sensitivity: We measured the sensitivity of BLAST relative to the ideal Smith-Waterman al-
gorithm by using the equations from Section 4. First, we used the output data from previous exper-
iments to list the scores and E-values of each sequence alignment that was generated by BLAST
and Smith-Waterman. In this experiment, we considered the scores of the alignments with E-value

10

1800 4 Smith-Waterman

Z 1600 - on PC
§ 1400 -
4
@ 1200
£
E 1000 -|
£ 800
£
§ 600 - ™~ ~—
K]
S 400 | ~——
3 —
£ 200 - —
BLAST on PC
0 T L 2

T T)
0 500 1000 1500 2000 2500 3000 3500

Cost of Deployment (in U.S. dollars)

== Smith-Waterman on PS3 cluster

FIGURE 6: Execution time versus Cost of Deployment.

< 100 as significant threshold scores. By using Equation (3), we then calculated the sensitivity of
BLAST for the different significant threshold scores and for the different query inputs, as shown
in Figure 7 (a). From these sensitivity values, we found that the mean sensitivity value was 0.201
with a very low variance of 0.01 on an average, across all input queries. The consistent empirical
results led us into formulating Equation (4) as a realistic estimate of the sensitivity for a given
sequence search algorithm.

We used this sensitivity value of BLAST for further analysis. Figure 7 (b) explains the relation-
ship between the sensitivity and execution time of a sequence search algorithm. It can be seen that
although BLAST is faster than the Smith-Waterman implementations, its sensitivity value of 0.201
indicates that BLAST misses about 80% of the significant alignments on average. On the other
hand, the parallel Smith-Waterman implementation on the PS3 cluster is an order-of-magnitude
faster than the conventional sequential version, and its performance approaches that of BLAST
but with perfect (ideal) sensitivity. The lower right part of the Figure 7 (b) is the ideal point for
sequence search, i.e. high sensitivity and low execution time and should be the target for all future
sequence search solutions.

1 — — 300 - Smith-Waterman
onPC
- 250
g 08) (<)
PR H
E o6 —— = |deal Sensitivity g 200 4
- - PPN)
: Mean Sensitivity >
2z £ 150
2 04 - Query 1 =
= <
3
H) Query 2 ‘% 100
@ 02 Query 3 g Smith-Waterman
Y & 5o on PS3
0 Query 4 BLAST on PC O
12 13 14 15 16 17 18 0 Q
0 0.2 0.4 0.6 0.8 1
Threshold Scores
Sensitivity
(a) (b)

FIGURE 7: (a) Sensitivity versus Threshold scores and (b) Sensitivity versus Execution Time.

11

6 Conclusions

This paper aims at solving the hardest computational problem that has plagued the Bio-Informatics
community for many years — to execute the optimal sequence search algorithm quickly on inexpen-
sive hardware. This motivation led us to define the term ‘sensitivity’ of homology search methods
in a comprehensive manner. We used this definition to quantify the sensitivity of BLAST, and
found that it misses 80% of the significant sequence alignments. It is now possible to evaluate the
trade-offs between sequence search methods in a quantitative fashion.

Our efforts have then been directed to contribute novel schemes to design, implement and
optimize the optimal local sequence alignment algorithm — Smith-Waterman to execute on the
powerful Cell BE that drives the inexpensive PlayStation 3. We tested the scalability and efficiency
of our design and optimization techniques by initially aligning individual sequence-pairs. We then
imitated the execution of BLAST by performing a series of pairwise sequence alignments by
comparing fixed sample query sequences against sequences that were fetched one-by-one from
the Drosophila nucleotide database. We ran this algorithm across a cluster of 14 PlayStations,
and compared the performances of the sequential and parallel flavors of Smith-Waterman against
that of BLAST. Our solution is found to extract a ten-fold speed improvement over the naive
Smith-Waterman implementation, at ideal sensitivity and low costs, which is ideal to resolve the
homology search problem.

As future work, we intend to investigate the integration of the parallel Smith-Waterman for
the Cell into sequence alignment tool-kits. Also, we intend to explore the challenges of mapping
Smith-Waterman onto other powerful, yet inexpensive general purpose computing hardware like
the GPGPU, thereby moving closer to providing the ideal solution in the sequence search domain.

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. J Mol
Biol, 215(3):403-410, October 1990.

[2] J. A. Kahle et al. Introduction to the Cell multiprocessor. In IBM Journal of Research and Development, pages
589-604, Jul-Sep 2005.

[3] J.; Heshan Lin; Xiaosong Ma Gardner, M.K.; Wu-chun Feng; Archuleta. Parallel genomic sequence-searching
on an ad-hoc grid: Experiences, lessons learned, and implications. Supercomputing, 2006. SC *06. Proceedings
of the ACM/IEEE SC 2006 Conference, pages 22-22, 11-17 Nov. 2006.

[4] R. Hughey. Parallel hardware for sequence comparison and alignment, 1996.
[5] D. Lavenier. Dedicated hardware for biological sequence comparison. 2(2):77-86, 1996.
[6] M. Li, B. Ma, D. Kisman, and J. Tromp. Patternhunter ii: Highly sensitive and fast homology search. 2003.

[7] D.J.Lipman and W. R. Pearson. Rapid and sensitive protein similarity searches. Science, 227(4693):1435-1441,
March 1985.

[8] B. Ma,J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology search. 2002.

[9] Tf Smith and Ms Waterman. Identification of common molecular subsequences. Journal of molecular biology,
147:195-197.

[10] TimeLogic Biocomputing Solutions. Decyphersw. URL:http://www.timelogic.com/downloads/decyphersw.pdf.
Accessed: 2008-02-02.(Archived by WebCite at http://www.webcitation.org/5VKOAyWil).

[11] Yoshiki Yamaguchi, Tsutomu Maruyama, and Akihiko Konagaya. High speed homology search with fpgas.

12

