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ABSTRACT     
This is the first part of a two-part article.  A new computational approach for parameter estimation is proposed based on 
the application of the polynomial chaos theory.  The polynomial chaos method has been shown to be considerably more 
efficient than Monte Carlo in the simulation of systems with a small number of uncertain parameters. In the new 
approach presented in this paper, the maximum likelihood estimates are obtained by minimizing a cost function derived 
from the Bayesian theorem.  Direct stochastic collocation is used as a less computationally expensive alternative to the 
traditional Galerkin approach to propagate the uncertainties through the system in the polynomial chaos framework.  
This approach is applied to very simple mechanical systems in order to illustrate how the cost function can be affected 
by undersampling, non-identifiablily of the system, non-observability, and by excitation signals that are not rich 
enough..  When the system is non-identifiable, regularization techniques can still yield most likely values among the 
possible combinations of uncertain parameters resulting in the same time responses than the ones observed.  This is 
illustrated using a simple spring-mass system.  Possible applications of this theory to the field of vehicle dynamics 
simulations include the estimation of mass, inertia properties, as well as other parameters of interest.  In the second part 
of this article, this new parameter estimation method is illustrated on a nonlinear four-degree-of-freedom roll plane 
model of a vehicle in which an uncertain mass with an uncertain position is added on the roll bar.    

 

Keywords:  Parameter Estimation, Polynomial Chaos, Collocation, Bayesian Estimation, Hammersley Algorithm, 
Halton Algorithm, Vehicle Dynamics        

 

1. INTRODUCTION AND BACKGROUND  

The polynomial chaos theory has been shown to be consistently more efficient than Monte Carlo simulations in order to 
assess uncertainties in mechanical systems [13, 14]. This paper extends the polynomial chaos theory to the problem of 
parameter estimation, and applies it to a four degree of freedom roll plane model of a vehicle with a mass added on the 
roll bar.  Parameter estimation is an important problem, because many parameters simply cannot be measured 
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physically with good accuracy, especially in real time applications. The method presented in this paper has the 
advantage of being able to deal with non-Gaussian parametric uncertainties.      

Parameter estimation is a very difficult problem, especially for large systems, and a lot of effort devoted to it 
would be needed. Estimating a large number of parameters often proved to be computationally too expensive. This has 
led to the development of techniques determining which parameters affect the system’s dynamics the most, in order to 
choose the parameters that are important to estimate [18].  Sohns, et al. [18] proposed the use of activity analysis as an 
alternative to sensitivity-based and principal component-based techniques.  Their approach combines the advantages of 
the sensitivity-based techniques (i.e., being efficient for large models) and the component-based techniques (i.e., 
keeping parameters that can be physically interpreted). Zhang and Lu [23] combined the Karhunen–Loeve 
decomposition and perturbation methods with polynomial expansions in order to evaluate higher-order moments for 
saturated flow in randomly heterogeneous porous media.     

The polynomial chaos method started to gain attraction after Ghanem and Spanos applied it successfully to the study 
of uncertainties in structural mechanics and vibration [5-8] using Wiener-Hermite polynomials. Xiu extended the 
approach to general formulations based on Wiener-Askey polynomials family [20], and applied it to fluid mechanics 
[19, 21, 22]. Authors applied for the first time the polynomial chaos method to multibody dynamic systems [13-16], 
terramechanics [12, 17], and parameter estimation [2, 3].   

The fundamental idea of polynomial chaos approach is that random processes of interest can be approximated by 
sums of orthogonal polynomial chaoses of random independent variables. In this context, any uncertain parameter can 
be viewed as a second order random process (processes with finite variance; from a physical point of view they have 
finite energy). Thus, a second order random process )(θX , viewed as a function of the random event θ , can be 
expanded in terms of orthogonal polynomial chaos as [5]:   
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For Gaussian random variables the basis are Hermite polynomials, for uniformly distributed random variables the basis 
are Legendre polynomials, for beta distributed random variables the basis are Jacobi polynomials, and for gamma 
distributed random variables the basis are Laguerre polynomials [20, 21]. In practice, a truncated expansion is used,    
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total number of terms increases rapidly with un  and p .  

In the deterministic case, a second order unconstraint multibody system can be described by the following Ordinary 
Differential Equation:    
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In this stochastic framework, for a second order unconstraint multibody system, the displacement x  and the velocity v  
can be expanded as:  
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Propagating Eq. (5) through the deterministic system of equations of the multibody system, one obtains:    
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To derive evolution equations for the stochastic coefficients )(tx i
m  we impose that Eq. (6) holds at a given set of 

collocation vectors [ ]Ti
d

ii μμμ L1=  for all Si ≤≤1 .  This leads to:     
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where A  represents the matrix of basis function values at the collocation points:   

( ) SjSiAAA ij
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The collocation points have to be chosen such that A  is nonsingular. The collocation system can be written as:    

( ) SiVXtFVVX iiiiii ≤≤Θ== 1,,,,, &&         (9) 

After integration, the stochastic solution coefficients are recovered using:     
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The mean values of )(tx  and )(tv  are )()( 11 ξψtx  and )()( 11 ξψtv , respectively.   

The standard deviations of )(tx  and )(tv are given by:     
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When the basis are orthogonal polynomials, the standard deviations of )(tx  and )(tv are given by:    
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When the basis are orthonormal, the standard deviations of )(tx  and )(tv are given by:      
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The Probability Density Function (PDF) of )(tx  and )(tv  are obtained by drawing histograms of their values using a 
Monte Carlo simulation and normalizing the area under the curves that are obtained.  It is not computationally 
expensive since the Monte Carlo simulation is run on the final result, and not for the while process.  For instance, the 
ODE is run the same number of times than the number of collocation points, which is typically much lower than the 
number of runs used for the Monte Carlo simulation.        
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2. BAYESIAN APPROACH FOR PARAMETER ESTIMATION    

Optimal parameter estimation combines information from three different sources: the physical laws of evolution 
(encapsulated in the model), the reality (as captured by the observations), and the current best estimate of the 
parameters. The information from each source is imperfect has associated errors. Consider the mechanical system model 
(6) which advances the state in time in a simpler notation:   
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The state of the model n
ky ℜ∈  at time moment kt  depends implicitly on the set of parameters pℜ∈θ , possibly 

uncertain (the model has n states and p parameters). M  is the model solution operator which integrates the model 
equations forward in time (starting from state 1−ky  at time 1−kt  to state ky  at time kt ).  

For parameter estimation it is convenient to formally extend the model state to include the model parameters and 
extend the model with trivial equations for parameters (such that parameters do not change during the model evolution)   

1−= kk θθ               (15) 

The optimal estimation of the uncertain parameters is thus reduced to the problem of optimal state estimation. 
Observations of quantities that depend on system state are available at discrete times kt   
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where m
kz ℜ∈  is the observation vector at kt , h  is the (model equivalent) observation operator and kH  is the 

linearization of h  about the solution ky . Note that there are m observations for the n-dimensional state vector, and that 
typically m < n. Each observation is corrupted by observational (measurement and representativeness) errors [4]. We 
denote by ⋅  the ensemble average over the uncertainty space. The observational error is the experimental uncertainty 
associated with the measurements and is usually considered to have a Gaussian distribution with zero mean and a 
known covariance matrix kR .     

Using polynomial chaoses the uncertain parameters are modeled explicitly as functions of a set of random variables 
pℜ⊂Ω∈ξ  with a joint probability density function ( )ξρ . The explicit dependency of the system state on the random 

variables is obtained via a collocation approach:  
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We adopt the point of view that the “state of knowledge” about the uncertain parameters can be described by 
probability densities. From Bayes’ rule the probability density of the parameter distribution conditioned by all 
observations is  
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where ][ NN yzP  is the Probability Density Function (PDF) of the latest observational error (taken at time Nt ), 
]|[ 01 zzyP NN K−  is the “model forecast PDF” conditioned by all previous observations (taken at times 0t  to 1−Nt ), and 

]|[ 0zzyP NN K  is the “assimilated PDF”.  The assimilated PDF represents the aposteriori probability of the parameters 
after all the observations have been taken into account.     

For simplicity denote by y  the current state of the system (the best estimation obtained using all previous 
observations 01 zzN K− ) and by Nzz =  the latest, yet-to-be-used set of observations. Moreover, consider that the 
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observational error has a Gaussian distribution with covariance kR  and that the observations at different times are 
independent. Then Bayes’ formula becomes     
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The unconditional probability density ][ yP  is the PDF of the current system state, and is implicitly represented by 
the polynomial chaos expansion of the state ( )ξyy = . Moreover, integration against this probability density can be 
evaluated by integration in the independent random variables 
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The denominator can be evaluated by a multidimensional integration. However, in our approach, there is no need to 
evaluate this scaling factor, since its omission does not change the estimation procedure. (The omission of this scaling 
factor is equivalent to adding a constant to the function we minimize, and this does not change the result of the 
minimization procedure).   

The mean of the best state estimate that uses the new observations z is obtained from Bayes formula as   
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For the parameter estimation the Bayes’ formula specializes to:  
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Note that the aposteriori probability defined by Bayes formula can be written (in principle) as a function of the 
independent random variables ξ      
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In this setting polynomial chaos is used to model the a priori pdf of the parameters; the Bayes formula is employed 
to obtain the a posteriori pdf (i.e., the pdf conditioned by the observations).  

The maximum likelihood estimate is given by that realization of the parameters (that value of ξ ) which maximizes 
the a posteriori probability ]|[ zP θ , or, equivalently, minimizes ( )]|[log zP θ− :     
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Note that for Ω∉ξ  we have ( ) 0=ξρ  and cost the function J becomes infinite.  This cost function is composed of 
two parts:    
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where mismatchJ  comes only from the differences between the available measurements and the model response, while 

aprioriJ  encapsulates the apriori knowledge of the parameter uncertainty. The value Jminargˆ =ξ  minimizing the cost 

function (25) gives the most likely values of our uncertain parameters as ( )ξθθ ˆˆ = .        

 

3. INSIGHT INTO THE BAYESIAN APPROACH USING SIMPLE MECHANICAL SYSTEMS    

We now illustrate the proposed Bayesian approach for the estimation of parameters of several simple mechanical 
systems. We discuss how the cost function and the estimate can be affected by low sampling rates (i.e., below the 
Nyquist frequency), by measurement noise, and by non-identifiability issues.    

The state of the model nky ℜ∈  at time moment kt  depends implicitly on the set of uncertain parameters pℜ∈θ , 
and therefore on the set of independent random variables ξ . This dependency is explicitly represented in the 
polynomial chaos framework, specifically, at each time moment kt the state is given as a polynomial of the random 
variables ( )ξkk yy = . The probability density of the state can also be obtained from this relation. H  is simply a matrix 
converting the states of the model )(ξy  to the observable parameters of the system (i.e., the quantities which can be 
measured), which are contained in z .  kR  is the covariance matrix of the uncertainty associated with the 
measurements, i.e. of the measurement noise.      

( ))(log ξρ−=aprioriJ  comes from the apriori knowledge of our uncertain parameters.  Using polynomial chaoses 

the uncertain parameters can be modeled explicitly as functions of a set of random variables pℜ⊂Ω∈ξ  with a joint 
probability density function ( )ξρ .       

mismatchJ  is usually the most important component of the cost function, but aprioriJ  is useful when mismatchJ  does not 
contain enough information in order to find a clear minimum value for our cost function.  This is illustrated in the next 
section of this article.      

 

3.1. Mass-Spring System with Uncertain Initial Velocity    
This section applies the Bayesian approach to the simple Mass-Spring system shown in Figure 1.         

K

M

x

K

M

x

 

Figure 1. Mass –Spring System   
 

The parameters K (the stiffness of the spring) and M  (the mass of the body) are known. The system has a zero initial 
displacement 00 =x  but a nonzero initial velocity 0v  (e.g., created by hitting the mass from below with a hammer at 

0=t , which will produce 00 >v ).  We want to estimate the uncertain initial condition 0v  based on measurements of 
the displacement )(tx  at later times.   

The equation of motion of the system is    
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0)()(  M =+ txKtx&&              (26) 

and admits the general solution [11]:   
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The values chosen for the numerical experiments are N/m9478.3 )(20.1 K 2 ≈×= π ,  kg 0.1 M = , and therefore 
Hz  1rad/s  π2 ==nω .  For these values, and with 00 =x , the solution (27) becomes:  

 ( ) ( ).2cos)(,2sin
2

)( 0
0 tvtvt

v
tx ππ

π
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The amplitude of )(tx  and the amplitude of )(tv  are both proportional to the uncertain parameter 0v , as illustrated in 
Figure 2. A single measurement of the displacement at a time 21 mt ≠ (with m integer) allows to estimate the initial 
velocity as )2sin()(2 110 ttxv ππ= . Note that 0)2sin( 1 ≠tπ . A single measurement of both the velocity and the 

displacement at any time 2t  is sufficient to retrieve the initial velocity, since for any 2t at least one of the variables is 
nonzero, 0)2sin( 2 ≠tπ  or 0)2cos( 2 ≠tπ .    

 

   

Figure 2. Displacements and Velocities of the Mass –Spring System.   
 

We now consider the case where measurements of the displacement only are taken at multiple time moments 

Nttt ,,, 21 L   This will give insight on how the two parts of the Bayesian cost function can be affected by low sampling 
rates (i.e., below the Nyquist frequency) and by measurement noise.       

We assume some prior knowledge of the initial velocity, which represents how hard different people can hit the 
mass with the hammer. The range of possible initial velocities is between m/s 5.0  and m/s 5.1 , with a most likely value 
of m/s 10 =v . We model this prior knowledge as shown in Figure 3. Let ξ  be a random variable with a Beta(1,1) 
probability distribution )(ξρ in the range ]1,1[−∈ξ . The random initial velocity is then   

( ) .]/[5.01)0,( 0 smvv nom ξξ +=                (29) 
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Figure 3.  Beta (1, 1) Distribution for v0   
 

The state of the system at future times depends on the random initial velocity and can be represented by 
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ξ .  Synthetic measurements are obtained from a reference simulation with the reference value of the 

uncertain parameter 23.0=refξ . If we assume that only the displacement can be measured we have that 
[ ]001=H  and the measurements yield    

( ).,0,)()( refref
kkkkkkk RtxtyHz Ν∈+=+⋅= εεε        (30) 

The measurement noise kε is assumed to be Gaussian with a zero mean and a variance 1% (or 0.01% or 10% when 
indicated) of the value of )(tx  plus the maximum measured value of )(tx  divided by 1000.  Therefore, the covariance 

of the uncertainty associated with the measurements is ( ){ } ][)(max001.001.0,10max 2212 mzzR ktkk += − .  This 

value is always greater than zero and 1−
kR  can always be computed.   Measurement errors at different times are 

independent random variables.  

The maximum likelihood estimate is obtained by minimizing the Bayesian cost function  
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The random system output ),( ty ξ is discretized using 6 terms in the polynomial chaos expansions, and 12 collocation 
points will be used to derive the polynomial chaos coefficients.  The collocation points used in this study are obtained 
using an algorithm based on the Halton algorithm [9], which is similar to the Hammersley algorithm [10].  More details 
are provided about the Halton points and the concept of collocation in general in the second part of this article.   

The frequency of the output signal ),( ξtx  is 1 Hz for any value of ξ .  If )(tx  is measured every 0.5 s from t = 0.5 
to t = 5, then 0),( =ξktx  for any value of ξ  and kkz ε=  mismatch part gives no extra information, as shown in Figure 
4, in which the plot for )(tx  was obtained with 23.0=ξ .    
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Let’s illustrate this with detailing the step by step procedure using analytical formulas for this particular example.    

The explicit dependency of ),( ξtx  is obtained via a collocation approach.  It can be represented as   
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The equation of motion of the system is  
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As shown earlier, the solution for this equation for Hz  1rad/s  π2 ===
M
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nω  and for a zero initial displacement is  
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In a polynomial chaos framework, the equation of motion of the system yields 6 equations for 6=S :    
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Solving the 6 different equations of motions separately yields      
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and the polynomial expression of the displacement is   
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Let’s note that in the general case, there is no need to know the closed form solution of the equations of motion.  The 
approach presented in this paper still works when using the states variables obtained with numerical techniques to solve 
ODE’s at the chosen collocation points.       

The coefficients iv0
 are obtained using  

( ) ( ) ( ) ( ) ( ) ( )ξφξφξφξφξφξφξξ 66
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For beta(1,1) distributed random variables the basis are Jacobi (1,1) polynomials.  With one random variable and for the 
range ]1,1[−∈ξ , the normalized Jacobi (1,1) polynomials are:      
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Therefore, the coefficients iv0
 are    
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The cost function can be written as   
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Using the fact that only 1
0v  and 2

0v  are nonzero and replacing 1
0v  by nomv0)2/5(  and 2

0v  by nomv0)3/7( , it yields    
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which can be simplified as     
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which is also equal to  
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The closed form solution of the value minimizing the total cost function is a long expression that is not written here.  
The mismatch part of the cost function is  
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The value mismatchmismatch Jminargˆ =ξ  minimizing mismatch part the cost function   
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If )(tx  is measured every 0.5 s from t = 0.5 to t = 5, then 0),( =ξktx  for any value of ξ  and kkz ε=       

( ) ( )
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k
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2
1 ε

ξ           (48) 

which is the formula that was already obtained in Eq. (32)     

In this case, the denominator of Eq. (47) is not defined and mismatchξ̂  is not defined, because the mismatch part does not 
depend on ξ  and yields an estimation where all possible values of  ( ) ( )ξξ 5.0100 += vv  are equally likely.  Therefore, 

the value totalJminargˆ =ξ  minimizing the total cost function is also the value minimizing the apriori part of the cost 

function, i.e., 0ˆ =ξ .        

 

3.2. Possible Impact of Undersampling      
Increasing the number of measurements generally yields a better estimation, and as a general rule, sampling above 

the Nyquist frequency rate should always be done when possible.  This section studies the possible impact of 



A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part I  

Blanchard E., Sandu A., and Sandu C.  11/21/2007  11 

undersampling for two reasons.  Measurements might not be available at a rate above the Nyquist frequency rate when 
this frequency is very high for instance.  Another reason is that it will be shown that in some cases, it is possible to 
know that the estimation is already quite accurate when using only a very few measurements points instead of all of 
them.  It can be useful when computational time is an issue and an answer is needed quickly, which does not prevent 
from continuing to process the extra information later on if needed, knowing that the extra measurements will generally 
yields more precision.     

The mismatch part of the cost function is driven by the observational errors. The summed contribution of errors 
makes mismatchJ  a random variable with a 2χ distribution with N degrees of freedom. For a relatively large number of 
measurements this distribution behaves like a normal one with mean N and variance N. The mismatch part does not 
depend on ξ  and yields an estimation where all possible values of  0v  are equally likely. This is illustrated in Figure 4 
where the mismatch part of the cost function is constant.  The mismatch part does not depend on the noise level in this 
case since 1−

kR  is inversely proportional to ( ) ( )k
T

k εε .      

In this case the estimation relies entirely on the apriori part of the cost function, i.e. ( ))(log ξρ− .  The estimate 

coincides with the best initial guess, i.e., 0ˆ =ξ . This is really the worst-case scenario: the frequency of sampling the 
output is below the Nyquist frequency rate, and the sampling points are exactly those time moments when the 
displacement is zero and the observations contain no information.   

 

  
       (a)                  (b)  Estimate = 0     

Figure 4. Bayesian Estimation with 10 Time Points   

(a) Displacement when no noise added;  (b) Estimation with Noise = 1%;   
 

If we measure )(tx  at any other additional time point then the Bayesian approach yields an accurate estimation result 
(for any reasonable amount of measurement noise). We can interpret this fact as follows. If the output sampling is not 
done at least at the Nyquist frequency, one cannot guarantee that all the relevant information in the output signal is 
captured, i.e. one cannot guarantee that the mismatch part of the cost function will bring extra information.  We still 
have a PDF of the possible values of the uncertain parameter, but in the worst case scenario, it will be no better than the 
apriori PDF.      

In most practical situations, however, it is very likely that the Bayesian approach will provide an accurate estimate 
even when the output is sampled below the Nyquist frequency. In the example above a single measurement point is 
sufficient, provided that the measurement time is not one for which the displacement is zero. This is where the 
Parameter Estimation and Signal Reconstruction differ. In the above setting of parameter estimation one samples 
outputs of the system. If the outputs were arbitrary signals then their full reconstruction would require a sufficient 
sampling frequency. But the outputs are constrained by the input and by the system dynamics, and only a small set of all 
the possible reconstructed signals are consistent with both the known input and with the equations of motion. The 
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reconstruction of signals in this small family requires less information than the reconstruction of arbitrary signals. In our 
example all possible system outputs form a one-parameter family of signals (frequency of 1 Hz, phase equal to zero, and 
variable amplitude).  Consequently a single measurement of the output is almost always sufficient to estimate the single 
uncertain parameter.  

 

   
       (a)                  (b)  Estimate = 0.23       

 

  
    (c)  Estimate = 0.23              (d)  Estimate = 0.19       

Figure 5. Bayesian Estimation with 3 Time Points   

(a) Displacement when no noise added;  (b) Estimation with Noise = 0.01%;   

(c) Estimation with Noise = 1%;  (d) Estimation with Noise = 10%      
  

The practical question is now how to decide whether the sampling of the output is sufficient. The answer is given 
by the shape of the Bayesian cost function which indicates whether there is enough information to obtain a good 
estimate or not. The second derivative of the cost function at the minimum approximates the inverse of the covariance 
of the uncertainty in the estimate. Loosely speaking, the sharper the minimum of the cost function the more trustworthy 
the estimate is; and the wider the minimum the larger the estimation error can be.     

The role of the shape of the cost function is illustrated in Figure 5, in which only three measurements points for 
0>t  are used. Different levels of measurement errors lead to different shapes of the cost function, and to different 

estimation accuracies.  For noise levels of 0.01% and 0.1% the total cost function is almost equal to its mismatch part 
for all values of ξ , it has a sharp minimum,  and the Bayesian approach yields an accurate estimate.  For very noisy 
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measurements (10%) the relative weight of the information coming from measurements is smaller, and the relative 
weight of the apriori information is higher. Consequently the apriori part of the cost function is more significant and the 
minimum of the total cost function is wider.  In this scenario the output sampling is done below the Nyquist frequency, 
but we know that the estimates are accurate for noise levels of 0.01% and 0.1% because the cost functions have clear 
minima.   

One very accurate output sample would be enough for a perfect estimation.  Taking more sample points leads to a 
better estimation for noisy measurements because the effect of the noise averages out as we take more samples.  Figure 
6 illustrates the cost function when 30 measurements are used. The relative weight of the mismatch part increases and 
we get a better estimation when the noise of 10%.   

 

  
       (a)                (b)  Estimate = 0.23       

 

  
         (c)  Estimate = 0.23              (d) Estimate = 0.22         

Figure 6. Bayesian Estimation with 30 Time Points   

(a) Displacement when no noise added;  (b) Estimation with Noise = 0.01%;   

(c) Estimation with Noise = 1%;  (d) Estimation with Noise = 10%      
 

When the extra samples do not bring additional information to the estimation process the cost function changes as 
shown in Figure 7.  The net results of the additional measurements is to add a constant to the mismatch part (which 
corresponds to the effect of measurement noise). The shape of the cost function does not change, in particular the 
minimum is not more pronounced, and the quality of the estimate is not improved.  
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       (a)                 (b)  Estimate = 0      

 

  
       (c)                 (d)  Estimate = 0      

Figure 7.  Effect of Adding Sample Points Containing No Useful Information:  

(a) Displacement when no noise added with 5 Time Points;  (b) Estimation with 5 Time Points and Noise = 0.01%;   

(c) Displacement when no noise added with 10 Time Points;  (d) Estimation with 10 Time Points and Noise = 0.01%    
 

Next we consider the situation where both )(tx  and )(tv  are measured at times 0>kt . The observation operator is 
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The inverse 1−
kR  can always be computed. One data point at any 0>t  is sufficient to estimate our unknown parameter 

0v  for low noise levels, as shown in Figure 8.  In the general case, however, measurements of the full state vector do 
not guarantee that they contain useful information when the sampling rate is below the Nyquist frequency.   
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       (a)            (b)      

 

 
           (c)  Estimate = 0.23            (d)  Estimate = 0.19     

Figure 8. Bayesian Estimation with 1 Time Point when Velocity Measurement is Available   

 (a) Displacement when no noise added; (b) Velocity when no noise added;  

(c) Estimation with Noise = 0.01%; (d) Estimation with Noise = 1%    
 

3.3. Mass-Spring System with Sinusoidal Forcing Function      
This section applies the Bayesian approach to the simple Mass-Spring system with sinusoidal forcing function shown in 
Figure 9.     

            

K

M

x

 t)(ω cos FF(t) 0=

K

M

x

 t)(ω cos FF(t) 0=

 

Figure 9. Mass –Spring System with Sinusoidal Forcing Function   
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The parameters K  (the stiffness of the spring), M  (the value of the mass) are known. The system is initially at 
equilibrium, i.e., it has zero initial displacement 00 =x  and velocity 00 =v .  The problem is to estimate the uncertain 
the amplitude of the forcing function 0F .  

 We assume the following apriori information. 0F  has a Beta(1,1) distribution in the range ]1500,500[ NN  with 

the most likely value  N 000,10 =F .  With ]1,1[−∈ξ   a Beta(1,1) distributed variable the apriori distribution of 0F  is 

NNF 500000,10 ⋅+= ξ              (49) 

The reference value of the force amplitude is NF 115,1ref
0 = , or 23.0ref =ξ . This reference value is used to generate 

artificial observations and is not available to the estimation procedure. The numerical values of the other parameters are 
as follows: N/m765,17 )2(1.5200 2 ≈××= πK ,  kg 200 M = , 00 =x , 00 =v , and Hz  0.5rad/s  π ==ω .  Note that 

Hz  1.5rad/s  π21.5 =×== MKnω  .         

The equation of motion of the system is:    

)(cos)()(  M 0 tFtxKtx ω=+&&             (50) 

The solution is sought in the time interval from t = 0 to t =5 . Since 00 =x   and 00 =v , the analytical solution of this 
equation of motion is [11]:        
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With our numerical values, the displacement of the mass can be written as:    

( ) ( )ttFtx ππ 2sinsin101.2665)( 0
-4×≈             (52) 

It can be seen that the amplitude of )(tx  and the amplitude of )(tv  are both proportional to the uncertain parameter 0F , 
as shown in Figure 10. Therefore, the estimation of 0F  can be in principle based on a single measurement of the output. 

 

  

Figure 10. Displacement and Velocities of the Mass –Spring System with Sinusoidal Forcing Function   
 

Figure 11 illustrates the effect of measurements of both )(tx  and )(tv  at five time points. This sampling provides 
no information on the uncertain parameter, and in this worst-case scenario the estimate is based solely on apriori 
information. A sampling of the output below the Nyquist frequency does not guarantee that we get sufficient 
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information from the output signal about the uncertain parameter.  The mismatch part does not depend on the noise 
level in this case since 1−

kR  is inversely proportional to ( ) ( )k
T

k εε , as shown in Eq. (32).    

 

 
       (a)             (b)      

 

  
     (c)  Estimate = 0                 (d)  Estimate = 0.23       

Figure 11. Bayesian Estimation with 5 Time Points when Velocity Measurement is Available   

(a) Displacement when no noise added; (b) Velocity when no noise added  

(c) Estimation with Noise = 0.01%; (d) Estimation with Noise = 10%    
 

However, we can see in Figure 12 that 3 time measurements yield an accurate estimation for a low noise level, 
even though the sampling is well below the Nyquist frequency.  Once again, the shape of the cost function indicates that 
for low noise levels we have enough information to accurately estimate our uncertain parameter.  While there are many 
signals with a maximum frequency of 1.5 Hz which fit the observations at the chosen three measurement times, only 
one of them is consistent with the input signal and with equation of motion.   
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       (a)            (b)      

 

 
           (c)  Estimate = 0.23          (d)  Estimate = 0.25      

Figure 12. Bayesian Estimation with 3 Time Points when Velocity Measurement is Available   

(a) Displacement when no noise added;  (b) Velocity when no noise added  

(c) Estimation with Noise = 0.01%;  (d) Estimation with Noise = 10%    
 

3.4. Regularization Techniques Applied to a Mass-Spring System with Uncertain Stiffness and Uncertain Mass    
This example addresses the issue of non-identifiability. The Bayesian approach is applied to the simple Mass-Spring 
system shown in Figure 1.  The difference with section 3.1 is that the uncertain parameters are different: they are the 
stiffness of the spring ( K ) and  the value of the mass ( M ).  Our apriori information about the uncertain parameters is 
expressed in terms of probability densities as follows. The mass has a normal distribution with mean  kg 2000 =M  and 
a standard deviation  kg 6.667=μ . The stiffness has also a normal distribution with mean 

( ) N/m7,895.68  N/m 2200 2
0 ≈×= πK  and standard deviation N/m8.052,1=σ .  We represent the uncertain 

parameters as functions of a random vector of two independent normal random variables ( )21 ,ξξξ =  as follows 

( ) ( ) ( ).1,0,,, 212010 Ν∈⋅+=⋅+= ξξξσξξμξ KKMM         (53) 
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We consider the “true” values of the parameters to be kg533.201ref =M  and N/m62.7495ref =K , which correspond 

to the reference values of the random variables ( ) )38.0,23.0(, ref
2

ref
1

ref −== ξξξ . These values are not available to the 
estimation process, but are used in a reference simulation to generate synthetic observations.  

We measure the values of the oscillation frequency obsω  (along the reference solution) and use it to derive 
information about K and M. The measurement errors are assumed to have a normal distribution with zero mean 
(unbiased) and a standard deviation equal to rad/s 3938.001.0 00 == MKρ . 

This example allows an analytical solution to the Bayesian approach and provides insight into the role of the mismatch 
and the a priori parts of the cost function in the estimation.  The position of the mass is given by:  
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and clearly it depends only on refref MKn =ω  .   

The Bayesian cost function is defined as:   
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The maximum likelihood value of the parameters is the argument that minimizes this cost function, ( )ξξ Jminargˆ = . 
The contour plots shown in Figure 13 represent the mismatch part of the cost function, its apriori part, and the total 
value of the cost function in the space of random variables.       

 

 
       (a)          (b)            (c)        

Figure 13. Contours of the Cost Function: (a) Mismatch part, (b) Apriori Part, (c) Total Cost Function   
 

The magnitude of the apriori part is relatively small and the total cost function is roughly equal to its mismatch part. As 
expected the mismatch part yields a line of possible minima, because the measured ratio MKn =ω  does not contain 

information about the individual values of K  and M .  The point refξ  is plotted in Figure 13 and it lies on the line of 
minima. The Bayesian interpretation is the following: all the pairs (K,M) along the line are equally likely to produce 
the value of the measured oscillation frequency we. We say that the (individual values of the) parameters K and M are 
non-identifiable. 

When multiple combinations of uncertain parameter values result in the same observed behavior of the system 
(same measurements) a regularization approach [1] can be used in estimation. In order to find the most likely parameter 
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values one increases the relative importance of the apriori knowledge of the system.  This is done by multiplying the 
apriori part by a “regularization coefficient” large enough so that the new total cost function has a clear minimum value 
along the possible values.   
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The net effect of regularization in this example is to reduce the standard deviations in the apriori distributions (to αμ  
and ασ  respectively), therefore to increase the trust in the apriori information. The contour plots of the regularized 
cost functions are shown in Figure 14 for different regularization coefficients.   

 

 

Figure 14. Contour Plots of the Cost Function after Regularization for Different Coefficients  
 

The cost function looks like its mismatch part when the regularization coefficient is very low and looks like its apriori 
part when the regularization coefficient is very high.  As the regularization coefficient gets larger, the line of possible 
minima becomes an ellipse, and starts moving away from the location of the original line of minima and toward (0, 0), 
the apriori most likely value.  When the line becomes an ellipse with a well defined center, the regularization coefficient 
is large enough; it should not be further increased as this leads to an increase of the bias in the estimate.  In our example  

62 105×=α  seems to be a good value for the regularization coefficient and it results in the estimated values 
)40.0,09.0(),( 21 −=ξξ . The choice of the regularization coefficient is problem-dependent and requires a careful 

analysis of the resulting estimates. Regularization leads to biased estimates, as stronger assumptions are being 
artificially imposed.      

 

3.5. Non-observability     
We now discuss the effect of observability on parameter identifiability. Consider a linear system whose evolution 
depends linearly on a parameter θ . We add a trivial equation for the evolution of the parameter and represent the 
system as follows: 

 
⎪⎩

⎪
⎨
⎧

=
++−=
+++−=

0
2

2
2212

1211

θ
θ
θ

&
&
&

uxxx
uxxx

 with the observed variable  21 xxy −= .          (57) 

The system is asymptotically stable in 21 , xx , and neutrally stable in θ . The two states 21 , xx  can be excited 
independently. Our goal is to estimate the uncertain parameterθ  based on measurements of the output )(ty .   

The observability matrix of the system is 
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, and has rank 1 and zeros in the θ  column.     
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This system is non-observable and this leads to the non-identifiability of θ . Specifically, it can be seen that the output 
rate of change 212121 )(3 uuxxxxy −+−−=−= &&&  does not depend on θ , and therefore the information provided by the 
measurements cannot distinguish between different values of the parameter. The effect on the cost function is that the 
mismatch part is constant since )(),( ref tyty −ξ  does not depend on ξ . As far as the measurements are concerned all 
real values of θ  are equally likely!  Therefore, the result of the Bayesian estimation is based entirely on the apriori 
knowledge, and equals the most likely apriori value of the parameter.  In this case the non-identifiability problem can be 
addressed by including measurements of additional states in the estimation procedure.    

 

3.6. Choice of Excitation     
Non-identifiability can also be the result of the choice of the inputs 1u  and 2u . The input signal may not be “rich 
enough” to excite all the relevant dynamics and the output values are similar for different possible parameter values.     

As an example consider the two degree of freedom roll plane model in Figure 15. Let L  be the length of the bar of 
mass M  and inertia I .  The two springs have equal stiffnesses KKK == 21 . We want to estimate the values of the 
uncertain parameters M and I  from measurements of the left and right displacements )(1 tx and )(2 tx . 
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Figure 15. Two Degree of Freedom Roll Plane Model   
 

For small angles (i.e., for Lxx )( 12 &&&& −  small) the equations of motion are:   

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−−−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

=−+−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

0)()(

0)()(
2

222111
12

222111
21

uxKuxK
L

xx
I

uxKuxK
xx

M

&&&&

&&&&

             (58) 

For the same excitations on the left and on the right, i.e. )()()( 21 tututu ==  the equations of motion become  
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If )()()( 21 tututu == , )0()0( 21 xx = , and )0()0( 21 xx && = , then )()( 21 txtx =  for all future times.   The second 
equation of motion is trivially satisfied and the system output does not depend on I  (the system has the same evolution 
for any value of I ). This means that the parameter I is non-identifiable. An excitation that is different on the left and on 
the right would easily lead to outputs that depend on the inertia, and would allow the estimation of this parameter. In 
summary an input signal that is not rich enough can lead to non –identifiability. In this case the problem can be 
addressed by changing the kind of excitations applied to the system.  
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3.7. Discussion of the Bayesian approach   
The quality of the maximum likelihood estimate is related to the shape of the Bayesian cost function, with a sharp 
minimum indicating an accurate estimate. Inaccurate estimates can be caused by different factors, including a sampling 
rate below the Nyquist frequency, non-identifiability, non-observability, and an excitation signal that is not rich enough. 

The parameters are non-identifiable when different parameter values lead to identical system outputs. In this case 
the Bayesian cost function has an entire region of minima (e.g., a valley), with each parameter value in the region being 
equally likely. A regularization approach based on increasing the weight of the apriori information can be used to select 
reasonable estimates.       

For identifiable and observable systems accurate estimates can be obtained in most cases even if the output signal 
is sampled below the Nyquist rate. In the worst case, however, sampling below the Nyquist rate cannot guarantee that 
sufficient information is extracted from the output. In this worst case the apriori information becomes important and the 
estimate is biased toward the apriori most likely value.     

 

4. SUMMARY AND CONCLUSIONS    

This paper applies the polynomial chaos theory to the problem of parameter estimation, using direct stochastic 
collocation. The maximum likelihood estimates are obtained by minimizing a cost function derived from the Bayesian 
theorem.  This approach is applied to very simple mechanical systems in order to illustrate how the cost function can be 
affected by undersampling, non-identifiablily of the system, non-observability, and by excitation signals that are not 
rich enough. Inaccurate estimates can be caused by those different factors. It has been shown that the quality of the 
maximum likelihood estimate is related to the shape of the Bayesian cost function, with a sharp minimum indicating an 
accurate estimate. The parameters are non-identifiable when different parameter values lead to identical system outputs. 
In this case the Bayesian cost function has an entire region of minima (e.g., a valley), with each parameter value in the 
region being equally likely. Regularization techniques can still yield most likely values among the possible 
combinations of uncertain parameters resulting in the same time responses than the ones observed.  This was illustrated 
using a simple spring-mass system.  For identifiable and observable systems accurate estimates can be obtained in most 
cases even if the output signal is sampled below the Nyquist frequency. In the worst case, however, sampling below the 
Nyquist rate cannot guarantee that sufficient information is extracted from the output. In this worst case the apriori 
information becomes important and the estimate is biased toward the apriori most likely value.      

The proposed method has several advantages. Simulations using Polynomial Chaos methods are much faster than 
Monte Carlo simulations. Another advantage of this method is that it is optimal; it can treat non-Gaussian uncertainties 
since the Bayesian approach is not tailored to any specific distribution.    

In the second part of this article, this new parameter estimation method is illustrated on a nonlinear four-degree-of-
freedom roll plane model of a vehicle in which an uncertain mass with an uncertain position is added on the roll bar.    

 

ACKNOWLEDGEMENTS   
This research was supported in part by NASA Langley through the Virginia Institute for Performance Engineering and 
Research award.  The authors are grateful to Dr. Mehdi Ahmadian, Dr. Steve Southward, Dr. John Ferris, and Mr. 
Carvel Holton for many fruitful discussions on this topic.   

 

REFERENCES  
[1] Aster , R.C., Borchers, B., and Thurber, C.H.: “Parameter Estimation and Inverse Problems”, Elsevier Academic 
Press, 2005. ISBN 0-12-065604-3.   

[2] Blanchard, E., Sandu, C., and Sandu, A. – “A Polynomial-Chaos-based Bayesian Approach for Estimating Uncertain 
Parameters of Mechanical Systems”, Proceedings of the ASME 2007 International Design Engineering Technical 
Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007, 9th International Conference 
on Advanced Vehicle and Tire Technologies (AVTT), September 4-7, 2007, Las Vegas, Nevada, USA   



A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part I  

Blanchard E., Sandu A., and Sandu C.  11/21/2007  23 

[3] Blanchard, E., Sandu, A., and Sandu, C. – “Parameter Estimation Method Using an Extended Kalman Filter”, 
Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for 
Terramechanics, June 23-26, 2007, Fairbanks, Alaska.    

[4] Cohn, S. E. “An Introduction to Estimation Theory”, J. Meteor. Soc. Japan  75 (B) (1997), 257-288.    

[5] Ghanem, R.G., and Spanos, P.D. – “Stochastic Finite Elements”, Dover Publications Inc, Mineola, New York, 2003. 

[6] Ghanem, R.G., and Spanos, P.D. – “Polynomial Chaos in Stochastic Finite Element”, Journal of Applied Mechanics, 
1990, Vol. 57, 197-202. 

[7] Ghanem, R.G., and Spanos, P.D. – “Spectral Stochastic Finite-Element Formulation for Reliability Analysis”, ASCE 
Journal of Engineering Mechanics, 1991, Vol. 117, No. 10, 2351-2372. 

[8] Ghanem, R.G., and Spanos, P.D. – “A Stochastic Galerkin Expansion for Nonlinear Random Vibration Analysis”, 
Probabilistic Engineering Mechanics, 1993, Vol. 8, No. 3, 255-264. 

[9] Halton, J. H., Smith, G. B. “Radical-inverse quasi-random point sequence”. Communications of the ACM, 
7(12):701–702, Dec. 1964.       

[10] Hammersley, J. M. “Monte Carlo Methods for Solving Multivariables Problems”, Ann. New York Acad. Sci., 
86:844–874, 1960.       

[11] Inman, D. J., “Engineering Vibration”, Second Edition, Prentice Hall, Inc., 2001.  ISBN 0-13-726142-X.     

[12] Li, L., Sandu, C., and Sandu, A. – “Modeling and Simulation of a Full Vehicle with Parametric and External 
Uncertainties”, Proc. of the 2005 ASME Int. Mechanical Engineering Congress and Exposition, 7th VDC Annual 
Symposium on "Advanced Vehicle Technologies", Session 4: Advances in Vehicle Systems Modeling and Simulation, 
Paper number IMECE2005-82101, Nov. 6-11, 2005, Orlando, FL. 

[13] Sandu, A., Sandu, C., and Ahmadian, M. – Modeling Multibody Dynamic Systems With Uncertainties.  Part I: 
Theoretical and Computational Aspects, Multibody System Dynamics, Publisher: Springer Netherlands, ISSN: 1384-
5640 (Paper) 1573-272X (Online), DOI 10.1007/s11044-006-9007-5, pp. 1-23 (23), June 29, 2006.    

[14] Sandu, C., Sandu, A., and Ahmadian, M. – Modeling Multibody Dynamic Systems With Uncertainties.  Part II: 
Numerical Applications, Multibody System Dynamics, Publisher: Springer Netherlands, ISSN: 1384-5640 (Paper) 
1573-272X (Online), DOI: 10.1007/s11044-006-9008-4, Vol. 15, No. 3, pp. 241 - 262 (22), April 2006.   

[15] Sandu, C., Sandu, A., Chan, B.J., and Ahmadian, M. – “Treating Uncertainties in Multibody Dynamic Systems 
using a Polynomial Chaos Spectral Decomposition”, Proc. of the ASME IMECE 2004, 6th Annual Symposium on 
“Advanced Vehicle Technology”, Paper number IMECE2004-60482, Nov. 14-19, 2004 Anaheim, CA. 

[16] Sandu, C., Sandu, A., Chan, B.J., and Ahmadian, M. – “Treatment of Constrained Multibody Dynamic Systems 
with Uncertainties”, Proc. of the SAE Congress 2005, Paper number 2005-01-0936, April 11-14, 2005, Detroit, MI. 

[17] Sandu, C., Sandu, A., and Li, L. – “Stochastic Modeling of Terrain Profiles and Soil Parameters”, SAE 2005 
Transactions Journal of Commercial Vehicles, V114-2, 2005-01-3559, 211-220, Feb, 2006. 

[18] Sohns, B., Allison, J., Fathy, H. K., Stein, J. L. “Efficient Parameterization of Large-Scale Dynamic Models 
Through the Use of Activity Analysis”, Proceedings of the ASME IMECE 2006, IMECE2006, Nov 5-10, 2006, 
Chicago, Illinois.    

[19] Xiu, D., Lucor, D., Su, C.-H., and Karniadakis, G.E. – “Stochastic Modeling of Flow-Structure Interactions using 
Generalized Polynomial Chaos”,  J. Fluids Engineering, Vol. 124, 51-59, 2002. 

[20] Xiu, D., and Karniadakis, G. E. – “The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations”, 
Journal of Sci Comput, 2002: Vol. 24, No. 2: 619-644. 

[21] Xiu, D., and Karniadakis, G.E. – “Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos”, 
Journal of Computational Physics, 2003: Vol. 187: 137-167. 



A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part I  

Blanchard E., Sandu A., and Sandu C.  11/21/2007  24 

[22] Xiu, D., and Karniadakis, G.E. – “Modeling Uncertainty in Steady-state Diffusion problems via Generalized 
Polynomial Chaos”, Computer Methods in Applied Mechanics and Engineering, 2002: Vol. 191: 4927-4928. 

[23] Zhang, D., Lu., Z. “An efficient, high-order perturbation approach for flow in random porous media via Karhunen–
Loeve and polynomial expansions”, J Comp. Phys. 54:265–291 (2006)    

 

LIST OF FIGURES  
Fig. 1    Mass –Spring System   

Fig. 2    Displacements and Velocities of the Mass –Spring System    

Fig. 3    Beta (1, 1) Distribution for v0  

Fig. 4    Bayesian Estimation with 10 Time Points:  (a) Displacement when no noise added; (b) Estimation with Noise = 
1%;   

Fig. 5    Bayesian Estimation with 3 Time Points: (a) Displacement when no noise added; (b) Estimation with Noise = 
0.01%; (c) Estimation with Noise = 1%; (d) Estimation with Noise = 10%       

Fig. 6    Bayesian Estimation with 30 Time Points: (a) Displacement when no noise added; (b) Estimation with Noise = 
0.01%; (c) Estimation with Noise = 1%; (d) Estimation with Noise = 10%     

Fig. 7    Effect of Adding Sample Points Containing No Useful Information: (a) Displacement when no noise added 
with 5 Time Points;  (b) Estimation with 5 Time Points and Noise = 0.01%;  (c) Displacement when no noise 
added with 10 Time Points;  (d) Estimation with 10 Time Points and Noise = 0.01%   

Fig. 8    Bayesian Estimation with 1 Time Point when Velocity Measurement is Available: (a) Displacement when no 
noise added;  (b) Velocity when no noise added;  (c) Estimation with Noise = 0.01%;  (d) Estimation with 
Noise = 1%   

Fig. 9    Mass –Spring System with Sinusoidal Forcing Function    

Fig. 10  Displacement and Velocities of the Mass –Spring System with Sinusoidal Forcing Function  

Fig. 11  Bayesian Estimation with 5 Time Points when Velocity Measurement is Available: (a) Displacement when no 
noise added; (b) Velocity when no noise added; (c) Estimation with Noise = 0.01%; (d) Estimation with Noise 
= 10%   

Fig. 12  Bayesian Estimation with 3 Time Points when Velocity Measurement is Available: (a) Displacement when no 
noise added; (b) Velocity when no noise added; (c) Estimation with Noise = 0.01%; (d) Estimation with Noise 
= 10%     

Fig. 13  Contours of the Cost Function: (a) Mismatch part, (b) Apriori Part, (c) Total Cost Function     

Fig. 14  Contour Plots of the Cost Function after Regularization for Different Coefficients 

Fig. 15  Two Degree of Freedom Roll Plane Model    

 

 

 

 


	CoverPage-TR-07-38-Part1.pdf
	Part1-TechReport-Emmanuel-Nov21.pdf

