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time integration of conservation laws ∗

Adrian Sandu †‡ Emil M. Constantinescu †
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Abstract

This paper constructs multirate linear multistep time discretiza-
tions based on Adams-Bashforth methods. These methods are aimed
at solving conservation laws and allow different timesteps to be used
in different parts of the spatial domain. The proposed family of dis-
cretizations is second order accurate in time and has conservation
and linear and nonlinear stability properties under local CFL con-
ditions. Multirate timestepping avoids the necessity to take small
global timesteps – restricted by the largest value of the Courant num-
ber on the grid – and therefore results in more efficient computations.
Numerical results obtained for the advection and Burgers’ equations
confirm the theoretical findings.

1 Introduction

Conservation laws are of great practical importance as they model diverse
physical phenomena that appear in mechanical and chemical engineer-
ing, aeronautics, astrophysics, meteorology, environmental sciences, etc.
Representative examples are gas dynamics, shallow water flow, ground-
water flow, non-Newtonian flows, traffic flows, advection and dispersion
of contaminants, etc.
Conservative high resolution methods with explicit time discretization

have gained widespread popularity for numerically solving conservation
laws [25]. Stability requirements limit the temporal step size, with the
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upper bound being determined by the ratio of the temporal and spatial
meshes and the magnitude of the wave speed. The timestep for the entire
domain is restricted by the finest (spatial)mesh resolution or by the highest
wave velocity, and is typically (much) smaller than necessary to accurately
represent other variables in the computational domain.
Implicit, unconditionally stable timestepping algorithms allow large

global timesteps; however, this approach requires the solution of large
(non)linear systems of equations. Moreover, the quality of the solution, as
given by a maximum principle, may not be preserved with high order im-
plicit schemes unless the timestep is also restricted by a CFL-like condition
[10].
In multirate time integration methods, the timestep can vary across the

spatial domain and has to satisfy the CFL condition only locally, resulting
in substantiallymore efficient overall computations. We follow themethod
of lines (MOL) framework, where the temporal and spatial discretizations
are independent.
The development ofmultirate integration for conservation laws is chal-

lenging due to the conservation and stability constraints that need to be
simultaneously satisfied. The algorithms used in the solution of conser-
vation laws need to preserve the system invariants. Furthermore, the
integration schemes need to account for non-smooth solutions (e.g., shock
waves or other discontinuous behavior). In such cases, strong-stability-
preserving (SSP) numerical methods which satisfy nonlinear stability re-
quirements are necessary to avoid certain types of nonphysical behavior
(e.g., spurious oscillations [10]).
Early efforts to develop multirate Runge-Kutta methods are due to

Rice [28] and Andrus [1, 2]. Gear and Wells [9] pioneered the multi-
rate linear multistep approach. Multirate versions of many of the tradi-
tional timestepping schemes have been proposed in the literature, includ-
ing linear multistep [9, 18], extrapolation [8], Runge-Kutta [6, 11, 20, 21],
Rosenbrock-Wanner [3, 12], waveform relaxation [29], and others.
In a previous study [6] we have developed SSP multirate Runge-Kutta

methods. In the current work we focus our attention on multirate linear
multistep time integration schemes for the simulation of PDEs. Specifi-
cally, we study the Adams-Bashforth methods. The strong stability prop-
erties of single-rate AB methods have been studied by Hundsdorfer et
al. [16, 17] and they rely on the ODE contractivity theory developed in
[19, 23, 24].
In this paper we extend the Adams-Bashforth methods to multirate

methods that are second order accurate and conservative. Note that previ-
ous multirate approaches lead to first order accuracy due to the interface
treatment [9, 18].
This paper is structured as follows: Section 2 presents the construction
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of the multirate time integrators from single rate schemes. Numerical
results for linear and nonlinear conservation laws are presented in Section
3. Conclusions and future research directions are given in Section 4.

2 Multirate Explicit Adams Methods

Consider the following initial value problem

w′(t, x) = F
(
w(t, x)

)
, with w(t0, x) = w0(x) , (1)

on x ∈ Ψ ⊂ (−∞, ∞) , t ≥ t0 ,

solved with the explicit k-step Adams method [13, Ch. III]:

wn = wn−1 + h

k∑

i=1

βiF
(
wn−i

)
. (2)

The following notation will be used to denote the discrete solution (wn)i =
w(tn, xi), with n > 0 and xi ∈ Ω, whereΩ is the discrete spatial domain. The
total variation (TV) semi-norm ‖ ◦ ‖TV of the numerical solution is defined
as

‖wn‖TV =
∑

i

|(wn)i+1 − (wn)i| , xi ∈ Ω ,

A numerical method is called total variation diminishing (TVD) [14] if

‖wn‖TV ≤ ‖wn−1‖TV ,∀n ≥ 1 .

A numerical method is called total variation bounded (TVB) (see [31]) if

‖wn‖TV ≤ B , ∀n ≥ 0 , B > 0 .

In this case some bounded total variation increase is allowed. TVD meth-
ods are also TVB.
Methods that satisfy

‖wn‖ ≤ ‖wn−1‖ , ∀n ≥ 1 , (3)

for some norm or the TV semi-norm are called strong-stability-preserving.
Under a suitable timestep restriction, with an appropriate initializa-

tion, and with adequate β coefficients, the method (2) is strong stability
preserving [17].
The idea of multirate timestepping is to take different timesteps for

different components to achieve the target accuracy. Slower components
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are integrated using larger step sizes. The large step sizes are integer
multiple of the small step sizes. All steps are synchronized every largest
timestep in order to obtain the desired overall accuracy. In (1) the solution
w is separated explicitly in the slow (y) components and the fast (z) ones.
With wT = [yT, zT]T system (1) becomes

d

dt

[
y
z

]
=

[
f (y, z)
g(y, z)

]
, (4)

where F (w) = F
(
y, z

)
= [ f T

(
y, z

)
gT

(
y, z

)
]T is the right hand side of (1)

corresponding to the slow components ( f ) and the fast ones (g).
In the PDE context and using the method of lines to yield (4), y can

represent variables on a coarse grid and z variables on the fine grid. An
illustration is shown in Figure 1. In this case f is evaluated on y and
formally on z; however, in practice f depends on z only in a “small”
neighborhood of the y − z interface (e.g., space discretization stencil
length). Same argument holds for gwith y interchanged with z. Therefore
“away” from the interface, f depends only on the slow components and g
depends only on the fast ones. This fact can be used to efficiently discretize
(4) by choosing the appropriate time step for each component.

y z

z′ = g(z)y′ = f (y) y′ = f (y, z) z′ = g(y, z)

Figure 1: Illustration of the solution component partitioning. Away from
the interface f is evaluated only on the slow components (y) and g is
evaluated only on the fast components (z). In a narrow strip along the
interface, f and g depend on both y and z.

In this paper we extend the explicit Adams methods (2) for the dis-
cretization of (1) to multirate Adams methods for the integration of par-
titioned systems of ordinary differential equations defined by (4). Each
component is integrated with a different time step.
In what follows we denote by h the integration timestep for the fast

components and by H = mh the integration timestep for the slow com-
ponents. There are m fast steps for each slow step. This means that the
slow method updates the slow variables every m timesteps, while the fast
method updates the components every timestep.
Let n =M·m be amultiple ofm and consider thatwe have advanced the

system to the time tn−m = t0+ (n−m)h = t0+ (M−1)mh. The slow variables
yi are available for i = n − m, n − 2m, n − 3m, · · · , while the fast variables
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are available for all 0 ≤ i ≤ n − m. Our goal is to advance the system from
the time tn−m to the time tn = t0 +Mmh using one step of length mh for the
slow variables and m steps of length h for the fast variables.
We propose the following multirate version of the Adamsmethod. For

the slow variables: we take one large step using

yn = yn−m + h

k∑

i=1

βi



m∑

ℓ=1

f
(
yn−i·m, zn−m+ℓ−i

)

 . (5)

For the fast variables we take m small steps (of length h):

For ℓ = 1, · · · ,m : zn−m+ℓ = zn−m+ℓ−1 + h

k∑

i=1

βi g
(
yn−i·m, zn−m+ℓ−i

)
. (6)

Remark 1. Inside the slow grid (and away from the fast-slow boundary)
f depends only on y and (5) is the k-step Adams method applied with a
step size of mh. Specifically, inside the slow grid (5) becomes

yn = yn−m +mh

k∑

i=1

βi f
(
yn−i·m

)
.

The slow components are evaluated once per macro-step inside the slow
domain. Similarly, inside the fast grid (and away from the fast-slowbound-
ary) gdepends only on z and (6) arem consecutive steps theAdamsmethod
appliedwith the small step size h. Thus for hyperbolic problemswith finite
stencil space discretizations the method is truly multirate. In particular,
slow fluxes are evaluated only once per macro-step except near the fast-
slow interface.

Remark 2. The computational process is a fastest first strategy [9]. One
first solves for the fast components (6), then uses them to compute the
fluxes in (5).

Remark 3. The one-leg counterpart of the method (5)–(6) reads:

For ℓ = 1, · · · ,m : zn−m+ℓ = zn−m+ℓ−1 + h g



k∑

i=1

βiyn−i·m,
k∑

i=1

βizn−m+ℓ−i


 (7)

yn = yn−m + h

m∑

ℓ=1

f



k∑

i=1

βi yn−i·m,
k∑

i=1

βi zn−m+ℓ−i


 . (8)
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Remark 4. The same “base” Adams method (2) is used for both fast and
slow components in (5)-(6). In this approach, the scheme (5)-(6) can be
used in a telescopic fashion. Thus this is not only a two-rate approach,
but allows multiple time levels; e.g., for three (time scale) components, the
method can accommodate the timesteps: H, H/m, and H/m2.

2.1 Examples of Multirate Adams Methods

In applications we are mainly interested in k = 2 and k = 3, combined with
a small number of sub-steps (2 ≤ m ≤ 10). The number of sub-steps is
given by the grid refinement ratio.
Consider first the case with k = 2 (second order Adams) and m = 2

(two fast sub-steps). The method(5)–(6) is referred as MAB2(2) and reads

zn−1 = zn−2 +
3h

2
g
(
yn−2, zn−2

)
−
h

2
g
(
yn−4, zn−3

)
,

zn = zn−1 +
3h

2
g
(
yn−2, zn−1

)
−
h

2
g
(
yn−4, zn−2

)
,

yn = yn−2 +
3h

2

(
f
(
yn−2, zn−1

)
+ f

(
yn−2, zn−2

))

−
h

2

(
f
(
yn−4, zn−2

)
+ f

(
yn−4, zn−3

))
.

For the case with k = 2 (second order Adams) and m = 3 (three fast
sub-steps) the MAB2(3) method (5)–(6) reads:

zn−2 = zn−3 +
3h

2
g
(
yn−3, zn−3

)
−
h

2
g
(
yn−6, zn−4

)
,

zn−1 = zn−2 +
3h

2
g
(
yn−3, zn−2

)
−
h

2
g
(
yn−6, zn−3

)
,

zn = zn−1 +
3h

2
g
(
yn−3, zn−1

)
−
h

2
g
(
yn−6, zn−2

)
,

yn = yn−3 +
3h

2

(
f
(
yn−3, zn−1

)
+ f

(
yn−3, zn−2

)
+ f

(
yn−3, zn−3

))

−
h

2

(
f
(
yn−6, zn−2

)
+ f

(
yn−6, zn−3

)
+ f

(
yn−6, zn−4

))
.

For the case with k = 3 (third order Adams) and general m we have
MAB3(m) method:

For ℓ = 1, · · ·m :

zn−m+ℓ = zn−m+ℓ−1 +
23h

12
g
(
yn−m, zn−m+ℓ−1

)
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−
16h

12
g
(
yn−2m, zn−m+ℓ−2

)

+
5h

12
g
(
yn−3m, zn−m+ℓ−3

)
,

yn = yn−m +
23h

12

m∑

ℓ=1

f
(
yn−m, zn−m+ℓ−1

)

−
16h

12

m∑

ℓ=1

f
(
yn−2m, zn−m+ℓ−2

)

+
5h

12

m∑

ℓ=1

f
(
yn−3m, zn−m+ℓ−3

)
.

We next investigate the conservation, order of accuracy, and stability
properties of (5)–(6).

2.2 Conservation Properties of Multirate Adams

Multirate Adams method (5)–(6) is conservative. We have the following
formal result.

Proposition 2.1 (Conservation) The method (5)–(6) is conservative in the
sense that it preserves the linear invariants of the system.

Proof For analysis we eliminate the intermediate fast steps zn−m+ℓ in (6)
to arrive at the equivalent formulation

zn = zn−m + h

k∑

i=1

βi



m∑

ℓ=1

g
(
yn−i·m, zn−m+ℓ−i

)

 . (9)

A comparison of the slow method (5) with the fast method (9) reveals
that the functions f and g are evaluated with the same arguments and
same weights for both the slow and the fast components. Following [6,
Proposition 3.2] we consider (4) with a linear invariant of the form

eTF f
(
y, z

)
+ eTS g

(
y, z

)
= 0 , ∀y, z ⇒ eTF y(t) + e

T
Sz(t) = constant , ∀t ,

where eF, eS are fixed weight vectors. Using (5) and (9) we have

eTF yn + e
T
Szn =e

T
F yn−m + e

T
Szn−m+

+ h

k∑

i=1

βi

m∑

ℓ=1

(
eTF f

(
yn−i·m, zn−m+ℓ−i

)
+ eTS g

(
yn−i·m, zn−m+ℓ−i

))

︸                                                     ︷︷                                                     ︸
0

.
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As a consequence, if the space discretization is conservative then the fully
discretized solution (5)–(6) is conservative. A timestepping method that
preserves the linear invariants together with a conservative space dis-
cretization results in a conservative fully discrete solution.

See [6] for a more in depth analysis.

2.3 Consistency of Multirate Adams

ThemultirateAdamsmethod (5)–(6) is consistent of order two if the “base”
method (2) is at least order two. Order three is not achieved form > 1. We
have the following formal result.

Proposition 2.2 (Consistency) If the single rate base Adamsmethod (2) is
consistent of (at least) order two, then method the (5)–(6) is consistent of
order two.

Proof Consider the following Taylor expansion:

f
(
yn−i·m, zn−m+ℓ−i

)
= f − imh fy f − (m − ℓ + i)h fzg

+
i2m2

2
h2

(
fyy[ f , f ] + fy fy f

)

+
(m − ℓ + i)2

2
h2

(
fzz[g, g] + fzgzg

)

+
im(m − ℓ + i)

2
h2

(
2 fyz[ f , g] + fzgy f + fy fzg

)
,

where all the differentials are evaluated at time n, e.g., fy = fy
(
yn, zn

)

etc. For the second order derivatives, we use the traditional multilinear
notation. As a consequence:

m∑

ℓ=1

f
(
yn−i·m, zn−m+ℓ−i

)
= mf − im2h fy f −

m2 + (2i − 1)m

2
h fzg

+
i2m3

2
h2

(
fyy[ f , f ] + fy fy f

)

+
6mi2 + 6i(m2 −m) + 2m3 − 3m2 +m

12
h2

(
fzz[g, g] + fzgzg

)

+
2i2m2 + i(m3 −m2)

4
h2

(
2 fyz[ f , g] + fzgy f + fy fzg

)
.

For the slow numerical solution (5) we have that

yn − yn−m = h

k∑

i=1

βi



m∑

ℓ=1

f
(
yn−i·m, zn−m+ℓ−i

)


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= m



k∑

i=1

βi


 h f −m

2



k∑

i=1

iβi


 h
2 fy f

−






k∑

i=1

βi



m2 −m

2
+



k∑

i=1

iβi


m


 h
2 fzg

+
1

2



k∑

i=1

i2βi


m
3h3

(
fyy[ f , f ] + fy fy f

)

+



m

2



k∑

i=1

i2βi


 +
m2 −m

2



k∑

i=1

iβi




+
2m3 − 3m2 +m

12



k∑

i=1

βi





 h
3
(
fzz[g, g] + fzgzg

)

+



m2

2



k∑

i=1

i2βi


 +
(m3 −m2)

4



k∑

i=1

iβi





 h
3
(
2 fyz[ f , g] + fzgy f + fy fzg

)
.

Using the order two conditions for the single rate method:

k∑

i=1

βi = 1 ,
k∑

i=1

iβi =
1

2
, (10)

and order three condition

k∑

i=1

i2βi =
1

3
, (11)

we have that the Taylor series of the slow numerical solution reads

yn − yn−m = mh f −
m2h2

2
fy f −

m2h2

2
fzg

+
m3h3

6

(
fyy[ f , f ] + fy fy f

)

+
m3h3

6

(
fzz[g, g] + fzgzg

)

+
(3m3 +m2)

24
h3

(
2 fyz[ f , g] + fzgy f + fy fzg

)

+O
(
h4

)
.
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The Taylor series of the exact slow solution about tn reads

y(tn) − y(tn −mh) = mh f −
m2h2

2
fy f −

m2h2

2
fzg

+
m3h3

6

(
fyy[ f , f ] + fy fy f + fzz[g, g]+ fzgzg

+2 fyz[ f , g] + fzgy f + fy fzg
)
+ O

(
h4

)
.

We see that the Taylor series of the numerical solution matches the
Taylor series of the exact solution up to and including the O(h2) terms if
the second order conditions (10) hold for the base methods. The multirate
method is second order for any m if the base method is second order
accurate.
When the base method is consistent of order three (11) the coefficients

of the O(h3) terms that involve only y or only z derivatives match the
coefficients of the exact solution for any m. However, the coefficient of the
O(h3) term that involves both derivatives in y and in z is different than the
exact term: (3m3 + m2)/24 , m3/6 if m , 1. The error coefficient of this
term increases with the cube of the step size ration m.
A similar Taylor series argument can be made for the fast variable z:

zn − zn−m = mh g −
m2h2

2
gy f −

m2h2

2
gzg

+
m3h3

6

(
gyy[ f , f ] + gy fy f

)

+
m3h3

6

(
gzz[g, g] + gzgzg

)

+
(3m3 +m2)

24
h3

(
2gyz[ f , g] + gzgy f + gy fzg

)

+O
(
h4

)
,

z(tn) − z(tn −mh) = mh g −
m2h2

2
gy f −

m2h2

2
gzg

+
m3h3

6

(
gyy[ f , f ] + gy fy f + gzz[g, g] + gzgzg

+2gyz[ f , g] + gzgy f + gy fzg
)
+ O

(
h4

)
.

Remark 5. We can therefore consider second order methods of the form
(5)–(6) with any number of steps. The AB2 method

wn = wn−1 +
3

2
h f

(
wn−1

)
−
1

2
h f

(
wn−2

)
, (12)
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uses the smallest number of steps (k = 2) and will be the focus of the
remaining part of this paper. In principle, one can consider more steps if
needed for better stability.

Remark 6. The results on conservation (Proposition 2.1) and on order
conditions (Proposition 2.2) hold for implicit Adams methods as well. In
this case β0 , 0 and the summations in the proofs go from i = 0 to i = k.
To illustrate the computational pattern of an implicit multirate method
(5)–(6), consider the trapezoidal method with β0 = β1 = 1/2. The multirate
trapezoidal method reads

yn = yn−m +
h

2

m∑

ℓ=1

f
(
yn, zn−m+ℓ

)
+
h

2

m∑

ℓ=1

f
(
yn−m, zn−m+ℓ−1

)
, (13)

zn−m+ℓ = zn−m+ℓ−1 +
h

2
g
(
yn, zn−m+ℓ

)
+
h

2
g
(
yn−m, zn−m+ℓ−1

)
, (14)

ℓ = 1, · · · ,m .

The slow solution yn and the fast solutions zn−m+ℓ for all ℓ = 1, · · · ,m
intermediate steps need to be solved together, as they are all coupled in the
large (non)linear system (13)–(14). Our focus in what follows in on explicit
Adams-Bashforth methods.

2.4 Stability of Multirate Adams Methods

We next consider the nonlinear stability properties of the multirate Adams
methods. It has been shown by Hundsdorfer et al. [17] that the single rate
AB2method (12) is strong stability preserving under a timestep restriction
if a proper initialization procedure is used.
The stability results in this paper rely on the assumption that the mul-

tirate linear multistep method is properly initialized. It is convenient and
customary to start the SSP multistep method with an SSP Runge-Kutta
method such that all steps satisfy (3). The same approach can be employed
to start the multirate method. A single rate SSP Runge-Kutta method with
(a small) step h/r can be used to fill in the solution components required
by the multirate method (0 ≤ n ≤ km). The factor r is an integer, needed
to ensure that the solution remains SSP during the Runge-Kutta initial
integration:

∥∥∥∥∥∥

[
yn+ i+1r h
zn+ i+1r h

]∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

[
yn+ ir h
zn+ ir h

]∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

[
y0
z0

]∥∥∥∥∥∥ , 0 ≤ n ≤ km , 0 ≤ i ≤ r − 1 , (15)

where ‖ ◦ ‖ is any norm or the TV semi-norm. If r = 1 then the Runge-
Kutta method takes the same timestep as the Adams method for the fast
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component. The Runge-Kutta offers all the values of y and z needed to
start the multirate scheme.
Consider the following vector representation of (5)–(6) at timestep n ≥

2m:

wn =

[
yn
zn

]
=

[
yn−1
zn−1

]
+ h

k∑

i=1

βi



f
(
y(M−i)·m, zn−i

)

g
(
y(M−i)·m, zn−i

)

 , (16)

where

(M− 1)m < n ≤Mm ⇒ M = (n− 1)÷m+ 1 , n = (M− 1)m+ ℓ , 1 ≤ ℓ ≤ m .

Representation (16) can be expressed as a perturbed linear multistep
methodwith the arguments of f and g evaluated at each fast time instance,
n − i, i = 1 . . . k:

[
yn
zn

]
=

[
yn−1
zn−1

]
+ h

k∑

i=1

βi



f
(
yn−i, zn−i

)

g
(
yn−i, zn−i

)

 + dn , (17)

where the perturbation dn is given by

dn =h

k∑

i=1

βi






f
(
y(M−i)·m, zn−i

)

g
(
y(M−i)·m, zn−i

)

 −



f
(
yn−i, zn−i

)

g
(
yn−i, zn−i

)




 . (18)

Next we investigate the nonlinear stability properties of the multirate
method (17).
We begin by recalling Theorem 4.1 of Hundsdorfer and Ruuth [16].

Consider (2) with appropriate starting conditions (as specified in [16]) and
with the appropriate timestep restrictions h ≤ hmax. The solution of a
perturbed linear multistep method:

wn = wn−1 + h

k∑

i=1

βiF
(
wn−i

)
+ dn ,

where dn is the perturbation at time tn, is bounded by

‖wn‖ ≤ V ‖w0‖ + (n − k + 1)Smax
k≤ j≤n

‖d j‖ , n ≥ k , (19)

whereV is a constant independent of n, and S is amethod specific constant
(S ≤ 3/2 for AB2). We next analyze the stability of the MAB2 solution and
start with the following technical Lemmas.

Lemma 2.3 If method (16) is linearly stable for the given h and if f and g
are Lipschitz continuous for a given norm ‖ ◦ ‖ with Lipschitz constant L,
then ‖dn‖ ∈ O(h).
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Proof The step size h is chosen such that the method (5)–(6) is linearly
stable and therefore ‖yn‖ ∈ O(1). The functions f and g are Lipschitz
continuous with respect to the norm under consideration. It follows that

‖dn‖ = h

∥∥∥∥∥∥∥

k∑

i=1

βi

[(
f
g

) (
y(M−i)·m, zn−i

)
−

(
f
g

)
(
yn−i, zn−i

)
]∥∥∥∥∥∥∥

≤ h · L ·

k∑

i=1

∣∣∣βi
∣∣∣ ·

∥∥∥y(M−i)·m − yn−i
∥∥∥

︸              ︷︷              ︸
O(1)

≤ constant · h

‖dn‖ ∈ O(h) .

Note that in the above argument, the (flux) functions ( f and g) are
smooth with respect to the solutions (y and z), but the solutions need not
be smooth in space.
We remark that Lemma 2.3 also includes the case in which f , g, y, and

z are smooth.

Lemma 2.4 If method (16) is linearly stable for the given h and if f , g ∈ C2,
y and z are continuous in space, and ‖ ◦ ‖TV is the TV semi-norm, then
‖dn‖TV ∈ O(h

2).

Proof We start with the representation (18):

‖dn‖TV = h

∥∥∥∥∥∥∥

k∑

i=1

βi

(
f
g

) (
y(M−i)·m, zn−i

)
−

(
f
g

)
(
yn−i, zn−i

)
∥∥∥∥∥∥∥
TV

(20)

≤ h

k∑

i=1

∣∣∣βi
∣∣∣
∥∥∥∥∥∥

(
f
g

) (
y(M−i)·m, zn−i

)
−

(
f
g

)
(
yn−i, zn−i

)
∥∥∥∥∥∥
TV

.

Denote all solution in pairs in (20) with

ui =

[
y(M−i)·m
zn−i

]
, vi =

[
yn−i
zn−i

]
, and F =

(
f
g

)
,

and consider index j as the space index with F j (◦) being the function
evaluated at space index j. Further we denote by δ− the shift operator
in space by one grid point, δ−(wn) j = (wn) j−1. We assume that F j+1 (w) =
F j (δ−w), i.e., the same space discretization scheme is applied throughout
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the grid. Then the TV semi-norm reads

‖F (ui) − F (vi) ‖TV =
∑

j

∣∣∣∣F j+1(ui) − F j(ui) −
(
F j+1(vi) − F j(vi)

)∣∣∣∣ .

Using themeanvalue theoremwithwi = αui+(1−α)vi, α ∈ [0, 1], andunder
the smoothness assumptions we obtain the following approximation

‖F (ui) − F (vi) ‖TV =
∑

j

∣∣∣∣F′j+1(wi)(ui − vi) − F′j(wi)(ui − vi)
∣∣∣∣

=
∑

j

∣∣∣∣F′j(δ− wi)(ui − vi) − F′j(wi)(ui − vi)
∣∣∣∣

≤
∑

j

∥∥∥∥
(
F′j(δ

− wi) − F
′
j(wi)

)∥∥∥∥
∞
‖ui − vi‖∞

≤
∑

j

∥∥∥∥F′′j
(
β δ−wi + (1 − β)wi

)∥∥∥∥
∞︸                            ︷︷                            ︸

O(1)

∥∥∥∥δ−wi − wi
∥∥∥∥
∞︸          ︷︷          ︸

O(∆x)

∥∥∥∥ui − vi
∥∥∥∥
∞︸     ︷︷     ︸

O(h)

‖F (ui) − F (vi) ‖TV ∈ O(h) ,

where β ∈ [0, 1] and the order approximations follow from calculus. The
perturbation is then bounded by

‖dn‖TV ≤ h

k∑

i=1

∣∣∣βi
∣∣∣ · ‖F (ui) − F (vi) ‖TV

≤ h · C · O(h)

‖dn‖TV ∈ O(h
2) ,

where C is a constant that does not depend on n.

Next, we use Lemmas 2.3 and 2.4 to prove the nonlinear stability results
for the multirate method (5)–(6) in different norms.

Proposition 2.5 (Norm Boundedness) Ifmethod (16) is linearly stable and
let f and g be Lipschitz continuous in norm ‖◦‖, then the solutionwn is norm
bounded:

‖wn‖ ≤ B ,

where B is a constant.
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Proof Using Theorem 4.1 from [16] (19) and Lemma 2.3 we have

‖wn‖ ≤ C ‖w0‖ + O(h) ,

‖wn‖ ≤ V ‖w0‖ + n · O(h) ≤ B , ∀n ≤ N ,

where C is a constant.

Proposition 2.6 (TVB) If method (16) is linearly stable, f , g ∈ C2, and y
and z are continuous in space, then the TV of the solution wn remains
bounded and the method is TVB:

‖wn‖TV = B ,

where B > 0 is a constant.

Proof Using Theorem 4.1 from [16] and Lemma 2.4 we have:

‖wn‖TV ≤ C ‖w0‖TV + nO(h
2) = C‖w0‖TV + O(h) ≤ B .

We note that even if the formal proofs use smoothness assumptions, in
practice, it is desirable to use these methods with discontinuous solutions.
Other single rate discretization methods (e.g., WENO) have proofs based
on smoothness assumptions; however, they are very successful in practice
for solutions with shocks [30, 31, 32].

2.5 Computational Efficiency

In this section we investigate the efficiency speedup of the multirate
method under the assumption that the function evaluations carry the bulk
of the computational cost. Even if the slow method has formally as many
steps as the fast method, these steps are identical away from the interface,
and thus no additional calculations are necessary. This means that the
slow method really uses large steps away from the interface.
Consider a telescopic application with R + 1 levels of refinement. The

timesteps for each level are h j = H/m j, j = 0 . . .R. There are L j grid points
at level j. Under these assumptions, the speedup S, for R nested grids is
calculated as

S =


m
R
R∑

j=0

L j




/ 

R∑

j=0

m j L j


 .

Typically, L j+1 ≪ L j, i.e., only a small part of the grid at a given level is
further refined. In this case S ≈ mR. We expect the speedupof themultirate
scheme to be significantly larger for multi-dimensional problems.
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3 Numerical Experiments

Our numerical experiments use RK2a (see [32]) as the starting procedure
with the appropriateCourant number to insure linear and nonlinear stabil-
ity of the initial solution. We next examine a linear PDE – linear advection
– and a nonlinear PDE – Burgers’ equation.

3.1 The Advection Equation

The one-dimensional advection equation models the transport of a tracer
ywith the constant velocity u along the x axis

∂w(t, x)

∂t
+ u ·

∂w(t, x)

∂x
= 0 . (21)

The spatial discretization method is based on a finite volume approach
described in [15, 33]. Themethod is third order accurate in space on smooth
solutions and is positivity preserving with forward Euler timestepping.
The flux limited scheme is defined by

w′i = −
1

∆x

(
Fi+ 12
− Fi− 12

)
, wi(t) =

1

∆xi

∫ x
i+ 1
2

x
i− 1
2

w(t, x) dx , w′i =
∂wi
∂t
, (22)

with the numerical flux defined as

Fi+ 12
= Fi +

1

2
φi+ 12

(Fi − Fi−1) , (23)

where φ is a nonlinear limiter function.
The positivity preserving property of forward Euler steps extends to

Adams-Bashforth steps under more stringent step size restrictions [17].
For AB2, the theoretical Courant number is 4/9. The experimental CFL for
positivity of AB2 solution with first order upwind in space is 0.49 andwith
the above high resolution scheme is 0.40.

3.1.1 Positivity Test

In this section we apply the MAB2(m) time integration scheme for the
linear advection equation. The spatial discretization is positive with Eu-
ler timestepping and the AB2 integration scheme is SSP under a specific
Courant number, which results in an overall positive scheme.
The computational domain has two distinct regions. The (fast) middle

region is discretized in time using h = H/m time ratio, while the left and
right (slow regions) use timestep H. This setting is shown in Figures 2
where the vertical dashed lines delimit the time refined (central) region
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(a) Upwind t = 0.068, 0.4 (b) Upwind t = 0.3, 0.62, 1
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(c) Third order t = 0.068, 0.4 (d) Third order t = 0.3, 0.62, 1.

Figure 2: The multirate advection solution as the wave passes through the
interfaces (m = 2). The solution remains positive and there are no geo-
metrical aberrations. The initial step solution is represented with dashed
line. The time refined region is in the center of the domain delimited with
vertical dashed lines.

from the rest of the domain. For simplicity we consider periodic boundary
conditions.
Figures 2 show the advection numerical solution with u=1, 100 grid

points, and a Courant number on the slow region of 0.40 for upwind and
0.35 for the third order scheme. The solution is not qualitatively affected
by the interface.
In Table 1 we show the minimum, maximum, total mass, and the total

variation of the solution for both upwind and third order space discretiza-
tions for several time instances (represented inFig. 2). In both experiments,
the solution remains conservative and positive, within the roundoff errors.
Moreover, the total variation is non-increasing. The numerical diffusion is
more accentuated for the upwind discretization than for the third order as
expected.
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Time Upwind Third Order
Min Max Mass TV Min Max Mass TV

0.00 0.00 1 0.23 2 0.00 1 0.23 2
0.07 0.00 1 0.23 2 -4.85e-17 1 0.23 2
0.30 8.31e-16 0.96 0.23 1.93 -5.69e-17 0.99 0.23 2
0.40 1.52e-10 0.93 0.23 1.86 -6.74e-17 0.99 0.23 1.99
0.62 6.23e-07 0.85 0.23 1.71 -6.14e-17 0.99 0.23 1.99
1.00 0.0001 0.75 0.23 1.50 -3.11e-16 0.99 0.23 1.99
extreme 0.0001 1 0.23 2 -3.20e-16 1 0.23 2

Table 1: The solution minimum, maximum, total mass, and total variation
for the advection equation experiments at various time instances and the
extreme values for the entire simulation time.

3.1.2 Analysis of Numerical Errors

In this section we analyze the effective (numerical) order of accuracy of
the multirate time integration method. For this investigation we use the
experiment setting described above and consider the following elements.
The ℓq error norms of the numerical solution w, on a grid with spacing

∆xi are computed against a reference solution w
ref as follows:

ℓq (w) =



∑

i

∆xi
∣∣∣w (xi) − wref (xi)

∣∣∣q



1
q

.

The effective order of the discretization EOq in q norm is estimated from
two numerical solutions with different time resolutions (h and h/γ, γ > 1),
as follows:

EOq = log



ℓq

(
w[h/γ]

)

ℓq
(
w[h]

)



/
log

(
1

γ

)
.

In our numerical experiments, we use the ℓ1 and ℓ2 norms and consider
a sine initial solution that is transported half of its period (i.e., 0.5 units in
the spatial dimension). The solution is smooth.
For the numerical order validation we use two space discretizations:

the upwind and the third order method described above. We consider
time refinement while keeping the space grid fixed and compute the error
norms ℓODE

1
and ℓODE

2
. The reference solution is obtained with a temporal

high order numerical approximation,MatlabTM’s RK45 (an explicit Runge-
Kutta method, order five with the tight tolerances RelErr=AbsErr=1E-08)
[7]. The spatial discretizations are the same for both MAB2 and RK45.
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Time fraction ℓ1 ℓ2 EOODE1 EOODE2

1 1.183e-04 1.315e-04 - -
2 3.032e-05 3.368e-05 1.964 1.965
4 7.703e-06 8.555e-06 1.977 1.977
8 1.941e-06 2.156e-06 1.989 1.989
16 4.872e-07 5.411e-07 1.994 1.994
32 1.220e-07 1.355e-07 1.997 1.997

Table 2: Effective temporal order of accuracy using MAB2(2) time integra-
tion scheme and the upwind method in space. The multirate multistep
method does not affect the order of accuracy (in time) of the base AB2
method.

Time fraction ℓ1 ℓ2 EOODE1 EOODE2

1 1.669e-04 2.380e-04 - -
2 3.949e-05 5.579e-05 2.079 2.093
4 9.970e-06 1.401e-05 1.986 1.993
8 2.488e-06 3.435e-06 2.002 2.028
16 6.189e-07 8.563e-07 2.008 2.004
32 1.557e-07 2.162e-07 1.991 1.986

Table 3: Effective temporal order of accuracy using MAB2(2) time integra-
tion scheme and the third order method in space. The multirate method
does not decrease the order of accuracy (in time) of the base (AB2)method.

The error norms are used to approximate directly the time accuracy order

EOODE1 and EOODE2 for MAB2. In Tables 2 and 3 we show the errors
and effective order with the MAB2(2) time integration method and with
the first and third order upwind spatial discretizations, respectively. The
multirate multistep method has second order as predicted in Sec. 2.3, i.e.,
the same order as the single rate method AB2.

3.1.3 Computational Efficiency

In this section we validate the theoretical speedup results computed in
Section 2.5. We consider the advection equation with a step initial solution
using the domain and discretization from above. A small portion of the
domain (10% of the total number of grid points) is refined in time with
m = 2 and m = 3. The initial solution is advected for one period (i.e., the
final time is one).
In Table 4 we compare the CPU times for the single rate and the multi-

rate integration. The experimental results confirm the theoretical speedup.
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Time Single rate Multirate Experimental Theoretical
ratio time [sec] time [sec] speedup speedup
m = 2 39.81 19.44 2.04 1.81
m = 3 39.81 14.22 2.79 2.50

Table 4: Effective and theoretical computational speedups and timings for
MAB2 with m = 2 and m = 3. The fast region covers 10% of the entire
domain. A considerable speedup increase can be obtained for multidi-
mensional applications.

We note that in 2-D and 3-D applications the speedup is expected to be
considerably larger, as discussed in Section 2.5. Similarly, more impressive
speedups are expected for telescopically nested grids.

3.2 Burgers’ Equation

The simplified (inviscid) Burgers’ equation is

∂w(t, x)

∂t
+
∂

∂x

(
1

2
w(t, x)2

)
= 0 .

The numerical experiments are based on a third order TVD flux limited
scheme for the spatial discretization and MAB2 for the time integration.
The discretization is based on the high resolution schemes developed by
Osher andChakravarthy [4, 5, 26, 27]. In their approach the flux F(w j+1,w j)
is a scalar numerical flux defined for an E-scheme [5]. The following

d f−
j+ 12
= F(w j+1,w j) − F(w j), and (24)

d f+
j+ 12
= F(w j+1) − F(w j+1,w j), (25)

represent the positive and negative flux difference on the cell face. With
(24)-(25), the following numerical flux is considered

F j+ 12
= F(w j+1,w j) −

[
1

6
d̃ f−
j+ 32
+
1

3
d f−
j+ 12

]
+

[
1

3
d̃ f+
j+ 12
+
1

6
d f+
j− 12

]
, (26)

F(w j+1,w j) =
1

2

(
F(w j+1) + F(w j)

)
−
1

2

(
d f+
j+ 12
+ d f−

j+ 12

)
,

where f± are the negative and positive flux contributions, d̃ f± and d f±

represent their flux limited form and are defined below. The unlimited

(flux) scheme is given by d f± = d f± and d̃ f± = d f±. The limited fluxes are
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defined as follows

d̃ f−
j+ 32
= minmod

[
d f−
j+ 32
, b d f−

j+ 12

]
, d f−

j+ 12
= minmod

[
d f−
j+ 12
, b d f−

j+ 32

]
,

d̃ f+
j+ 12
= minmod

[
d f+
j+ 12
, b d f+

j− 12

]
, d f+

j− 12
= minmod

[
d f+
j− 12
, b d f+

j+ 12

]
,

where

minmod
[
x, y

]
= sign(x) ·max

[
0, min

[
|x|, y sign(x)

]]
, 1 ≤ b ≤ 4.

The flux limitedmethod is TVDwith forward Euler timestepping. This
property extends to Adams-Bashforth steps with more stringent timestep
restrictions and a proper initialization. Additional information can be
found in [5, 17, 22]. Our numerical experiments confirm that these prop-
erties extend to MAB2 with the proper initialization as predicted by our
theoretical results. The experimental Courant number for TVD of MAB2
with the above scheme is 0.42.

3.2.1 Nonlinear Stability Experiment

In this section we apply the MAB2 with m = 3 time integration scheme
for Burgers’ equation using the spatial discretization described above.
The computational domain is identical to the one described in Section
3.1.1. The initial profile is a square wave and the initial Courant number
chosen for this experiment is 0.35 for the initial solution. Note that the
Courant number is proportional to the solution magnitude and in this
case it decreases over time.
The spatial discretization scheme is TVD and stable under the chosen

CFL with forward Euler timestepping and AB2. Figure 3.(a) shows the
initial profile advanced in time at different instances. We remark that the
solution is not qualitatively affected by the interface.
The time integration scheme, MAB2, with m = 3 keeps a bounded total

variation. In Figure 3.(b) and (c) we show the time series of the total vari-
ation and TV difference (between successive steps), i.e., ‖wn‖TV - ‖wn−1‖TV,
for the solutions presented in Figure 3.(a). This difference is always neg-
ative, and thus the scheme is TVD on this particular example. In Figure
4 we show a typical application for the multirate integration schemes de-
veloped in this paper. Note that the “magnitude” of the solution also
represents its speed and hence the CFL condition can be estimated directly
from the solution profile. The initial profile represented by a dashed line,
violates the CFL condition. The “fast” area (m = 3) is redefined dynam-
ically as the solution evolves in time. The fast area at different times is
illustrated in 4 with solid horizontal lines on top of the solution The CFL
condition is locally satisfied on the entire domain and the solution remains
wiggle-free.



22

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 t=0.34

t=1.49

t=3.24
t=5.00

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Time [s]

T
V

(t
)

(a) Time evolution (b) Total variation

0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2x 10
−3

Time [s]

T
V

(t
+

h)
−

T
V

(t
)

(c) TV during each step

Figure 3: Representation of (a) Burgers’ solution at different times with the
initial profile dashed. Thewave passes through the slowand fast interfaces
(dashed vertical lines). The solution remains (b,c) TVD and there are no
geometrical aberrations as the solution passes through the interfaces.
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Figure 4: Representation of Burgers’ solution using time refinement with
m = 3 at different instances; time refined regions are represented as hori-
zontal solid lines on top of the solution.
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Time fraction ℓ1 ℓ2 EOODE1 EOODE2

1 2.656e-05 4.269e-05 - -
2 6.217e-06 9.664e-06 2.095 2.143
4 1.364e-06 2.053e-06 2.188 2.235
8 3.433e-07 5.169e-07 1.990 1.990
16 8.623e-08 1.298e-07 1.993 1.994
32 2.152e-08 3.239e-08 2.003 2.002

Table 5: Effective temporal order of accuracy using MAB2(3) time integra-
tion scheme and the third order method in space. The multirate multistep
method does not affect the order of accuracy.

3.2.2 Effective Order Test

In this section we investigate the effective order of accuracy for Burgers’
equation using the same procedure as in Sec. 3.1.2. We consider an initial
sine profile and advance it in time from 0 to 0.1 seconds. The time refined
region uses a timestep of h = H/3 (i.e.,m=3). The results are shown in Table
5. As predicted by the theory, the order of accuracy is two, same as for the
single rate method; therefore, multi-stepping does not affect accuracy.

4 Conclusions

Adaptive simulations of conservation laws refine the spatial grid to obtain
the target accuracy. Due to the CFL restrictions, finer local grids lead
to smaller global timesteps for the entire simulation. Therefore, mesh
refinement is accompanied by a considerable increase in the computational
time. Moreover, even for fixedgrid simulations, thewave speedsmayvary
considerably across the entire domain and the global timestep is restricted
by the fastest wave speed. In both cases, the majority of the variables are
solved with a timestep much smaller than necessary.
Multirate integration schemes use different timesteps for distinct com-

ponents of the solution; in particular, they allow to use different timesteps
in different parts of the domainwhen simulating hyperbolic systems. Each
sub-domain takes a timestep thatmatches the local characteristic time scale
of the solution. The goal is to have the desired accuracy and stability under
only local CFL restrictions.
In this paper we develop multirate linear multistep Adams-Bashforth

methods. The proposed time discretizations are (1) second order accurate,
(2) conservative, and (3) nonlinearly stable under local CFL timestep re-
strictions. Nonlinear stability properties include norm and total variation
boundedness. Note that current multirate methods with these properties,
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available in the literature, are at most first order accurate. The proposed
multirate family of schemes can be extended telescopically to accommo-
date an arbitrary number of partitions (time scales), with arbitrary step
size ratios between partitions.
Two test problems are used to illustrate the theory. In both problems

we used MAB2 with different timestep ratios. The first test is the linear
advection equation. Under local CFL conditions, the integration is linearly
stable and conservative, and the solution remains positive and free of
spurious oscillations. The second test is the inviscidBurgers’ equation. The
wave speed varies significantly in different parts of the domain. Different
timesteps that obey the local CFL conditions are used. The numerical
solution is conserved and its total variation decreaseswith time. Note that
even if the theoretical results are obtained under smoothness assumptions,
in these examples the positivity and TVDproperties are preserved for non-
smooth solutions. Moreover, we prove TVB while in practice the TVD
property is obtained.
Adaptive and automated partitioning methods need to be investigated

in order to thoroughly take advantage of the these multirate methods. We
shall apply thesemultirate timestepping algorithms to the solution of large
scale 3-D PDEs arising in air quality modeling.
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