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Abstract. In this paper we analyze the consistency properties of discrete adjoints of linear
multistep methods. Discrete adjoints are very popular in optimization and control since they can
be constructed automatically by reverse mode automatic differentiation. The consistency analysis
reveals that the discrete linear multistep adjoints are, in general, inconsistent approximations of the
adjoint ODE solution along the trajectory. However, the discrete adjoints at the initial time (and
therefore the discrete adjoint gradients) converge to the adjoint ODE solution with the same order
as the original linear multistep method. Discrete adjoints inherit the zero-stability properties of the
forward method. Numerical results confirm the theoretical findings.
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1. Introduction. Consider an ordinary differential equation (ODE) whose evo-
lution depends on a vector of parameters

x′ = φ(t, x, θ) , x (tini) = xini(θ) , tini ≤ t ≤ tend . (1.1)

Here x ∈ ℜnx and θ ∈ ℜnp . Consider also the following general cost function whose
value depends on the solution of the ODE:

Ψ (θ) =

∫ tend

tini

u
(
t, x(t, θ), θ

)
dt + v

(
tend, x(tend, θ), θ

)
subject to (1.6) . (1.2)

We are interested to find the parameter values for which the cost function is minimized,

min
θ

Ψ (θ) subject to (1.1) . (1.3)

The general optimization problem (1.3) arises in many important applications includ-
ing control, shape optimization, parameter identification, data assimilation, etc. To
apply a gradient based numerical optimization procedure one needs to compute the
gradient of the cost function Ψ with respect to the parameters

∇θΨ =

(
∂Ψ

∂θ

)T

. (1.4)

Here and throughout the paper the derivatives of scalar functions with respect to
vectors of arguments are row vectors (e.g., ∂Ψ/∂θ is an np-dimensional row vector).

The optimization problem (1.1)–(1.2)–(1.3) can be reformulated as follows. Ex-
tend formally the ODE (1.1) with dummy equations for time and the parameters, and
with a “quadrature equation” for the integral term in (1.2):





t
x
θ
z





′

=





1
φ(t, x, θ)

0
u
(
t, x, θ

)



 ,





t
x
θ
z




(
tini

)
=





tini

xini(θ)
θ
0



 , tini ≤ t ≤ tend . (1.5)
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The extended state vector in (1.5) has a dimension d = 1 + nx + np + 1. With the
compact notation

y =





t
x
θ
z



 ∈ ℜd , f(y) =





1
φ(y)

0
u(y)



 , g(y) = g(t, x, θ, z) = z + v
(
t, x, θ

)
,

the differential equation (1.1) is equivalent to the following ODE

y′ = f(y) , y (tini) = yini , tini ≤ t ≤ tend . (1.6)

Using the quadrature variables the cost function (1.2) can be expressed in terms of
the solution of the extended system (1.5) at the final time:

Ψ(θ) = Ψ(yini) = z(tend) + v
(
tend, x(tend, θ), θ

)
= g
(
y(tend)

)
. (1.7)

This cost function depends on the initial conditions of (1.6), which contain the original
parameters θ.

Without loss of generality the optimization problem (1.3) can be posed as follows:

min
yini

Ψ (yini) = g
(
y(tend)

)
subject to (1.6) . (1.8)

Throughout the paper we assume that the (extended) ODE function (1.8) is
sufficiently smooth, i.e., it has sufficiently many continuous derivatives as required to
have the numerical solutions converge at the appropriate orders. The Jacobian of the
(extended) ODE function (1.6) is denoted by J(y) = ∂f(y)/∂y ∈ ℜd×d. We make the
additional assumption that for all cases of interest the initial condition and the entire
smooth solution of (1.8) remain within a bounded set Ω (which can be large),

yini ∈ Ω ⇒ y(t) ∈ Ω ∀ t ∈ [tini, tend] .

Consequently throughout the trajectory the norms of the ODE function and its Ja-
cobian remain bounded throughout all trajectories of interest

‖f(y)‖ ≤ C , ‖J(y)‖ ≤ M , ∀ y ∈ Ω .

To solve (1.6)–(1.8) via a gradient based optimization procedure one needs to
compute the derivatives of the cost function Ψ with respect to the initial conditions.
This can be done effectively using continuous or discrete adjoint modeling. These
approaches are discussed next.

In the continuous adjoint (“differentiate-then-discretize”) approach [8] one derives
the adjoint ODE associated with (1.6)

λ
′
= −JT

(
t, y(t)

)
λ , λ (tend) =

(
∂g

∂y

(
y(tend)

))T

, tend ≥ t ≥ tini , (1.9)

The system (1.9) is solved backwards in time from tend to tini to obtain the gradients
of the cost function with respect to the state [8]

λ(t) =

(
∂Ψ

∂y(t)

)T

, λ(t0) =

(
∂Ψ

∂yini

)T

. (1.10)
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Note that the continuous adjoint equation (1.9) depends on the forward solution y(t)
via the argument of the Jacobian.

For a computer implementation the continuous adjoint ODE (1.9) is discretized
using a numerical integration technique. Numerical solutions λn ≈ λ(tn) are obtained
at the discrete time moments tend = tN > tN−1 > · · · > t1 > t0 = tini. These solutions
are numerical approximations of the continuous adjoint sensitivities

λn ≈
(

∂Ψ

∂y(tn)

)T

, λ0 ≈
(

∂Ψ

∂yini

)T

. (1.11)

In the discrete adjoint (“discretize-then-differentiate”) approach [8] one starts
with a numerical discretization of the forward ODE (1.6). Numerical approximations
of the ODE solution yn ≈ y(tn) are available the discrete time moments tini = t0 <
t1 < · · · < tN = tend

y0 = yini , yn = Mn (y0, · · · , yn−1) , n = 1, · · · , N . (1.12)

The numerical solution at the final time is yN ≈ y (tend). The optimization problem
(1.8) is reformulated in terms of the numerical solution minimized,

min
yini

Ψ(yini) = g
(
yN

)
subject to (1.12) . (1.13)

The gradient of (1.13) is computed directly from (1.12) using the transposed chain
rule. This calculation proceeds backwards in time, and produces the discrete adjoint
variables λN , λN−1, · · · , λ0

λN =

(
∂g

∂y

(
yN

))T

, λn = 0 , n = N − 1, · · · , 0 , (1.14)

λℓ = λℓ +

(
∂Mn

∂yℓ

(
y0, · · · , yn−1

))T

λn , ℓ = n − 1, · · · , 0 , n = N, · · · , 0 .

Note that the discrete adjoint equation (1.14) depends on the forward numerical
solution y0, · · · , yN via the arguments of the discrete model. The discrete adjoint
process gives the sensitivities of the numerical cost function (1.13) with respect to
changes in the forward numerical solution (1.12)

λn =

(
∂Ψ

∂yn

)T

, λ0 =

(
∂Ψ

∂yini

)T

. (1.15)

Continuous adjoints are useful for sensitivity analysis studies, as well as for op-
timization. They are computed by applying the numerical solver of choice to the
continuous equation (1.9), and using the forward solution y(t) obtained by interpo-
lation from a sequence of checkpoints. Discrete adjoints are useful in optimization
since they provide the gradients of the numerical function that is being numerically
minimized (1.13). The discrete adjoint process (1.14) can be obtained by applying
automatic differentiation in reverse mode to the (existing) implementation of the for-
ward model (1.12).

The focus of this paper is to analyze the relationship between the discrete adjoint
variables (1.15) and the continuous adjoint solution (1.10) when the underlying ODE
model (1.9) is solved using linear multistep methods (1.12). The choice of the forward
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discretization method (1.12) fully determines the properties of the discrete adjoint
process (1.14). We regard the discrete adjoint process (1.14) as a numerical method
applied to solve the adjoint ODE (1.9) and study its consistency properties.

Consistency properties of discrete Runge-Kutta adjoints have been studied by
Hager [3], who gives additional order conditions necessary in the context of control
problems. Walther [10] has studied the effects of reverse mode automatic differen-
tiation on explicit Runge-Kutta methods in control, and finds that the order of the
discretization is preserved by discrete adjoints. Giles [2] has discussed Runge-Kutta
adjoints in the context of steady state flows. In this paper we consider control prob-
lems where only the initial conditions are the control variables. This setting is simpler
than the distributed control case considered in [3, 10].

Sandu et al. have shown the consistency of discrete Runge Kutta adjoints with
the adjoint ODE solution [7]. Efficient implementation aspects for discrete Runge
Kutta adjoints have been discussed in [6]. Second order Runge Kutta adjoints and
their properties have been studied studied in ([9]).

Baguer et al. [1] have constructed discrete adjoints for linear multistep methods
in the context of control problems. Their work does not discuss the consistency of
these adjoints with the adjoint ODE solution, therefore the quality of these gradients.

In this paper we discuss the consistency of discrete adjoints of linear multistep
methods (LMM) with the adjoint ODE. The analysis is carried out under the following
conditions. The cost function depends (only) and the final solution values, and the
(only) control variables are the initial conditions. The system of ODEs and its solution
are continuously differentiable sufficiently many times to make the discussion of order
of consistency meaningful. The analysis assumes small time steps, such that the
error estimates hold for for non-stiff systems. The sequence of (possibly variable)
step sizes in the forward integration is predefined. The possible dependency of the
step size on the forward solution is not considered in the adjoint calculations. Such
a dependency can be introduced by a step size control mechanism based on error
estimates. The assumption of predefined steps means that the step control mechanism
is not differentiated. When using automatic differentiation special directives may be
used to instruct the parser to not differentiate the controller part of the code.

The paper is organized as follows. In Section 2 we derive the discrete adjoints for
linear multistep methods. The consistency of the discrete adjoints with the adjoint
ODE along the entire trajectory is studied in Section 2.1 for fixed step size integration
and in Section 2.2 for variable step integration. Zero-stability properties are discussed
in Section 3. The consistency of the discrete adjoint at the initial time is analyzed
in Section 4. The numerical results in Section 5 confirm the theoretical findings.
Conclusions are drawn in Section 6.

2. Linear Multistep Methods. Consider the linear multistep method

y0 = yini , (2.1a)

yn = θn (y0, · · · , yn−1) , n = 1, · · · , k − 1 , (2.1b)
k∑

i=0

α
[n]
i yn−i = hn

k∑

i=0

β
[n]
i fn−i , n = k, · · · , N . (2.1c)

The upper indices indicate the dependency of the method coefficients on the step
number; this formulation accommodates variable step sizes. The numerical solution
is computed at the discrete moments tini = t0 < t1 < · · · < tN = tend. As usual
yn represents the numerical approximation at time tn. The right hand side function
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evaluated at tn using the numerical solution yn is denoted fn = f(tn, yn), while its
Jacobian is denoted by Jn = J(tn, yn) = (∂f/∂y) (tn, yn).

The discretization time steps and their ratios are

hn = tn − tn−1 , n = 1, · · · , N ; ωn =
hn

hn−1
, n = 2, · · · , N . (2.2)

We denote the sequence of discretization step sizes and the maximum step size by

h =
(
h1, · · · , hN

)
and |h| = max

1≤n≤N
hn . (2.3)

The number of steps depends on the step discretization sequence, N = N(h).

Equation (2.1a)–(2.1c) is a k-step method. The method coefficients α
[n]
i , β

[n]
i

depend on the sequence of (possibly variable) steps, specifically, they depend on the
ratios ωn−k+2, · · · , ωn.

A starting procedure θ is used to produce approximations of the solution yi =
θi (y0, · · · , yi−1) at times ti, i = 1, · · · , k−1. We will consider the starting procedures
to be linear numerical methods. This setting covers both the case of self-starting LMM
methods (a linear i-step method gives yi for i = 1, · · · , k−1) as well as the case where
a Runge Kutta method is used for initialization (yi = θi (yi−1) for i = 1, · · · , k − 1).

We next derive the discrete adjoint method associated with (2.1a)–(2.1c). The
following result is a generalization of [1, Corollary 3.4].

Proposition 2.1 (The discrete LMM adjoint process).
The discrete adjoint method associated with the linear multistep method (2.1a)–

(2.1c) and the cost function

Ψ(yini) = g
(
yN

)

reads:

α
[N ]
0 λN = hN β

[N ]
0 JT

N · λN +

(
∂g

∂y
(yN )

)T

, (2.4a)

N−m∑

i=0

α
[m+i]
i λm+i = JT

m ·
N−m∑

i=0

hm+i β
[m+i]
i λm+i , (2.4b)

m = N − 1, · · · , N − k + 1 ,
k∑

i=0

α
[m+i]
i λm+i = JT

m ·
k∑

i=0

hm+i β
[m+i]
i λm+i , (2.4c)

m = N − k, · · · , k ,

λk−1 +
k∑

i=1

α
[k−1+i]
i λk−1+i = JT

k−1 ·
k∑

i=1

(
hk−1+i β

[k−1+i]
i λk−1+i

)
(2.4d)

λm +
k∑

i=k−m

α
[m+i]
i λm+i =

k−1∑

i=m+1

(
∂θi

∂ym

)T

λi (2.4e)

+JT
m ·

k∑

i=k−m

hm+i β
[m+i]
i λm+i ,

m = k − 2, · · · , 0 .
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The gradient of the cost function with respect to the initial conditions is

∇yini
Ψ =

(
∂Ψ

∂yini

)T

= λ0 . (2.5)

Proof.

The Lagrangian associated with the optimization problem (1.13) is

L = Ψ − λT
0 · (y0 − yini) −

k−1∑

n=1

λT
n ·
(
yn − θn(y0, · · · , yn−1)

)

−
N∑

n=k

λT
n

(
k∑

i=0

α
[n]
i yn−i − hn

k∑

i=0

β
[n]
i fn−i

)
.

(2.6)

A variation δyini in the initial conditions leads to a variation of the Lagrangian

δL = δΨ − λT
0 · (δy0 − δyini) −

k−1∑

n=1

λT
n ·
(

δyn −
n−1∑

m=0

dθn

dym
δym

)

−
k∑

i=0

N∑

n=k

λT
n ·
(
α

[n]
i I − hn β

[n]
i Jn−i

)
· δyn−i .

(2.7)

Note that under the constraint that {y0, · · · , yN} is the solution of (2.1a)–(2.1c) we
have that L = Ψ and therefore δL = δΨ.

With the change of variable n = m + i equation (2.7) becomes

δL = δΨ − λT
0 · (δy0 − δyini) −

k−1∑

n=1

λT
n ·
(

δyn −
n−1∑

m=0

dθn

dym
δym

)

−
k∑

i=0

N−i∑

m=k−i

λT
m+i ·

(
α

[m+i]
i I − hm+i β

[m+i]
i Jm

)
· δym .

(2.8)

Change of the summation order in the third term rearranges it as

k−1∑

n=1

n−1∑

m=0

=

k−2∑

m=0

k−1∑

n=m+1

Change of the summation order in the last term rearranges it as

k∑

i=0

N−i∑

m=k−i

=

k−1∑

m=0

k∑

i=k−m

+

N−k∑

m=k

k∑

i=0

+

N∑

m=N−k+1

N−m∑

i=0

6



With this equation (2.8) reads

δL = δΨ + λT
0 δyini

−δyT
0 ·
(

λ0 −
k−1∑

i=1

(
dθi

dy0

)T

λi +
(
α

[k]
k I − hk β

[k]
k JT

0

)
· λk

)

−
k−2∑

m=1

δyT
m ·
(

λm −
k−1∑

i=m+1

(
∂θi

∂ym

)T

λi +

k∑

i=k−m

(
α

[m+i]
i I − hm+i β

[m+i]
i JT

m

)
· λm+i

)

−δyT
k−1 ·

(
λk−1 +

k∑

i=1

(
α

[k−1+i]
i I − hk−1+i β

[k−1+i]
i JT

k−1

)
· λk−1+i

)

−
N−k∑

m=k

δyT
m ·

k∑

i=0

(
α

[m+i]
i I − hm+i β

[m+i]
i JT

m

)
· λm+i

−
N∑

m=N−k+1

δyT
m ·

N−m∑

i=0

(
α

[m+i]
i I − hm+i β

[m+i]
i JT

m

)
· λm+i .

(2.9)

Substituting the adjoint variable recurrence (2.4a)–(2.4e) into (2.9) leads to a
formulation of the variation δL that does not depend on the tangent linear variables
δyi at time points other than i = 0:

δL = δΨ + δyT
ini λ0 − δyT

N

(
∂g

∂y
(yN )

)T

, ∀ δyini ∈ ℜd .

Since under the model constrains δL = δΨ the gradient of Ψ with respect to the initial
conditions is

∂Ψ

∂yini
· δyini =

∂Ψ

∂yN
· δyN =

(
∂g

∂y
(yN )

)
· δyN = λT

0 δyini ⇒
(

∂Ψ

∂yini

)T

= λ0 .

The original LMM method (2.1a)–(2.1c) applied to solve the adjoint ODE reads

λN =

(
∂g

∂y

(
y(tN )

))T

, (2.10a)

λm = θm

(
λN , · · · , λm+1

)
, m = N − 1, · · · , N − k + 1 , (2.10b)

k∑

i=0

α
[m]
i λm+i = hm+1

k∑

i=0

β
[m]

i JT
(
y(tm+i)

)
· λm+i , m = N − k, · · · , 0 .(2.10c)

The coefficients α
[n]
i , β

[n]

i depend on the sequence of steps hm in reverse order, there-
fore they depend on the ratios ω−1

n+k, · · · , ω−1
n+2k−2. They are in general different than

the forward method coefficients α
[n]
i , β

[n]
i which depend on the ratios ωn, · · · , ωn−k+2.
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The one-leg counterpart [5, Section V.6] of the LMM method (2.10c) is

λN =

(
∂g

∂y

(
y(tN )

))T

, (2.11a)

λm = θm

(
λN , · · · , λm+1

)
, m = N − 1, · · · , N − k + 1 , (2.11b)

k∑

i=0

α
[m]
i λm+i = hm+1 JT

(
y(τ [m])

)
·

k∑

i=0

β
[m]

i λm+i , (2.11c)

τ [m] =

k∑

ℓ=0

β
[m]

ℓ

β
[m]

tm+ℓ , β
[m]

=

k∑

ℓ=0

β
[m]

ℓ ,

m = N − k, · · · , 0 .

Note that, due to linearity of the right hand side, the scaling by the β
[m]

does not
appear in the sum of λ’s multiplied by JT . The order of accuracy of the discretization
(2.11c) is at most r + 1, where r is the interpolation order of the method [5, Section
V.6]. The interpolation order is the smallest integer r such that for any smooth
function q(t) it holds that

q
(
τ [m]

)
−

k∑

ℓ=0

β
[m]

ℓ

β
[m]

q (tm+i) = O
(
hr+1

)
. (2.12)

The discrete adjoint step (2.4c) can be written in the equivalent form

k∑

i=0

α
[m+i]
i λm+i = hm+1 JT

(
ym

)
·

k∑

i=0

hm+i

hm+1
β

[m+i]
i λm+i

= hm+1 JT
(
ym

)
·

k∑

i=0

β̂
[m+i]
i λm+i (2.13)

β̂
[m]
0 = ω−1

m+1 β
[m]
0 , β̂

[m+1]
1 = β

[m+1]
1 ,

β̂
[m+i]
i =

(
i∏

ℓ=2

ωm+ℓ

)
β

[m+i]
i , i = 2, · · · , k .

The form (2.13) looks like the one-leg method (2.11c) associated with the LMM. The
argument at which the Jacobian is evaluated is, however, different. The initialization
of the discrete adjoint (2.4a)–(2.4b) and of the one-leg continuous adjoint (2.11a)–
(2.11b) are also different. Moreover the termination relations for the discrete adjoint
calculation (2.4d), (2.4e) are different and depend on the initialization procedure of
the forward method. We will analyze the impact of these differences on the accuracy
of the the discrete adjoint as a numerical method to solve the adjoint ODE.

Example. Consider the variable step BDF2 method [5, Section III.5, page 401]
initialized with the backward Euler method:

y1 = y0 + h1 f1 , (2.14)

yn =
(1 + ωn)

2

1 + 2ωn
yn−1 −

ω2
n

1 + 2ωn
yn−2 + hn

1 + ωn

1 + 2ωn
fn , n = 2, · · · , N .

For stability we restrict ωn < 1 +
√

2 [5, Section III.5]. We have that
(

dθ1

dy0

)T

=
(
I − h1 JT

1

)−1
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and the discrete BDF2 adjoint is

λN =

(
I − hN

1 + ωN

1 + 2ωN
JT

N

)−1 (
∂g

∂y
(yN )

)T

, (2.15a)

λN−1 =

(
I − hN−1

1 + ωN−1

1 + 2ωN−1
JT

N−1

)−1

·
(

(1 + ωN )
2

1 + 2ωN
λN

)
, (2.15b)

λm =

(
I − hm

1 + ωm

1 + 2ωm
JT

m

)−1
(

(1 + ωm+1)
2

1 + 2ωm+1
λm+1 −

ω2
m+2

1 + 2ωm+2
λm+2

)
(2.15c)

=

(
I − hm+1

1 + ωm

ωm+1(1 + 2ωm)
JT

m

)−1
(

(1 + ωm+1)
2

1 + 2ωm+1
λm+1 −

ω2
m+2

1 + 2ωm+2
λm+2

)

m = N − 2, · · · , 2 ,

λ1 =
(1 + ω2)

2

1 + 2ω2
λ2 −

ω2
3

1 + 2ω3
λ3 (2.15d)

λ0 =
(
I − h1 JT

1

)−1
λ1 −

ω2
2

1 + 2ω2
λ2 . (2.15e)

The BDF2 method (2.14) applied to the adjoint ODE leads to the continuous adjoint
solution:

λN =

(
∂g

∂y

(
y(tN )

))T

, λN−1 =
(
I − hN JT

(
y(tN−1)

))−1

λN , (2.16)

λm =

(
I − hm+1

1 + ω−1
m+2

1 + 2ω−1
m+2

JT
(
y(tm)

)
)−1 ((

1 + ω−1
m+2

)2

1 + 2ω−1
m+2

λm+1 −
ω−2

m+2

1 + 2ω−1
m+2

λm+2

)

m = N − 2, · · · , 0 .

The continuous adjoint coefficients (2.16) depend only on ω−1
m+2, while the discrete

adjoint coefficients (2.15c) depend on ωm, ωm+1, ωm+2. The two formulas coincide
for constant step sizes (ωm = 1 for all m).

Example. As a second example consider the variable step AB2 method initialized
with the forward Euler method:

y1 = y0 + h1 f0 ,

yn = yn−1 + hn
2ωn + 1

2
fn−1 − hn

ωn

2
fn−2 , n = 2, · · · , N .

(2.17)

We have that

(
dθ1

dy0

)T

= I + hJT
0
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and the discrete AB2 adjoint reads:

λN =

(
∂g

∂y
(yN )

)T

, (2.18a)

λN−1 = λN + hN
2ωN + 1

2
JT

N−1 · λN , (2.18b)

λm = λm+1 + JT
m ·
(

hm+1
2ωm+1 + 1

2
λm+1 − hm+2

ωm+2

2
λm+2

)
(2.18c)

= λm+1 + hm+1 JT
m ·
(

2ωm+1 + 1

2
λm+1 −

ω2
m+2

2
λm+2

)
,

m = N − 2, · · · , 1 ,

λ0 = λ1 + h1 JT
0 λ1 − h2

ω2

2
JT

0 · λ2 . (2.18d)

Solving the adjoint ODE with (2.17) leads to the continuous AB2 adjoint solution

λN =

(
∂g

∂y

(
y(tN )

))T

, λN−1 = λN + hN JT
(
y(tN )

)
λN ,

λm = λm+1 + hm+1

2ω−1
m+2 + 1

2
JT
(
y(tm+1)

)
λm+1 − hm+1

ω−1
m+2

2
JT
(
y(tm+2)

)
λm+2 .

2.1. Consistency Analysis for Fixed Step Sizes. Consider first the case
where the multistep method is applied with a fixed step size. With some abuse
of notation relative to (2.3) in this section we consider hn = h for all n. The LMM
coefficients are the same for all steps and the discrete adjoint step (2.4c) at the interior
trajectory points reads

k∑

i=0

αi λm+i = hJT
(
ym

) k∑

i=0

βi λm+i , m = N − k, · · · , k . (2.19)

Proposition 2.2 (Fixed stepsize consistency at interior trajectory points).

In the general case equation (2.19) is a first order consistent method for the adjoint
ODE. The order of consistency equals that of the one-leg counterpart for LMMs with

k∑

ℓ=1

ℓ βℓ = 0. (2.20)

Proof. The consistency analysis can be done by direct differentiation. We take
an approach that highlights the relation between (2.19) and the one-leg continuous
adjoint step (2.11c). If the forward method is convergent of order p

y(tm) − ym = O (hp) .

For the smooth forward solution it holds that

τ [m] = tm + h
k∑

ℓ=0

ℓ βℓ

β
, β =

k∑

ℓ=0

βℓ 6= 0, y(τ [m]) − y(tm) = O
(

h
k∑

ℓ=0

ℓ βℓ

β

)
.
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The step (2.19) can be regarded as a perturbation of the one-leg step (2.11c)

k∑

i=0

αi λm+i = hJT
(
y(τ [m])

) k∑

i=0

βi λm+i + εm

εm = h
(
JT
(
ym

)
− JT

(
y(τ [m])

)) k∑

i=0

βi λm+i

Since the Jacobian is continuously differentiable we have that
∥∥∥JT

(
y(τ [m])

)
− JT

(
ym

)∥∥∥ = O
(
‖y(τ [m]) − ym‖2

)

y(τ [m]) − ym = y(τ [m]) − y(tm)︸ ︷︷ ︸
(

P

k
ℓ=0

ℓ βℓ)·O(h)

+ y(tm) − ym︸ ︷︷ ︸
O(hp)

Under the smoothness assumptions all derivatives are bounded and we have that

εm =

(
k∑

ℓ=0

ℓ βℓ

)
· O
(
h2
)

+ O
(
hp+1

)

The order of consistency of the discrete adjoint step (2.19) is therefore equal to one
in the general case, and is equal to the order of consistency of the associated one-
leg method when (2.20) holds. For Adams methods the order of consistency of the
discrete adjoint is one. For BDF methods β0 6= 0 and βℓ = 0, ℓ ≥ 1, therefore the
order of consistency equals that of the one-leg counterpart, i.e., equals that of the
original method.

We are next concerned with the effects of the initialization steps (2.4a), (2.4b)
and of the termination steps (2.4d) and (2.4e).

Proposition 2.3 (Accuracy of the adjoint initialization steps).
For a general LMM the discrete adjoint initialization steps (2.4a), (2.4b) do not

provide consistent approximations of the adjoint ODE solution. For Adams methods
the initialization steps are O(h) approximations of the continuous adjoint solution.

Proof. Consider without loss of generality that the coefficients are scaled such
that α0 = 1. The initialization steps (2.4a), (2.4b) for constant step sizes read:

λN =
(
I − hβ0 JT

N

)−1
(

∂g

∂y
(yN )

)T

, (2.21a)

N−m∑

i=0

αi λm+i = hJT
m ·

N−m∑

i=0

βi λm+i , m = N − 1, · · · , N − k + 1 . (2.21b)

Note that if the forward method converges at order p

λ(tN ) =

(
∂g

∂y

(
y(tN )

))T

=

(
∂g

∂y

(
yN

))T

+ O (hp) .

For implicit schemes (β0 6= 0) equation (2.21a) gives λN = λ(tN − β0h) + O
(
h2
)

= λ(tN ) + O (h).
Under the smoothness assumptions the forward solution y(t) can be extended

uniquely beyond tend for all times t < tend + ∆t. Under the smoothness assumptions
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the continuous adjoint solution λ(t) can also be extended uniquely for all times t <
tend + ∆t (with eventually a redefinition of ∆t). Choose a small enough time step
such that k h < ∆t and define λi = λ(ti) for N ≤ i ≤ N +k−1. Equation (2.21b) can
be written as the discrete adjoint formula at internal time steps plus a perturbation:

k∑

i=0

αi λm+i = hJT
m ·

k∑

i=0

βi λm+i + εm , m = N − 1, · · · , N − k + 1 ,

εm =

k∑

i=N−m+1

αi λ(tm+i) − hJT
m ·

k∑

i=N−m+1

βi λ(tm+i) .

The perturbation term is ‖εm‖ = O(1) in the general case where at least one of α2,
· · · , αk is nonzero. For Adams methods where α2 = · · · = αk = 0 the magnitude of
the perturbation term is ‖εm‖ = O(h).

Proposition 2.4 (Accuracy of the adjoint termination steps).
For a general LMM the discrete adjoint termination steps (2.4d) and (2.4e) are

not consistent discretizations of the adjoint ODE.
Proof. With the coefficients scaled such that α0 = 1 the termination step (2.4d)

can be written as

k∑

i=0

αi λk−1+i = hJT
k−1 ·

k∑

i=0

(βi λk−1+i) + εk−1

εk−1 = −hβ0 JT
k−1 · λk−1

This is the discrete adjoint formula at internal step (k−1) plus an O(h) perturbation
added in the case of implicit methods.

The termination steps (2.4e) for constant step sizes depend on the particular
initialization procedure of the forward method

λm +

k∑

i=k−m

αi λm+i =

k−1∑

i=m+1

(
∂θi

∂ym

)T

λi + hJT
m ·

k∑

i=k−m

βi λm+i ,

m = k − 2, · · · , 1 ,

λ0 + αk λk =
k−1∑

i=1

(
dθi

dy0

)T

λi + hJT
0 · (βk λk) .

In general these are not consistent discretizations of the adjoint ODE at the corre-
sponding times, as will be seen in two examples presented next.

Example. Consider the fixed-step Adams-Bashforth method AB2 (2.17) started
with an explicit Euler step and the corresponding discrete adjoint process (2.18a)–
(2.18d). For the fixed step formulas one replaces hn = h and ωn = 1 for all n in (2.17)
and (2.18a)–(2.18d).

The initialization step (2.18a) gives λN = λ(tN ) + O(hp) (with the error coming
from the fact that the argument of ∂g/∂y is the numerical and not the exact solution
at tN ). The step (2.18b) provides an approximation λN−1 = λ(tN−1 − h/2) + O(h2)
= λ(tN−1) + O(h).

If λ2 = λ(t2) and λ1 = λ(t1) the termination step (2.18d) provides an approxi-
mation λ0 = λ(t0) + O(h).

12



Example. Consider next the fixed step BDF2 method (2.14) started with an im-
plicit Euler step and the corresponding discrete adjoint process (2.15a)–(2.15e). For
the fixed step formulas one replaces hn = h and ωn = 1 for all n in (2.14) and
(2.15a)–(2.15e). The initialization step (2.15a) computes λN = λ(tN − 2h/3)+O(h2)
= λ(tN ) + O(h). The step (2.15b) provides λN−1 = (4/3)λ(tN−1 − h/3) + O(h2)
= λ(tN−1) + O(1).

If λ2 = λ(t2) and λ3 = λ(t3) the termination relation (2.15d) provides λ1 =
λ(t2 + h/2) +O(h2) = λ(t1) +O(h). If in addition λ1 = λ(t1) then (2.15e) computes
λ0 = λ(t0) + O(1).

In summary the discrete adjoints of the fixed-step LMM are at least first order
consistent with the adjoint ODE at the intermediate points. The initialization and
the termination relations introduce perturbations that can be as large as O(1). One
can change the discrete adjoint initialization and the termination steps to consistent
relations. In this case we expect the method to be at least first order consistent with
the adjoint ODE.

2.2. Consistency Analysis for Variable Step Sizes. For variable steps the
consistency of the discrete adjoint with the adjoint ODE is not automatic. In this
section we will use the notation (2.2).

Proposition 2.5 (Variable stepsize consistency at the intermediate trajectory
points).

In general the numerical process (2.4a)–(2.4e) is not a consistent discretization
of the adjoint ODE (1.9).

Proof. The consistency can be lost due to the fact that the coefficients α
[m+i]
i ,

β
[m+i]
i in (2.4c) correspond to different time steps in the forward integration (2.1c).

The relation (2.4c) can be regarded as a one-leg discretization method (2.13)
applied to the adjoint ODE. Replacing JT

(
ym

)
by JT

(
y(tm)

)
in (2.13) introduces an

O(hp+1) approximation error

k∑

i=0

α
[m+i]
i λm+i = hm+1 JT

(
y(tm)

)
·

k∑

i=0

β̂
[m+i]
i λm+i + O

(
hp+1

)
, m = N − k, · · · , k .

The following consistency analysis of (2.13) will be performed on this modified equa-
tion and its results are valid within O(hp+1).

To obtain consistency conditions we substitute a smooth local solution q(tℓ) for
λℓ, −q′(tℓ) for JT

(
y(tℓ)

)
λℓ, and expand in Taylor series around tm.

The zeroth order consistency condition reads

k∑

i=0

α
[m+i]
i = 0 . (2.23)

For a general sequence of step sizes hm the values of α
[m+i]
i at different steps m are not

necessarily constrained by (2.23). A general discrete adjoint LMM process is therefore
inconsistent with the adjoint ODE.

In the case where the forward steps are chosen automatically to maintain the
local error estimate under a given threshold the step changes are smooth [4, Section
III.5] in the sense that

|ωn − 1| ≤ const · hn−1 ⇒ ωn = 1 + O(|h|) . (2.24)
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Recall that we do not consider the derivatives of the step sizes with respect to system
state. Nevertheless, let us look at the impact of these smooth step changes on the

discrete adjoint consistency. If the LMM coefficients α
[n]
i and β

[n]
i depend smoothly

on step size ratios ωn, then for each n they are small perturbations of the constant

step size values: α
[n]
i = αi + O(|h|) and β

[n]
i = βi + O(|h|). It then holds that∑k

i=0 α
[m+i]
i = O(|h|). Consequently the zeroth order consistency condition (2.23) is

satisfied. The O(|h|) perturbation, however, prevents first order consistency of the
discrete adjoint method.

For Adams methods in particular the relation (2.23) is automatically satisfied.
The first order consistency condition for Adams methods reads

k∑

i=0

β̂
[m+i]
i = 1 . (2.25)

For a general sequence of step sizes hm the values of β
[m+i]
i at different steps m are

not constrained by any relation among them and (2.25) is not satisfied.
If the forward steps are chosen such that (2.24) holds [4, Section III.5], and if the

LMM coefficients depend smoothly on step size ratios, we have that
∑k

i=0 β̂
[m+i]
i =

1 + O(|h|). In this situation the discrete Adams adjoint methods are first order
consistent with the adjoint ODE.

Example. Consider the variable step BDF2 method (2.14) and its discrete adjoint
(2.15c). The zeroth consistency condition (2.23)

k∑

i=0

α
[m+i]
i = 1 − (1 + ωm+1)

2

1 + 2ωm+1
+

ω2
m+2

1 + 2ωm+2
= 0

has a single positive solution ωm+2 = ωm+1 = ω (the step sizes change at a constant
ratio). Substituting this into the first order consistency condition (2.25) leads to the
unique solution ω = 1 (constant step sizes).

Example. As a second example consider the variable step AB2 method (2.17) and
its discrete adjoint. The method is zeroth order consistent. The first order condition
(2.25) is

2ωm+1 = ω2
m+2 + 1

and holds only when the forward time steps follow a certain pattern (all the step
ratios are determined by the last ωN : ωN−1 = (ω2

N + 1)/2, ωN−2 = (ω2
N−1 + 1)/2,

etc.)

3. Stability considerations. The method (2.1a)–(2.1c) is zero-stable if it has
only bounded solutions when applied to the test problem

y′ = 0 , y(tini) = yini , tini ≤ t ≤ tend . (3.1)

To be specific consider the LMM (2.1a)–(2.1c) scaled such that α
[n]
0 = 1 for all n.

Using the notation 1 = [1, 0, · · · , 0]
T
, = [1, 1, · · · , 1]

T
, and

Yn =




yn

...
yn−k+1



 , An =





−α
[n]
1 I · · · −α

[n]
k−1 I −α

[n]
k I

I 0 0
...

. . .
...

0 · · · I 0




,
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the LMM applied to the test problem (3.1) can be written in the equivalent one-step
form

Yk−1 = ( ⊗ I) · yini , (3.2a)

Yn = An Yn−1 , n = k, · · · , N , (3.2b)

yN =
(

T
1 ⊗ I

)
· YN , Ψ = g

(
yN

)
. (3.2c)

The LMM (3.2a)–(3.2b) (i.e., (2.1a)–(2.1c)) is zero-stable if [4, Definition 5.4]

‖An+ℓ An+ℓ−1 · · · An+1 An‖ ≤ const ∀ n, ℓ > 0 . (3.3)

A consequence of zero-stability (3.3) is that small changes δyini in the initial conditions
of the test problem lead to small changes δΨ in the cost function since

δΨ =
∂g

∂y
(yN ) ·

(
T
1 ⊗ I

)
·
(

k∏

n=N

An

)
· ( ⊗ I) · δyini .

The discrete adjoint of the numerical process (3.2a)–(3.2c) is

ΛN = ( 1 ⊗ I)

(
∂g

∂y

(
yN

))T

(3.4a)

Λn−1 = AT
n Λn , n = N, · · · , k , (3.4b)

λ0 =
(

T ⊗ I
)
· Λk−1 . (3.4c)

This is the equivalent one-step form of the discrete adjoint (2.4a)–(2.4e) on the test
problem (3.1). By analogy with the stability of the forward integration, the discrete
adjoint process (3.4a)–(3.4c) is zero-stable if

∥∥AT
n AT

n+1 · · · AT
n+ℓ−1 AT

n+ℓ

∥∥ ≤ const ∀ n, ℓ > 0 , (3.5)

which ensures that all its numerical solutions remain bounded. The product of ma-
trices in (3.5) is the transpose of the product of matrices in (3.3), and consequently if
(3.3) holds then (3.5) holds. In other words if a variable-step LMM is zero-stable then
its discrete adjoint is zero-stable. A consequence of the discrete adjoint zero-stability
(3.5) is that small perturbations of the adjoint boundary condition (∂g/∂y)T (yN )
lead to only small changes in the adjoint initial value, since

λ0 =
(

T ⊗ I
)
·
(

N∏

n=k

AT
n

)
· ( 1 ⊗ I) ·

(
∂g

∂y

(
yN

))T

.

4. Derivatives at the Initial Time. We now prove a remarkable property
of the discrete LMM adjoints. Even if the discrete adjoint variables λn are poor
approximations of the continuous adjoints λ(tn) at the intermediate grid points, the
discrete adjoint at the initial time converges to the continuous adjoint variable with
the same order as the original LMM.

Consider a LMM (2.1a)–(2.1c) that computes numerical approximations of (1.6).
The last approximation time tN = tend is fixed (for any N) and coincides with the
predefined ODE final time. We denote the sequence of discretization step sizes and
the maximum step size as specified in (2.2) and (2.3). The number of steps depends on
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the step discretization sequence, N = N(h). The numerical approximations depend
on the time discretization grid and are denoted by yh

n, n = 0 · · ·N(h).
Proposition 4.1 (Consistency at the initial time).
Consider a LMM (2.1a)–(2.1c) convergent of order p, and initialized with linear

numerical methods. (This covers the typical situation where the initialization proce-
dures θ1, · · · , θk−1 are Runge Kutta or linear multistep numerical methods). The
numerical solutions at the final time are such that

∥∥∥yh
N(h) − y (tend)

∥∥∥
∞

= O (|h|p) , ∀h : |h| ≤ H ,

for a small enough threshold H. Let λh
n be the solution of the discrete LMM adjoint

process (2.4a)–(2.4e).
Then the discrete adjoint solution λh

0 is an order p approximation of the contin-
uous adjoint λ(t0) at the initial time, i.e.

∥∥λh
0 − λ (t0)

∥∥
∞

= O (|h|p) , ∀h : |h| ≤ H , (4.1)

for a small enough threshold H.
Proof. The proof is based on the linearity of the LMM and of its starting proce-

dures, which leads to an order p approximation of the full sensitivity matrix.
Step 1: The continuous sensitivity matrix. The continuous sensitivity matrix

S(t) ∈ ℜd×d is defined by

Si,j(t) =
∂yi(t)

∂yj (tini)
, 1 ≤ i, j ≤ d , tini ≤ t ≤ tend ,

and contains the derivatives of the ODE solution components at time t with respect to
the initial value components. Superscripts are indices of matrix or vector components.

Infinitesimal perturbations δy(tini) of the initial conditions of the ODE (1.6) lead
to infinitesimal changes in the solution

δy(t) =
∂y(t)

∂y (tini)
· δy(tini) = S(t) · δy(tini) , tini ≤ t ≤ tend .

If the perturbation affects only the j-th component of the initial vector the solution
of (4.2) is the j-th column of the sensitivity matrix sj = S1:d,j

δy (tini) = j ⇒ δy(t) = S(t) · j = sj(t) =
∂y(t)

∂yj(tini)
, tini ≤ t ≤ tend .

Infinitesimal solution changes δy(t) propagate forward in time according to the
tangent linear ODE model

δy′ = J(y) · δy , δy (tini) = δy (tini) , tini ≤ t ≤ tend . (4.2)

which is obtained by taking the variation of (1.6).
The entire sensitivity d×d matrix S (tend) can be obtained column by column via d

forward solutions of the tangent linear model (4.2) initialized with sj (tini) = j . Since
the tangent linear model (4.2) depends on the ODE solution (which is an argument
of the Jacobian) one has to solve simultaneously for (1.6) and (4.2)

[
y
δy

]′
=

[
f(y)

J(y) · δy

]
,

[
y (tini)
δy (tini)

]
=

[
yini

j

]
, tini ≤ t ≤ tend . (4.3)
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A numerical solution of (4.3) is obtained by applying the LMM method (2.1a)–(2.1c)
with discretization steps h to this extended system. The LMM solves simultaneously
for the solution y(t) and the sensitivity δy(t):

y0 = yini , δy0 = j , (4.4a)
[

yn

δyn

]
= θn

([
y0

δy0

]
, · · · ,

[
yn−1

δyn−1

])
, n = 1, · · · , k − 1 , (4.4b)

k∑

i=0

α
[n]
i yn−i = hn

k∑

i=0

β
[n]
i fn−i , (4.4c)

k∑

i=0

α
[n]
i δyn−i = hn

k∑

i=0

β
[n]
i Jn−i · δyn−i , n = k, · · · , N . (4.4d)

The numerical solutions (4.4a)–(4.4d) at final time are yh
N(h) and δyh

N(h) = (sj)
h
N(h),

j = 1, · · · , d, where we have explicitly represented the dependency of the solution on
the step size sequence. By repeating the numerical integration (4.4a)–(4.4d) with the
initial perturbations δy0 = j , j = 1, · · · , d, and with the same step size sequence

h, we obtain numerical approximations (sj)
h
N(h) for each column of the sensitivity

matrix, j = 1, · · · , d. The numerically-solved full sensitivity matrix is therefore

Sh
N(h) =

[
(s1)

h
N(h) · · · (sd)

h
N(h)

]
.

The eigenvalues of the Jacobian of the ODE (1.6) and of the Jacobian of the
tangent linear ODE are the same. Therefore, for the same sequence of steps h, the
stability properties of the LMM applied to solve (1.6) are the same as the stability
properties of the numerical process (4.4a)–(4.4d). Since the numerical LMM is con-
vergent with order p, each component of the numerically solved sensitivity matrix
converges to the corresponding component of the exact sensitivity matrix with order
p

max
1≤i,j≤n

∣∣∣∣
(
Sh

N(h)

)i,j

− Si,j (tend)

∣∣∣∣ = O (|h|p) , ∀ h : |h| ≤ H . (4.5)

Step 2: The discrete sensitivity matrix. The discrete sensitivity matrix Qn ∈ ℜd×d

is defined by

(Qn)
i,j

=
∂yi

n

∂yj
0

, 1 ≤ i, j ≤ d , 0 ≤ n ≤ N ,

and contains the derivatives of the numerical solution components at (the discrete
approximation time) tn with respect to the initial value components.

An infinitesimal perturbation δy0 of the initial conditions leads to an infinitesimal
change δyn the numerical solution (2.1a)–(2.1c). Similar to the continuous case, a
perturbation δy0 = j leads to a solution that is the j-th column of the sensitivity
matrix qj = Q1:d,j

δyn = Qn · δy0 , δy0 = j ⇒ δyn = (qj)n =
∂yn

∂yj
0

, 0 ≤ n ≤ N .

17



The solution changes δyn propagate in time according to the tangent linear LMM,
which is obtained by taking the variation of (2.1a)–(2.1c). With δy0 = j and δyn =
(qj)n we have

y0 = yini , δy0 = j , (4.6a)

[
yn

δyn

]
=




θn (y0, · · · , yn−1)

n−1∑

p=0

∂θn

∂yp
(y0, · · · , yn−1) δyp



 , (4.6b)

n = 1, · · · , k − 1 ,
k∑

i=0

α
[n]
i yn−i = hn

k∑

i=0

β
[n]
i fn−i , n = k, · · · , N , (4.6c)

k∑

i=0

α
[n]
i δyn−i = hn

k∑

i=0

β
[n]
i Jn−i · δyn−i . (4.6d)

The numerical solutions (4.6a)–(4.6d) at final time are yh
N(h) and δyh

N(h) = (qj)
h
N(h),

j = 1, · · · , d. By repeating (4.6a)–(4.6d) with the initial perturbations δy0 = j , j =
1, · · · , d, and with the same step size sequence h, we obtain numerical approximations
(qj)

h
N(h). The full discrete sensitivity matrix is therefore

Qh
N(h) =

[
(q1)

h
N(h) · · · (qd)

h
N(h)

]
.

Let’s compare the two numerical processes (4.4a)–(4.4d) and (4.6a)–(4.6d), as-
suming that both use the same step size sequence h. The initial values (4.4a) and
(4.6a) are the same for both processes.

We now use the assumption that the initialization procedures θn are linear meth-
ods (like Runge Kutta or linear multistep). In this case the initialization procedure
applied to the extended system (4.3) is the same as the variation of the original ini-
tialization procedure applied to (1.6). With some abuse of notation we have that the
linearity of the initialization scheme implies that:

θn

([
y0

δy0

]
, · · · ,

[
yn−1

δyn−1

])
=




θn (y0, · · · , yn−1)

n−1∑

p=0

∂θn

∂yp
(y0, · · · , yn−1) δyp



 .

Therefore initialization steps (4.6b) are (4.4b) are identical.
The numerical solution y0, · · · , yN at all discretization points computed with

(4.4b), (4.4b), and (4.4c) is the same as the solution computed with (4.6a), (4.6b),
and (4.6c) since the formulas are identical and the sequence of step sizes h is the same.

Furthermore, the LMM discretization of the tangent linear ODE (4.4d) gives the
same discrete process as the tangent linear LMM (4.6d). The linearity of the LMM
makes it “invariant under differentiation”. Consequently, the numerical sensitivity
matrix (4.6a)–(4.6d) is the same as the numerical approximation of the ODE sensi-
tivity matrix (4.4a)–(4.4d),

Qh
N(h) = Sh

N(h) . (4.7)

From (4.5) and (4.7) we conclude that, in the infinity matrix norm,
∥∥∥Qh

N(h) − S (tend)
∥∥∥
∞

= O
(
|h|p

)
, ∀ h : |h| ≤ H , (4.8)
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and
∥∥∥Qh

N(h)

∥∥∥
∞

≤ ‖S (tend)‖∞ + O
(
|h|p

)
= O

(
1
)

, ∀ h : |h| ≤ H . (4.9)

Step 3: The adjoint approximation error at the initial time. The continuous ad-
joint variable at the initial time is

λ (tini) =

(
∂g
(
y(tend)

)

∂y (tini)

)T

=

(
∂g

∂y

(
y(tend)

)
· ∂y(tend)

∂y (tini)

)T

= ST (tend)·
(

∂g

∂y

(
y(tend)

))T

.

The discrete adjoint variable at the initial time is

λ0 =




∂g
(
yh

N(h)

)

∂y0





T

=

(
∂g

∂y

(
yh

N(h)

)
·
∂yh

N(h)

∂y0

)T

=
(
Qh

N(h)

)T

·
(

∂g

∂y

(
yh

N(h)

))T

.

The adjoint difference is

λ (tini) − λ0 = ST (tend) ·
(

∂g

∂y
(y(tend))

)T

−
(
Qh

N(h)

)T

·
(

∂g

∂y

(
yh

N(h)

))T

(4.10)

=
(
S(tend) − Qh

N(h)

)T

·
(

∂g

∂y
(y(tend))

)T

+
(
Qh

N(h)

)T

·
(

∂g

∂y
(y(tend)) − ∂g

∂y

(
yh

N(h)

))T

.

Since g is smooth and the LMM converges at order p
∥∥∥∥

∂g

∂y
(y(tend)) − ∂g

∂y

(
yh

N(h)

)∥∥∥∥
∞

= O
(∥∥∥y(tend) − yh

N(h)

∥∥∥
∞

)
= O (|h|p) , ∀ h : |h| ≤ H .

Taking infinity norms in (4.10), using (4.9) and the fact that ‖∂g/∂y(y(tend))‖∞ is
independent of the discretization h leads to the bound (4.1).

Comment. The crucial property used in the proof of Proposition 4.1 is the lin-
earity of the method and its initialization procedure, which makes the tangent linear
LMM to be the same as the LMM applied to solve the tangent linear ODE. The
tangent linear LMM solves the entire sensitivity matrix as accurately as it solves for
the solution.

5. Numerical Experiments. We illustrate the theoretical findings with nu-
merical results on the Arenstorf orbit [4], which is define by the following ODE:

(
y1
)′

= y3 ,
(
y2
)′

= y4 (5.1)

(
y3
)′

= y1 + 2y4 − µ̂
y1 + µ

[(y1 + µ)2 + (y2)2]
3/2

− µ
y1 − µ̂

[(y1 − µ̂)2 + (y2)2]
3/2

(
y4
)′

= y2 − 2y3 − µ̂
y2

[(y1 + µ)2 + (y2)2]
3/2

− µ
y2

[(y1 − µ̂)2 + (y2)2]
3/2

,

where µ = 0.012277471 and µ̂ = 1 − µ. The integration time interval is t0 = 0 to
tend = 1 and the initial conditions are:

y1(t0) = 0.994 , y2(t0) = y3(t0) = 0 , y4(t0) = −2.0016 .
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We consider the adjoints of the cost functional

Ψ = g
(
y(tend)

)
= y1 (tend) where

(
∂g

∂y

(
y(tend)

))T

= e1 .

For the integration we choose the explicit Adams-Bashforth methods of order two
(AB2) and three (AB3) and the second order BDF2 method. AB2 is initialized with
the forward Euler method, AB3 is initialized with a second order explicit Runge
Kutta method, and BDF2 is initialized with the implicit Euler method. This allows
each method to converge at the theoretical order. The simulations are performed in
Matlab. The reference solutions for the Arenstorf system and its continuous adjoint
ODE are obtained with the ode45 routine with the tight tolerances RelTol = 1.e-8,
AbsTol = 1.e-8. The RMS norms of the difference between the numerical adjoint
solution (λn)num and the reference continuous adjoint solution (λn)ref at each time
moment define instantaneous errors

En =

√√√√1

d

d∑

i=1

(
(λi

n)num − (λ
i

n)ref
(λi

n)ref

)2

, n = 0, · · · , N . (5.2)

As seen in Section 4 of special interest are the initial time adjoint errors E0. The
trajectory errors measure the total difference between the numerical and the reference
adjoint solutions throughout the integration interval:

‖E‖ =

√√√√ 1

N + 1

N∑

n=0

E2
n . (5.3)

Figure 5.1 shows the time evolution of instantaneous errors (5.2) for the continu-
ous and discrete adjoint solutions of AB2, AB3, and BDF2 with N = 25 integration
time steps. The fixed step solutions use a step size h = (tend − tini)/N . The variable
step sizes alternate between small even numbered steps and large odd numbered steps:
∆t = (tend − tini)/(1.5N) and h1 = 2∆t, h2 = ∆t, h3 = 2∆t, h4 = ∆t, etc. The
average step size is the same in both situations. The discrete BDF2 solution has the
largest errors at the internal points, but note the relatively small error at the initial
time. A comparison of Figure 5.1(a) with Figure 5.1(b) reveals that the continuous
adjoint errors are relatively unaffected by the variation of step sizes. However, the
errors in the discrete AB2, AB3, and BDF2 adjoints show a “zig-zag” pattern that
follows the pattern of step size changes.

We next investigate the decrease in error magnitude with increasing number of
steps for variable step size integration. Figure 5.2 shows the work-precision diagrams
for variable step size integration. The AB2 and BDF2 continuous adjoint trajectory
errors (5.3) in Figure 5.2(a) decrease at a second order rate, while the AB3 continuous
adjoint error decreases at a third order rate. The AB2 and AB3 discrete adjoint
trajectory errors decrease at first order, a somewhat better behavior than predicted
by the consistency theory. The BDF2 discrete adjoint error is O(1) and does not
decrease with increasing N . The initial time errors (5.2) in Figure 5.2(b), however,
have a different behavior. For all the discrete and continuous adjoint methods the
initial time errors E0(N) decrease at the theoretical rates, i.e. second order for AB2
and BDF2 and third order for AB3.

Figure 5.3 shows the work-precision diagrams for fixed step size integration. For
continuous adjoint methods both the trajectory and the final time errors decrease
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(a) Fixed steps (b) Variable steps

Fig. 5.1. Time evolution of En errors (5.2) in continuous and discrete adjoint solution errors
computed with N = 25 time steps.
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(a) Entire trajectory (‖E‖(N)) (b) Initial time (E0(N))

Fig. 5.2. Work-precision diagram for continuous and discrete adjoint solution errors computed
with variable time steps. The abscissas represent number of discretization time points N .

at the theoretical rate. The trajectory errors of the AB2 and AB3 discrete adjoints
converge at first order rates, while the initial time errors converge at second and
third order rates, respectively. The trajectory error of the BDF2 discrete adjoint
does not decrease with the number of steps, while the initial time error converges
at second order rate. This behavior seems curious at first since the discrete adjoint
BDF2 for constant steps is the BDF2 method at the internal grid points. However,
the initialization and termination steps of the discrete adjoint BDF2 are inconsistent
with the adjoint ODE.

We next modify the initialization and termination relations in the fixed step
discrete adjoint integrations to match those used by the corresponding continuous
adjoint integrations. This ensures that each discrete adjoint is used with consistent
initial and terminal steps. The resulting work-precision diagrams are shown in Figure
5.4. The discrete AB2 and AB3 adjoints become, effectively, the one-leg methods
associated with AB2 and AB3; both the trajectory and the initial time errors decrease
at a first order rate. The discrete BDF2 adjoint is effectively the BDF2 applied to the
adjoint ODE, and both the trajectory and the initial time errors decrease at a second
order rate.
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(a) Entire trajectory (‖E‖(N)) (b) Initial time (E0(N))

Fig. 5.3. Work-precision diagram for continuous and discrete adjoint solution errors computed
with fixed time steps. The abscissae represent the number of discretization time points N .
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Fig. 5.4. Work-precision diagram for adjoint errors with fixed time steps. The initialization
and the termination conditions have been replaced by consistent ones.

6. Conclusions. In this paper we have derived the discrete adjoints of linear
multistep formulas and have analyzed their consistency properties. Discrete adjoints
are very popular in optimization and control since they can be constructed automat-
ically by reverse mode automatic differentiation.

In general the discrete LMM adjoints are not consistent with the adjoint ODE
along the trajectory when variable time steps are used. If the forward LMM integra-
tion is zero-stable then the discrete adjoint process is zero-stable as well. For fixed
time steps the discrete adjoint steps are consistent with the adjoint ODE at the in-
ternal grid points but not at the initial and terminal points. The initialization and
termination steps in the fixed step discrete adjoint process can be changed to obtain
consistent schemes.

The discrete adjoints at the initial time, however, converge to the continuous
adjoint at a rate equal to the convergence order of the original LMM. This remarkable
property is due to the linearity of the method and of its initialization procedure.
Therefore the discrete adjoint linear multistep methods provide accurate gradients of
a cost functional with respect to a set of fixed model parameters.

Numerical tests on the Arenstorf orbit system confirm the theoretical findings.
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The discrete adjoint BDF2 solution is not consistent with the continuous adjoint so-
lution at intermediate integration times, and the numerical error is heavily influenced
by the pattern of step size changes. The fixed step BDF2 adjoint is not consistent
due to initialization and termination procedures. When these steps are changed the
solution converges at second order. The discrete AB2 and AB3 adjoints converge at
first order. For all methods the discrete adjoints at the initial time convergence at
the theoretical order of the forward methods.

Future work will be devoted to the error analysis of discrete adjoints in the case
of stiff systems. ODE solvers automatically adjust the step size during the forward
integration to keep an estimate of the local error below a user given threshold. This
introduces a dependency of the step size on the forward solution. The effect of such
a step control mechanism on the the discrete adjoint method will also be considered
in the follow-up work.
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