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Abstract

Purpose — To reduce the computational complexity per step from O(n2) to O(n) for optimization

based on quadratic surrogates, where n is the number of design variables.

Design/methodology/approach — Applying nonlinear optimization strategies directly to com-

plex multidisciplinary systems can be prohibitively expensive when the complexity of the simulation

codes is large. Increasingly, response surface approximations, and specifically quadratic approxima-

tions, are being integrated with nonlinear optimizers in order to reduce the CPU time required for

the optimization of complex multidisciplinary systems. For evaluation by the optimizer, response

surface approximations provide a computationally inexpensive lower fidelity representation of the

system performance. The curse of dimensionality is a major drawback in the implementation of

these approximations as the amount of required data grows quadratically with the number n of

design variables in the problem. In this paper a novel technique to reduce the magnitude of the

sampling from O(n2) to O(n) is presented.

Findings — The technique uses prior information to approximate the eigenvectors of the Hessian

matrix of the response surface approximation and only requires the eigenvalues to be computed by

response surface techniques. The technique is implemented in a sequential approximate optimiza-

tion algorithm and applied to engineering problems of variable size and characteristics. Results

demonstrate that a reduction in the data required per step from O(n2) to O(n) points can be

accomplished without significantly compromising the performance of the optimization algorithm.

Originality/value — A reduction in the time (number of system analyses) required per step from

O(n2) to O(n) is significant, even more so as n increases. The novelty lies in how only O(n) system

analyses can be used to approximate a Hessian matrix whose estimation normally requires O(n2)

system analyses.

Keywords Response surface approximations, Sequential approximate optimization, Quadratic

approximations, Multidisciplinary design optimization, Adaptive experimental design, Extended

adaptive experimental design

Paper type Research paper

Nomenclature

A Array of experimental design points.

A Database of experimental design points and corresponding function values.

En Real n-dimensional Euclidean space.

f Objective function.

f̃k Approximation to f near xk.

g Inequality constraint vector.

gi ith inequality constraint.

g̃k Approximation to g near xk.

Hk
c Hessian matrix of function c(x) at xk.

H̃k
c Approximation to Hessian matrix Hk

c .

n Dimension of design space.

r Penalty parameter.

U Orthogonal eigenvector matrix.

x Vector of design variables.

xk Current design point at kth iteration.
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∆ Trust region radius.

ǫ SAO convergence criterion.

λ Vector of Lagrange multipliers.

Φ Augmented Lagrangian function.

Ψi Alternative form for inequality constraint gi.

ρ Trust region ratio.

U Transformed design space.

AED Adaptive experimental design.

CA Contributing analysis.

CSSO Concurrent subspace optimization.

DOE Design of experiments.

EAED Extended adaptive experimental design.

OA Orthogonal array.

RSA Response surface approximation.

SA System analysis.

SAO Sequential approximate optimization.

1. Introduction

The increasing demand for better simulation software has fueled the development of higher

fidelity analysis software in the engineering community. This computer software is often expensive

to execute, even with the availability of multiple processor computers and parallel systems. More

complex simulations can be achieved when two or more of these analysis software packages are

coupled together to create a multidisciplinary problem. A single function evaluation for such a sys-

tem may require several iterative evaluations of the contributing analyses due to the input/output

coupling of the software packages.

The solution of general nonlinear constrained optimization problems has been a topic of re-

search for many years in the mathematical community. As a result a rich variety of optimization

algorithms and software has been developed with continuous improvements. Some of these algo-

rithms are very efficient and effective in solving smooth optimization problems. In optimization

algorithms based on higher order information the system analysis has to be called several times

at each iteration. When the analysis is performed for one of these multidisciplinary problems, the

optimization process becomes very expensive.

In most analysis software, as finite element analysis or computational fluid dynamics, numer-

ical integration, domain discretization, and numerical roundoff error produce noise in the output

of the computer program. Applying gradient-based optimization algorithms to solve optimiza-

tion problems based on these noisy outputs may create numerical difficulties such as premature

convergence to spurious local optima.

For these two reasons—expense and output noise—the use of approximations in optimization

is highly attractive. The approximations can smooth noisy behavior while providing an inexpensive

analysis for the optimization process. The type of approximations used for optimization vary in

nature and scope. By nature they can be grouped as physics-based approximations (Knill et al.,

1999); parametric approximations such as artificial neural networks (Cheney and Light, 2000), low

order polynomials (Hosder et al., 2001), and radial basis functions (Cheney and Light, 2000); and

statistical approximations such as krigging models (Sacks et al., 1989; Welch and Sacks, 1991). By

scope they can be divided into either global approximations, meant to represent the whole design
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space, or local, valid in a reduced design space. A comprehensive survey of approximations in the

context of optimization is given by Sobieski and Haftka (1997).

Often, second order polynomials (Taylor series) are used for local approximations. One of

the main drawbacks for the use of local quadratic approximations in n dimensions is the need of

sampling the high fidelity analysis an O(n2) number of times, precisely, at least (n + 2)(n + 1)/2

data points are needed to determine the (n + 2)(n + 1)/2 coefficients in a quadratic polynomial.

In this paper, an extension to the adaptive experimental design algorithm introduced by Pérez

et al. (2002) is presented to eliminate the need of O(n2) samplings (system analyses, possibly

multidisciplinary) and replace them with O(n) effective ones. For large n, this reduction in work

per iteration is huge, and will result in significant cost savings, provided the number of iterations

does not grow by O(n).

The paper is organized as follows. The remainder of this section presents the use of quadratic

approximations in optimization, and underlines the importance of the need to reduce the order of

the sampling due to what is known as the curse of dimensionality. The following sections introduce

the reader to the adaptive experimental design (AED) technique developed by the authors, and

describe the extended adaptive experimental design (EAED) algorithm proposed in this paper.

The next section presents some test problems and results, with some closing remarks in the final

section.

1.1 Quadratic approximations in optimization

Quadratic approximations are an important component in nonlinear programming. Almost

all gradient based optimization algorithms use some type of second order information for the

objective function and constraints. Due to the high cost or impossibility of computing the true

Hessian matrix at each design point, optimization algorithms generally use approximations to

the Hessian matrix. These are point approximations, i.e., second order Taylor approximations

at the current design point. The most common type of approximations are Hessian updates, in

which the optimizer uses zeroth and first order information to update the value of the approximate

Hessian matrix. Examples of this type of update formula are the BFGS (named after its developers

Broyden-Fletcher-Goldfarb-Shanno), the DFP (Davidon-Fletcher-Powell) formula, and the SR1

(symmetric-rank one) update (Nocedal and Wright, 1999). An alternate approach to compute

quadratic approximations has been proposed by Canfield (2001), in which zeroth and first order

information from the current and all previous design points is used to compute the approximation.

In surrogate-based optimization quadratic polynomials have been used to approximate the

objective function and constraints locally. In the DAKOTA Toolkit (Eldred et al., 2001) Giunta

and Eldred (2000) implemented a sequential approximate optimization (SAO) framework where

second order polynomials were computed by the least squares method based on sampling the

high fidelity analyses, smoothing the noise of the simulation. This full second order polynomial

approximation can be forced to match the zeroth or first order information at the current design

point, as in Chang et al. (1993) and Lewis and Nash (2000).

The quadratic response surface approximation (RSA) used by Pérez et al. (2002), Pérez and

Renaud (2000), Pérez et al. (2000), and Rodŕıguez et al. (1998a, 1998b; 2001) represents a different

approach. While the zeroth and first order terms are point information, the second order matrix

is computed by sampling a local region around the current design point. The RSA constructed

in this way provides zeroth and first order matching at the current design, which is important

for convergence purposes. The second order response is influenced by designs sampled across the

sampling region, which allows the algorithm to take larger steps during optimization and smooths
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(via least squares fitting) the noise in the system. When the algorithm gets closer to the minimum,

a reduction of the sampling region assures that the second order information will get closer to the

true Hessian (since the least squares fitting essentially reproduces the Taylor series approximation).

The second order (Taylor series) information is called the true Hessian, or simply Hessian, matrix

H, approximations to which (via least squares fitting or otherwise) are denoted with a tilde: H̃.

The response surface approximation to f at the current design point xk is given by

f̃k(x) = f(xk) + ∇f(xk)T ∆xk +
1

2
∆xkH̃k

f ∆xk, (1)

where ∆xk = x − xk. Note that H̃k
f is based not just on information at the point xk, but

on information from an experimental design centered at xk. Constraints gi would be similarly

approximated by g̃k
i at xk.

1.2 The curse of dimensionality

The number of independent coefficients in a Hessian matrix is n(n+1)/2. This O(n2) number

of independent coefficients is a drawback, known as the curse of dimensionality, for the application

of this technique to large optimization problems. To partially alleviate this concern, the data can

be collected in parallel as in Burgee et al. (1996) or Pérez et al. (2002) or a variable fidelity

sampling can be performed as in Rodŕıguez et al. (2001) for multidisciplinary problems.

A natural way to reduce the sampling cost is to reduce the number of coefficients to be fitted to

construct the Hessian. The simplest approach is to compute only the main diagonal terms and set

to zero the value of the off-diagonal terms. However, due to the highly coupled nonlinear nature of

engineering and in particular MDO problems, this approach does not take into account important

information regarding interaction of the design variables.

Another approach (Balabanov et al., 1999; Giunta et al., 1997; Knill et al., 1999) is to fit the

data with a reduced term second order polynomial, using only those interaction terms that are

statistically significant. The reduced term structure is ascertained first by fitting low fidelity data

with a full quadratic. Then insignificant terms are dropped, and the reduced term polynomial is

fit to medium or high fidelity data. This process is reported to work very well in practice, but

requires the existence of variable fidelity models of the system.

1.3 Adaptive experimental design

Pérez et al. (2002) investigate the use of information already available from the previous

approximation to reduce the size of the experimental design while maintaining the quality of the

approximation. As a result, the total cost of the optimization is reduced. This is accomplished by

carrying over the O(n2) eigenvector information from a previous Hessian.

At the very first iteration, a least squares approximation H̃ (throughout, tildes are used to

denote approximations) to the full n × n matrix of second order terms H is produced using an

O(n2) sampling array. The spectral decomposition of this matrix is

H̃ = UH̃UUT , (2)

where the columns of U are orthonormal eigenvectors and H̃U is a diagonal matrix of eigenvalues.

For the next few iterations, an experimental array of O(n) is used to sample the design space.
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Before performing the least squares fitting, the eigenvector matrix U is used as a transformation

matrix to rotate the design space to new coordinates

xU = UT x, (3)

in which coordinate system the Hessian matrix approximation H̃U is diagonal. In the transformed

space, only the main diagonal terms of the Hessian matrix H̃U are computed, i.e., the quadratic

model in the transformed coordinates has no second order cross terms xU
i xU

j (i 6= j). Then

transforming back to the original coordinate system, a full n × n matrix H̃ is obtained. If the

curvature of the function (precisely, the eigensystem of its Hessian matrix) has not changed much

during the past iteration, this approximate Hessian H̃ will be similar to that obtained from a

least squares estimate H∗ of the full n× n Hessian using O(n2) samples, as the off-diagonal terms

of the Hessian H∗ in the transformed design space (coordinates xU ) will vanish or at least will

be small compared to the main diagonal terms. The transformation matrix U can be kept as

long as the curvature of the function does not change too much. When the curvature changes

enough to invalidate the quadratic model, the full n×n matrix H̃ of second order terms has to be

updated (re-estimated with O(n2) sampling) and a new transformation matrix can be computed.

This approach is called adaptive experimental design (AED). Note that a quadratic model for a

particular f or gi may remain valid over many sequential approximate optimization iterations,

since those iterations are driven by the most rapidly changing models for f and the gi.

In Pérez et al. (2002) the adaptive experimental design methodology was implemented within

the trust-region augmented Lagrangian algorithm of Rodŕıguez et al. (1998b). The implementation

was tested using a suite of MDO test problems. Results show that the AED methodology can be

applied to engineering problems, significantly reducing the amount of data (analyses) required to

fit a full quadratic function.

Though the results in Pérez et al. (2002) show that the AED methodology results in consid-

erable savings compared to full n× n Hessian least squares approximations, a full order reduction

is not being accomplished. At the beginning of the optimization and after every several iterations,

a full n × n Hessian estimation must be performed. As a result, several costly full Hessian O(n2)

estimates have to be performed. The present paper significantly extends the AED methodology to

achieve a full order reduction in the sampling size per iteration from O(n2) to O(n) by avoiding

full n × n Hessian estimations.

2. Extended adaptive experimental design (EAED)

Spectral (eigenvalue) decomposition of the Hessian matrix gives two types of information.

The eigenvectors form an orthogonal basis that defines the curvature orientation. The eigenvalues

provide the (signed) magnitude of the curvature along the eigenvector directions. If the proper

orientation (eigenvectors) is known an update of the main diagonal terms (eigenvalues) in the

transformed space (xU coordinates) is sufficient to determine the full n × n Hessian matrix in the

untransformed space (x coordinates).

Computing the Hessian of a quadratic approximation can then be viewed as two compli-

mentary tasks. First, find the orientations of the eigenvectors and second, compute the (signed)

magnitudes of the curvature along those orientations. The (signed) magnitudes of the curvature

can be approximated by sampling the design space, an O(n) task. In order to keep an O(n)

sampling size per iteration throughout the entire optimization, the eigenvectors have to be approx-

imated by means other than least squares based on O(n2) sampling. Based on the experience in

6



quasi-Newton methods, a plausible choice is to use first order quasi-Newton Hessian updates to

update the eigenvectors.

Assume that at any given point xk during the optimization, zeroth (c(xk)) and first (∇c(xk))

order information is known, and also that zeroth, first, and second (H̃k−1) order information

is available for the last design point xk−1. An update of the eigenvectors can be accomplished

in two steps: first update H̃k−1 to H̃k by a quasi-Newton formula requiring only the first order

information at xk−1 and xk, and then compute the spectral decomposition of H̃k. Then the normal

AED algorithm can be applied and a full n×n Hessian approximation H̃k+1 obtained at the next

iterate xk+1 using only O(n) sampling. The resulting algorithm, stated in Algorithm 1, is called

extended adaptive experimental design (EAED). Note that AED and EAED differ substantially in

how H̃k and H̃k+1 are computed, when there is a curvature change between xk−1 and xk. AED

would first obtain H̃k by the AED O(n) sampling in the transformed space, and then recompute

H̃k by least squares estimation using O(n2) samples. H̃k+1 would then have the same eigenvectors

as H̃k. EAED would, in this same context of a curvature change, recompute H̃k by using a quasi-

Newton update of H̃k−1 with only O(n) sampling. H̃k+1 would then have the same eigenvectors

as this quasi-Newton update H̃k.

Figure 1 illustrates the difference between a quadratic approximation (least squares full Hessian

approximation using O(n2) samples), the AED approximation using O(n) samples, and the EAED

approximation also using only O(n) samples and the SR1 update defined in (7) below, for a simple

function

f(x1, x2) =
1

2
(x1 x2 )

(

3 0
0 1

)(

x1

x2

)

+ .1x2
1x2

approximated after a move from xk−1 = (0, 0) to xk = (1, 1). The sampling points in this example

are (0,0), (2,0), (2,2), (0,2) for the full 2 × 2 Hessian approximation, and the latter three for the

AED and EAED approximations. All approximations are centered at the point (1,1), using the

exact function and gradient information there. Near x = (1, 1), f and all three approximations are

very similar, so for clarity the differences are shown near (2,2), a point in the direction of the move

(the vector (1,1)). Observe the significant difference between the AED and EAED approximations.

At (1,1), both the true and AED Hessian matrices are positive definite, while the EAED Hessian

matrix is indefinite, and overall the AED contours appear more similar to those of f than the EAED

contours. Note, however, that along the direction (1,1) of the move, the EAED approximation is

significantly more accurate than the AED approximation. (This directional accuracy derives from

the O(n) quasi-Newton SR1 update.)

The entire philosophy of AED is to sample the design space intelligently, concentrating samples

in the direction of the SAO movement. Thus Figure 1 clearly shows (note the number and values

of the contours in the diagonal (1, 1) direction) that EAED better supports the goal of AED within

SAO than pure AED alone does. Note that since f and gi may not be quadratic and the SAO

steps may not be small, the quasi-Newton updated H̃k and its eigenvectors may not accurately

approximate the true information at xk, nor converge to the true information over a sequence of

steps. However, as long as the (quasi-Newton update derived) eigenvectors and the (least squares

approximated) eigenvalues of H̃k adequately model the function’s second order information in the

step directions, SAO progress can be made at only O(n) cost per step. Since only relatively few

such update steps are taken between full O(n2) Hessian approximations, asymptotic convergence

of the eigensystem of H̃k to that of Hk is irrelevant, as demonstrated by the numerical results in

Section 3.
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Algorithm 1: Extended Adaptive Experimental Design algorithm.

0. Execute the AED algorithm (Pérez et al. (2002) described in the previous section) unchanged

until a point xk is reached at which AED would re-estimate the approximate Hessian H̃k using

O(n2) samples (from any of f or the gi). Instead do Steps 1–6 and then resume the AED

algorithm.

1. Compute the updated Hessian H̃k
∗

as a quasi-Newton update of H̃k−1 using, e.g., (6) or (7)

below.

2. Spectrally decompose H̃k
∗

to find its eigenvector matrix Uk as in (2).

3. Sample the neighborhood of the current design point using an O(n) experimental array to

gather the database A (O(n) points and corresponding function values for any of f , gi whose

Hessians need to be recomputed).

4. Transform the points in the database A using Uk according to (3).

5. Compute the diagonal Hessian H̃k
U by least squares approximation in the transformed coordi-

nates.

6. Transform H̃k
U to the original coordinates to obtain the required full n×n Hessian matrix H̃k

using (2).

2.1 First order Hessian updates

First order Hessian updates have been widely used in optimization for three decades and their

behavior and properties are well known and documented (Nocedal and Wright, 1999; Conn et al.,

2000). Suffice it to say that such updates do apply to the present context, and produce effective

approximations for optimization without necessarily producing accurate approximations of the true

Hessians (Conn et al., 2000). In the present paper two update formulas are being implemented:

the BFGS update and the symmetric rank 1 (SR1) update. Both are well known and their use

and properties for quasi-Newton methods for nonlinear optimization are well understood (see for

example Nocedal and Wright, 1999). The main difference between them is that BFGS generates a

first order, rank 2 positive definite update, while SR1 is a first order rank 1 update not guaranteed to

be positive definite. BFGS is well suited for unconstrained quasi-Newton methods, where positive

definiteness is a requirement for line search type optimization algorithms, so an iterate is guaranteed

to exist. On the other hand, SR1 is better for trust region algorithms that do not require positive

definiteness in the Hessian approximation (recall that the true Hessian at a constrained minimum

point need not be positive semidefinite).

Given the gradients at two design points xk and xk+1, define

sk = xk+1 − xk, (4)

yk = ∇f(xk+1) −∇f(xk). (5)

The BFGS Hessian update formula is (omitting all the tildes)

Hk+1 = Hk −
HkskskT

Hk

skT
Hksk

+
ykykT

ykT
sk

, (6)

and the SR1 update formula is

Hk+1 = Hk +
(yk − Hksk)(yk − Hksk)T

(yk − Hksk)T sk
. (7)
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Figure 1. Contour plots comparing f(x1, x2) (top left) to full Hessian (least

squares quadratic, top right), AED (bottom left), and SR1 based EAED (bottom

right) approximations for a move from (0,0) to (1,1). The contour lines and

shading are the same for all plots

Note that the SR1 update can be numerically unstable because of the denominator, and hence the
update formula (7) must be used carefully in practice. Similarly the BFGS update for indefinite

Hk can be unstable, since sk can be an isotropic vector for the indefinite hermitian form skT
Hksk

(the term can be zero). Thus both (6) and (7) must be implemented carefully in a trust region

context (see for example Nocedal and Wright, 1999).
Both BFGS and SR1 belong to a general class of update formulas known as the Broyden

family. The EAED presented in this paper can make use of any Hessian update, since only

eigenvector information is obtained by this means. An example of an alternate Hessian update is
the Canfield approach (2001), which explicitly takes into account all the previous zeroth and first

order information for the update.

2.2 EAED algorithm details

In the general case, a response surface approximation of the objective function and each
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constraint would be computed. Each function has to be treated individually. A complete discussion

of the implementation of the AED when several functions have to be approximated can be found in

Pérez et al. (2002). In this section a detailed description of the EAED implementation is provided.

The generalities of SAO will only be outlined. For the sake of clarity it is assumed that a bound

constrained problem

min
x

f(x) subject to xmin ≤ x ≤ xmax, (8)

is to be solved, therefore a single function has to be approximated. The generalization to a fully

constrained problem is trivial and is demonstrated in the test problems. A description of the EAED

implementation in a general SAO framework is shown in Algorithm 2.

Algorithm 2: EAED Algorithm in a SAO Framework.

1. Given x0, evaluate f(x0) and ∇f(x0).

2. Set local move limits.

3. Set k := 0.

4. Using an O(n) size experimental array A, sample the local design space around xk and build

the database of function values.

5. If k > 0 go to Step 6, else set U0 := I and go to Step 8.

6. If new curvature information is required (because, e.g., the last step was rejected) compute

the updated Hessian matrix H̃k
∗

according to the desired update formula (6) or (7). Otherwise

to to Step 8.

7. Perform an eigenvalue decomposition of H̃k
∗

according to (2). The eigenvector matrix Uk will

be used as the transformation matrix.

8. Transform the experimental array: AU = UkT
A.

9. Using least squares fitting, compute the components of the diagonal matrix H̃k
U .

10. Perform a back transformation to get H̃k = UkH̃k
UUkT

.

11. Perform a minimization on the response surface approximation f̃k(x) subject to the local move

limits. The new local optimum point is xk+1.

12. Compute f(xk+1) and ∇f(xk+1).

13. Accept or reject xk+1 (by trust region criteria, cf. the SAO details) (Pérez et al., 2002). If

accepted, set k := k + 1.

14. Update local move limits.

15. If ‖xk − xk−1‖ ≤ ǫ stop, else go to Step 4.

At the very first iteration, only the main diagonal Hessian terms are approximated by a

response surface (an alternative would be to start with a full O(n2) Hessian approximation). At

the following iterations, the previous Hessian approximation is updated (when necessary as dictated

by curvature changes) using either BFGS or SR1. A spectral decomposition of the updated Hessian

is performed to extract the eigenvector matrix. The eigenvector matrix is used to transform the

design space, compute the main diagonal Hessian terms via least squares estimation using an

O(n) database, and then transform back to a full n × n Hessian. Call these techniques EAED-

BFGS and EAED-SR1, respectively. It is important to underscore the difference between the well

known quasi-Newton methods and the trust region framework for approximate optimization that

is being implemented in this paper. Traditional quasi-Newton techniques perform an update of the

Hessian based on zeroth and first order information at the current and previous design points. The
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updated matrix is an approximation of the Hessian at the current design point. In the methodology

presented in this paper, zeroth and first order information from the current and previous points

are used to update the eigenvectors. The eigenvalues are computed using a least squares regression

approach for RSA based on response sampling about the current design. Note that this RSA

approach provides a Hessian matrix approximation that is influenced by data sampled over the

whole of the sampling region, not just data at the optimizer’s iterates.

3. Test problems

To demonstrate the capability of the proposed EAED method to construct response surface

approximations for optimization with a reduction in the sampling size to O(n) per step, three

problems with different characteristics are solved. Two of them are single discipline problems and

one is a true MDO problem. In this study, a comparison of the following techniques is performed.

1. Full Hessian (FH). Here all (n + 1)n/2 coefficients of the Hessian matrix are computed at

each iteration by least squares approximation. This is the traditional approach requiring a

database of size O(n2) to construct the response surface approximation.

2. Extended adaptive experimental design with BFGS Hessian update (EAED-BFGS). The

EAED algorithm is used to reduce the number of Hessian coefficients to be fit to n as in

Pérez et al. (2002). The required transformation matrix U is obtained by a BFGS update of

the previous Hessian approximation.

3. Extended adaptive experimental design with SR1 Hessian updates (EAED-SR1). This is the

same as EAED-BFGS, but the transformation matrix U is obtained by a SR1 update of the

previous Hessian approximation.

3.1 Barnes problem

This is a small mathematical problem known as the Barnes problem, described in detail in

Pérez et al. (2002). It has two design variables and three constraints. The size of the problem

allows easy visualization of the results and convergence for some of the Hessian coefficients. The

initial point is x0 = (65, 1) and the solution is x∗ = (49.52, 19.62).

The performance results, measured by the number of iterations required to converge to the

solution and number of accurate digits given in Pérez et al. (2002), are shown on Table 1. The

number of iterations refers to the number of times a response surface approximation was con-

structed, which translates to ⌈(3/2)n⌉ SAs or ⌈(3/4)(n + 1)n⌉ SAs per iteration for EAED or FH,

respectively. The most important result is that a reduction in the sample size in the construc-

tion of the response surface approximation does not affect the performance of the optimization.

EAED-BFGS and EAED-SR1 require almost the same number of iterations to converge as does

the full n × n Hessian update approach, although they require a factor of O(n) fewer samples per

iteration. An extra run was performed in which only the main diagonal terms of the Hessian were

computed—this corresponds to AED for which U = I and no O(n2) re-estimations of H are done

during SAO. The increase in the number of iterations to converge for the main diagonal case (AED)

can be explained by the lack of the off diagonal terms in the Hessian matrix approximation. The

inclusion of the main diagonal technique (AED with U = I) in this comparison is with the sole

purpose of showing the disadvantages of using such a technique with engineering problems. AED

with U 6= I is clearly better, but then each re-estimation of the full Hessian when the curvature
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Approach Iterations
Full Hessian 15
EAED-BFGS 16
EAED-SR1 15
AED (U = I) 21

Table 1. Performance results for the Barnes problem
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Figure 2. Hessian coefficients using EAED-BFGS

changes in AED costs O(n2) samples. In nearly linear problems or those where interactions be-

tween the variables are negligible, the main diagonal and AED approaches may compete with the

proposed techniques.

Though this is a small problem and no spectacular savings in the number of samplings can be

shown, it can provide us with an overview of what happens to the approximate Hessian coefficients

as the optimization runs. To this end, the values of the approximate Hessian coefficients for

the objective function and the first constraint (with zero-valued diagonal terms) for the methods

described above are shown. The values of the coefficients are compared to those from a full Hessian

construction (FH).

Figure 2 shows the history for the coefficients of the approximate Hessian matrix using EAED-

BFGS. The three plots at the top correspond to the coefficients for the objective function. Note that

at the end of the optimization the coefficients of the EAED-BFGS Hessian H̃BFGS do not converge

to those of the full Hessian approximation H̃FH. Moreover, the coefficients oscillate and at the

end
(

H̃BFGS

)

1,1
and

(

H̃BFGS

)

1,2
even have different signs from their counterparts

(

H̃FH

)

1,1
and

(

H̃FH

)

1,2
. Recall that the BFGS update is positive definite. This is very useful in a line search for

unconstrained minimization, but in this constrained optimization case a positive definite update can
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Figure 3. Hessian coefficients using EAED-SR1

bias the transformation matrix U . Interestingly enough, at the end of the optimization the Hessian

matrix computed by EAED-BFGS is positive definite while the FH Hessian is not. Regardless,

the Hessian approximation H̃BFGS behaves sufficiently like H̃FH in the SAO step directions to

result in rapid convergence (this behavior is typical of quasi-Newton methods (Conn et al., 2000))

comparable to that of FH.

The coefficients for the first constraint are shown in the bottom three plots of Figure 2. Note

that the main diagonal terms are zero while the off diagonal term has a small value. In this case

after three iterations EAED-BFGS is capable of predicting the right values.

In Figure 3 the coefficients’ history is plotted for the EAED-SR1 technique. For f , the EAED-

SR1 approximate Hessian H̃SR1 follows the FH approximate Hessian H̃FH much better than the

EAED-BFGS approximation did. For the case of the constraint, the values are accurate after a

couple of iterations. In general, many more samples near the solution point would be required before

H̃SR1 would very accurately approximate H̃FH at the solution (this is mathematically obvious, since

O(n2) independent pieces of information cannot be recovered from only O(n) information samples).

Note that since Figures 2 and 3 show traces for different updates, the sequences of points visited are

different (until the final converged solution), and thus the traces of the full Hessian approximation

H̃FH are different until the end.

3.2 High performance low cost structure (HPLCS)

This is a structural optimization problem in which the objective of the design is to minimize

the weight of the structure while the payloads are sustained at their maximum. The multiobjective

optimization is transformed into a single objective optimization via a cost performance index. The

problem was introduced in Wujek et al. (1995) and consists of a total of n = 17 design variables
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Figure 4. High performance low cost structure test problem

Approach Iterations
P1 P2

Full Hessian 39 32
EAED-SR1 51 44
EAED-BFGS 54 45

Table 2. Iterations to converge for the HPLCS test problem

(cross sections, truss longitudes, and payloads) and 13 inequality constraints. Figure 4 shows the

structure to be optimized.

In order to compare the EAED algorithm to the conventional full Hessian algorithm (FH), two

different experimental arrays have to be used: one that requires O(n2) points for FH and another

O(n) for EAED. For the HPLCS, the full Hessian approximation requires 153 coefficients to be

fitted. An orthogonal array with 162 points (19 variables, 9 levels, strength 2) was used. For the

EAED approximation an orthogonal array with 20 points (19 variables, 2 levels, strength 2) was

used.

Though the original problem as stated in Wujek et al. (1995) is composed of three disciplines,

they are linked by simple feed forward coupling. This allows the treatment of the analysis as a

single code, therefore only high fidelity state data is queried.

Both EAED-SR1 and EAED-BFGS are tested and compared against the full Hessian (FH)

algorithm. Table 2 presents the results for the number of iterations required to converge from

two different starting points, P1 and P2. Compared to the full Hessian approach, the number of

iterations required for convergence using EAED is greater. This means that there was a toll for

the lower quality of the approximations generated via EAED. However, the real impact can be

seen in the total number of function calls as depicted in Figure 5. The cost of the optimization

is measured relative to the number of function calls. A function call is defined as either a system

analysis (in this case a single code invocation), a gradient evaluation (Grad), or a database query

(DB). The number of function calls per iteration is fixed for each of these categories.
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Figure 5. Cost in number of function calls and percent savings for the HPLCS

problem

In Figure 5 one observes a dramatic decrease from FH to EAED in the number of function

calls required for the optimization. This is mainly due to a reduction in the cost of the database

query (the Hessian estimation component of the construction of a response surface approximation).

Although there is a slight increase for EAED in the number of function calls required for the system

analysis and sensitivities evaluation, the number for database generation is significantly smaller

than that for FH. A total reduction of around 70% in the cost of the optimization from the FH cost

is achieved with both EAED-SR1 and EAED-BFGS. The figure also shows a comparison between

theoretical and actual reduction in the cost. The theoretical reduction is the expected savings for

a fixed number of iterations (39, 32 for P1, P2) with a fixed function call distribution per iteration.

The increase in the number of iterations shown on Table 2 is reflected in the difference between

the actual and the theoretical savings.

3.3 Controls-augmented structure (CAS)

The controls-augmented structure (CAS) is a fully coupled MDO problem consisting of two

subsystems: structures and controls. A cantilever beam is subjected to static and dynamic loads.

At the tip there are two controllers, one for the lateral and one for the rotational displacements.

The beam is split into five finite elements. The width and height of each element as well as

a proportionality constant for the controls comprise the set of design variables. The problem

involves a total of 11 design variables and 43 states.

The information flow makes the problem fully coupled and a solution of the system for a given

set of design variables can only be obtained by iteration. There are seven inequality constraints

bounding the two first natural frequencies, maximum stress, and static and dynamic displacements,

both lateral and rotational. Figure 6 shows the initial configuration of the controls-augmented

structure, initially introduced by Sobieszczanski-Sobieski et al. (1991) and extensively used in

research papers.

The implementation of this problem introduces a new measure for the EAED algorithm. In

both the Barnes and the HPLCS problems the data for a response surface approximation was
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Approach Medium Variable
Fidelity Fidelity

P1 P2 P1 P2
Full Hessian 31 33 30 34
EAED-SR1 32 34 38 35
EAED-BFGS 33 33 43 41

Table 3. Iterations to converge for the CAS test problem

obtained by executing a single analysis code. In the case of the CAS, a single (system analysis)

function evaluation has to perform several sequential calls to the independent subdisciplines or

contributing analyses (CAs). The cost of a single function call is therefore high and the use of

sequential approximate optimization is justified. The data collected is of variable fidelity since

the disciplines are linearly decoupled and each design point is evaluated by these decoupled CAs

(see Rodŕıguez et al., 2001). Each point in the experimental design database is evaluated by the

decoupled CAs.

As in the case of the HPLCS, the optimization was performed from two different starting

points, one in the feasible (P1) and one in the infeasible (P2) region of the design space. For each

starting point the optimization was carried out both with data of variable and medium fidelity.

The number of iterations measures how many times the database was gathered and the full system

analysis performed. Table 3 shows the number of iterations for the four cases described above, two

starting points (P1 and P2) for two types of data fidelity. It can be seen that using EAED increases

from FH the number of iterations required to converge. This is expected since the amount of data

gathered per iteration is smaller for EAED than for FH, and the model is cruder, especially at the

beginning, when nothing is known about the orientation of the eigenvectors. However, this does

not reflect the true cost of the optimization. Figures 7 and 8 show the cost in number of CA calls

for both medium and variable fidelity databases (data for feasible starting point P1 is shown on the

left). In the case of the medium fidelity database, the savings of EAED over FH are just below 60%.

Both starting points show the same trend. As for the HPLCS problem, no significant difference is

shown between the performance of EAED-SR1 and EAED-BFGS. The theoretical savings for this

problem are smaller than for the HPLCS problem due to the fact that the system analysis requires

a large number of CA calls in contrast to one CA call in the HPLCS case. The variable fidelity

results show the same tendency, though in this case the database generation is even cheaper than

in the medium fidelity case (Rodŕıguez et al., 2001), therefore the savings are still less impressive

but not insignificant: between 26% and 48%.
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medium fidelity sampling

0

1000

2000

3000

4000

5000

6000

7000

8000

C
A

 c
al

ls

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

S
av

in
gs

(%
)

DB 3827.2 1023 1150 4390.4 935 1118

Grad 1524.9 1932 2173 1749.3 1766 2111

SA 897 1136 1278 1029 1039 1242

Theoretical 48.33% 48.33% 48.33% 48.33%

Actual 34.54% 26.38% 47.84% 37.63%

FH EAED-SR1
EAED-
BFGS

FH EAED-SR1
EAED-
BFGS

Figure 8. Cost in number of CA calls and percent savings for the CAS problem;
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4. Concluding remarks

A variant on both AED and EAED not considered here is to use purely quasi-Newton updating
between O(n2) Hessian recalculations, without any O(n) least squares approximations at all. This

is perfectly reasonable for low-noise high-fidelity function values, but not in the assumed context
here of noisy function values and variable fidelity databases. Some sort of least squares smoothing,
O(n) or otherwise, is indispensable. Such noise filtering is, in fact, one of the main justifications for
surrogate based optimization, and underlies much of the current work in multidisciplinary design

optimization.
The proposed extended adaptive experimental design (EAED) algorithm is a powerful tech-

nique for reducing the computational cost of constructing quadratic response surface approxima-
tions. The technique reduces the size of the database required per optimization step for constructing
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a quadratic response surface approximation in n dimensions from O(n2) to O(n). The methodology

has been shown to have comparable performance (in terms of number of iterations) in sequential

approximate optimization to that of constructing full quadratic response surface approximations

where O(n2) sampling is used. The reduced order approximation captures the essential information

of a full quadratic approximation leading to similar results with smaller sampling size required per

iteration. Results for different sizes of test problems have demonstrated scalability of the tech-

nique to medium size problems. The EAED algorithm can also be used to build improved Hessian

updates for quasi-Newton nonlinear programming methods. In this context, the sampling would

be performed in a very small neighborhood of the current design point.
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Rodŕıguez, J. F., Renaud, J. E., and Watson, L. T. (1998a), “Convergence of Trust Region Augmented La-

grangian Methods Using Variable Fidelity Approximation Data”, Structural Optimization, Vol. 15, No.

3-4, pp. 141–156.
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