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Abstract
The recent shift in computer system design to multi-core technol-
ogy requires that the developer leverage explicit parallel program-
ming techniques in order to utilize available performance. Nev-
ertheless, developing the requisite parallel applications remains a
prohibitively-difficult undertaking, particularly for the general pro-
grammer. To mitigate many of the challenges in creating concur-
rent software, this paper introduces a new parallel programming
methodology that leverages feature-oriented programming (FOP)
to logically decompose a product line architecture (PLA) into con-
current execution units. In addition, our efficient implementation
of this methodology, that we call concurrent mixin layers, uses a
layered architecture to facilitate the development of parallel ap-
plications. To validate our methodology and accompanying imple-
mentation, we present a case study of a product line of multime-
dia applications deployed within a typical multi-core environment.
Our performance results demonstrate that a product line can be ef-
fectively transformed into parallel applications capable of utilizing
multiple cores, thus improving performance. Furthermore, concur-
rent mixin layers significantly reduces the complexity of parallel
programming by eliminating the need for the programmer to intro-
duce explicit low-level concurrency control. Our initial experience
gives us reason to believe that concurrent mixin layers is a promis-
ing technique for taming parallelism in multi-core environments.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.2.2 [Design Tools and Tech-
niques]: Modules and interfaces; D.2.10 [Design]: Methodolo-
gies; D.2.11 [Software Architectures]: Data abstraction, Patterns

General Terms Design, Experimentation, Languages

Keywords multi-core, concurrency, compositional programming,
product lines, features

1. Introduction
Due to the recent shift in computer hardware design, parallel pro-
gramming has entered the mainstream. Today, new processors com-
bine multiple cores on the same chip, with each new generation of
processors featuring more cores. As a result, computing applica-
tions must use multiple cores in parallel to realize available perfor-
mance.

[Copyright notice will appear here once ’preprint’ option is removed.]

While explicit parallelism has long been a mainstay in special-
ized domains such as high-end scientific computing, most general-
purpose software is written without parallelism in mind. Thus,
these applications will have to embrace parallelism to maintain per-
formance as computer hardware evolves.

Approaches to creating parallel programs range from fully au-
tomated to fully manual. Fully automated approaches such as par-
allelizing compilers can improve performance to a certain extent, at
which point the programmer will have to provide an alternative al-
gorithm to realize further improvements. Thus, a fully automatated
approach may be unable to achieve the desired level of performance
without programmer intervention.

At the other extreme, creating parallel applications manually
through low-level concurrency mechanisms remains a challeng-
ing and involved endeavor, requiring special expertise and atten-
tion to detail to ensure both correctness and performance. In par-
ticular, using existing threading and OS synchronization primitives
requires detailed and extensive analysis to safely improve perfor-
mance. Therefore, using low-level concurrency mechanisms may
not be an appropriate means for the general programmer to create
parallel programs.

Several technologies have explored the middle ground between
automatic and manual (15; 16; 18; 30). However, in our view,
these technologies do not focus on serving the needs of the general
programmer, who would:

• be an expert in their application domain, but not necessarily in
parallel programming;

• aim to achieve reasonable performance improvements rather
than optimal performance;

• prefer an intuitive and usable solution that does not require low-
level systems programming;

• want to leverage their expertise in a mainstream programming
language and its standard features and libraries.

In light of these observations, this paper presents concurrent
mixin layers, our approach to creating parallel programs, which
focuses on the general programmer by embracing the methodolo-
gies of Product Line Architectures (PLA) and feature-oriented pro-
gramming (FOP) to create parallel applications capable of utilizing
multiple cores. Using FOP, concurrent mixin layers separates the
concern of parallel program design from its implementation mech-
anism by identifying concurrency at a high level. Furthermore, it
builds upon the success of layered architectures as a facility for
functional decomposition.

Specifically, our approach uses the mixin layers layered archi-
tecture as a mechanism for mapping program features into concur-
rent units. As with traditional mixin layers, the programmer ex-
presses program features as separate layers. However, concurrent
mixin layers also enables the programmer to express which features
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should be executed in parallel and uses generative techniques to
transparently introduce the necessary low-level concurrency mech-
anisms. Following the active object pattern (26) concurrent mixin
layers extracts parallelism at the method level using futures (21).

Accordingly, this paper makes the following contributions:

• A novel parallel programming methodology that uses PLA and
FOP to separate concurrency concerns from the core function-
ality of a program.

• A new approach for creating parallel programs, concurrent
mixin layers, that can introduce concurrency at multiple lev-
els of granularity.

• An efficient and reusable implementation of concurrent mixin
layers, capable of leveraging multiple cores for improved per-
formance.

To support these claims, the rest of this paper is structured as
follows. Section 2 provides a technical background for this work.
Section 3 then presents our programming methodology for creating
parallel applications with Section 4 detailing our reference imple-
mentation in C++. To validate our methodology and implementa-
tion, we provide a case study of using concurrent mixin layers in
Section 5 followed by a discussion on the state of the art in software
support for parallel programming on multi-core systems in Section
6. Finally, Section 7 outlines future work directions, and Section 8
offers concluding remarks.

2. Background
For decades, computer hardware manufacturers have improved pro-
cessor performance through increases in clock frequency. However,
while the number of transistors on a processor continues to double
approximately every 18 months, familiarly known as Moore’s Law,
processors have hit a “power wall” where clock frequency will not
significantly increase without “heroic measures” (29). Thus, to pro-
vide more computing capability on a single processor, hardware
manufacturers have turned to multi-core technology.

The principle behind multi-core technology is to provide multi-
ple, simplified computing cores on a processor rather than a single
complex computing core (Figure 1). To this end, a single processor
with two cores can provide twice the computing capability of a sin-
gle core operating at the same clock frequency; four cores can pro-
vide four times the capability. For hardware manufacturers, multi-
core technology is a “saving grace”, as it allows them to continue
doubling the capable performance of the processor by doubling the
number of cores.
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Figure 1. Examples of Single-, Dual-, and Quad-core Systems

For the programmer, on the other hand, the transition to multi-
core technology signifies that “the free lunch is over.” The perfor-
mance of an application no longer automatically doubles every 18
months because it can run on a processor with twice the clock fre-
quency; instead the programmer has to modify the application to
utilize twice as many cores. Furthermore, the outlook for multi-
core technology is “many-core” technology: hundreds of energy-
efficient (i.e., lower-frequency) cores (Figure 2).

Figure 2. Intel’s Outlook of Many-core Technology
(http://www.intel.com)

This shift to multi-core technology requires that the program-
mer embrace concurrency to scale the performance of their soft-
ware with the potential of the hardware – by no means an easy task.
However, this process can be facilitated through novel software
engineering solutions focused on improving parallel programming
development. To this end, this paper presents a novel parallel pro-
gramming methodology that leverages feature-oriented program-
ming to logically decompose a product line architecture into con-
current execution units. We introduce the primary building blocks
of this parallel programming methodology next.

2.1 Product-Line Architectures
A Product-Line Architecture (PLA) is a methodology for creating
a family of related software applications (32). The intuition behind
a PLA is that organizations tend to release software applications
that are closely related (i.e., belonging to the same product-line).
By enabling the sharing of software components among the re-
lated applications, PLAs reduce the overall complexity of software
development and maintenance. While several methodologies have
been proposed for building and analyzing PLAs (14; 32; 37), this
work uses feature-oriented programming to apply object-oriented
methodologies to the creation and maintenance of product-lines.

2.2 Feature-Oriented Programming
Feature-oriented programming (FOP) is a software development
methodology in which features are first-class citizens in the soft-
ware architecture (33). That is, FOP decomposes applications into
a set of features that together provide the requisite functionality.
Composing multiple objects from a single set of features separates
the core functionality of an object from its refinements making the
resulting software more reusable and robust.

In addition, FOP allows easy mix-and-match composition of
features in a modular fashion, as an application is built using step-
wise refinement. A common implementation strategy in FOP is to
use a layered architecture, in which layers correspond to features.
The resulting “feature stack” is composed of many layers with each
layer 1) providing a single feature, and 2) refining existing features
in the stack (4; 5). As an example, Figure 3 illustrates how a set of
four features can be composed to create a variety of objects.

2.3 Mixins and Mixin Layers
Both mixins and mixin layers are well-suited for implementing
FOP designs, as both naturally enable incremental refinement
through their layered architecture.

Specifically, a mixin is an abstract subclass that can be ap-
plied to different superclasses to specialize the behavior of a fam-
ily of classes (10). This mechanism is similar to that of subtype
inheritance, whereby subclasses specialize the behavior of their
superclasses. However, unlike subtype inheritance, mixins build
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Figure 3. Composition of a Set of Features into Feature Stacks

the inheritance tree bottom-up, rather than top-down (Figure 4(a)).
For example, even though Cat < Animal > mixinAnimalCat and
Cat < Picture> mixinPictureCat share the same mixin subclass,
it is the superclass (i.e., Animal or Picture) that determines the
functionality.

Mixin layers is an approach to implementing collaboration-
based designs. In C++, mixin layers use inner classes to model
different collaborating roles within each layer (34). The enclosing
classes and their inner classes form inheritance relationships with
the corresponding classes in the layer above (Figure 4(b)). Mixin
layers enable the programmer to add functionality in a flexible, and
yet well-defined manner: each added layer contains only the inner
classes needed to provide the required functionality (Figure 4(c)).
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Figure 4. Inheritance Hierarchies of Mixins and Mixin Layers

We have chosen mixin layers as the architecture for this work, as
it allows each feature to be a collaboration of smaller, encapsulated
units, while still providing step-wise refinement.

3. Methodology: Features as Units of
Concurrency

Any acceptable parallel programming methodology for the general
programmer needs to satisfy the requirements of both usability and
performance. A methodology that fails to satisfy both objectives
is not likely to become widely applicable, but could still find use
in highly-specialized domains such as high-end scientific comput-
ing. For mainstream computing, we operate under the assumption
that improved usability at the expense of a slight deterioration in
performance is a reasonable trade-off.

Specifically, a parallel programming methodology should de-
liver the following benefits to the general programmer:

• intuitive parallel programming abstractions at an appropriate
level to separate high-level design from low-level concurrency
details

• ease of identifying concurrency in the high-level design
• improved extensibility and maintainability as the design evolves

With these requirements in mind, we chose to use FOP as an
enabling technology for parallel programming as detailed below.

3.1 Appropriate Level of Parallel Programming Abstractions
Recall that FOP is a methodology, whereby the programmer rea-
sons about an application in terms of its features. Correspondingly,
individual features are conceptual facets of a program, and as such
may not necessarily correspond to specific language constructs
such as classes, methods, and fields. As such, we believe FOP pro-
vides an appropriate level of parallel programming abstraction for
the general programmer, as features, and not parallel programming
technologies or languages, are the units of consideration.

When using FOP to introduce parallelism, a clear separation
between the high-level design units and low-level implementation
artifacts exists, making it possible to abstract away the specific de-
tails of the underlying parallel programming technology. This al-
lows FOP to reduce the burden of developing a parallel application
by eliminating the need to master any specific parallel program-
ming technology when designing programs with parallel execution
in mind. That is, a feature-oriented design can hide the implementa-
tion of parallelism, whether it is PThreads(19), MPI(18), or the par-
allel programming technology du jour, from the developer, thereby
bridging the gap between the mainstream programming technolo-
gies of today and the specialized parallel programming technolo-
gies of tomorrow.

3.2 Identification of Concurrency
In this era of multi-core technology, in which performance is gained
by increasing the number of cores, it is imperative that software
exhibit sufficient levels of parallelism. The stepwise refinement ap-
proach of adding features to an application as the software evolves
provides an avenue to identify and extract the requisite parallelism.
To highlight the opportunities afforded by the use of FOP as a
means of introducing concurrency, we distinguish between step-
wise refinement of the application and stepwise refinement of the
features in the context of PLAs.

When new features are added to refine an application, the pro-
grammer can easily choose to execute these new features as concur-
rent units because of the inherent low coupling between offered by
these features. For example, in Figure 5 the building product line
features: plumbing, electrical, mobility, and architectural are
prime choices for encapsulation into concurrent units as they ex-
hibit low-coupling between them.
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Figure 5. Identifying Concurrency within a Product Line

On the other hand, when features refine existing features, a
higher level of coupling exists limiting the amount of concurrency
available. However, concurrency may still be introduced, albeit to a
lesser degree. For example, with sound (e.g., an elevator that plays
music) refines an elevator, thereby exhibiting a higher degree of
coupling. However, while elevator uses the feature with sound to
play music (i.e., a less concurrent operation), the elevator does
not need to use this feature to move between floors (i.e., a more
concurrent operation).

It is worth noting that features with minimal coupling, such as
stairs and elevator, can be nearly-completely concurrent.

In summary, by analyzing the relationships between features
within an FOP design, various levels of concurrency can be identi-
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fied. Furthermore, as more features are added, more opportunities
for concurrency are created. That is, as the software matures and
evolves, an FOP design makes it possible to use increasingly-larger
numbers of cores.

3.3 Extensibility and Maintainability
The maintainability and extensibility advantages offered by FOP
and PLA have been thoroughly documented in the literature (9;
8; 36). The advantages that matter most to parallel programming
include the following:

• Improved modularity. Independent and encapsulated modules
readily offer possible delineations of concurrent units.

• Higher-level abstractions. Features separate the design con-
cepts from the implementation details, thereby allowing the
programmer to focus on the algorithmic correctness of a par-
allel application.

• Incremental refinement. Adding and removing features in a
defined and incremental manner provides a systematic method
for debugging a parallel application.

Collectively, these features help to provide a bridge from single-
threaded applications to multi-core parallel programs for the gen-
eral programmer due to their far-reaching affects during the devel-
opment, deployment, and maintenance processes.

3.4 Range of Applicability
Even with the aforementioned benefits of using FOP as a parallel
programming methodology, it is important to recognize its range of
applicability to the problem of creating applications for multi-core
systems.

3.4.1 Legacy Applications
Despite the benefits that FOP and PLAs offer to the general pro-
grammer, many applications are not constructed using these tech-
nologies. Therefore, these applications cannot benefit from the ad-
vantages of our approach. Fortunately, automated tools to transition
legacy applications into feature-oriented designs have been investi-
gated (24; 27).

3.4.2 Amdahl’s Law
Parallel performance on multi-core systems is commonly described
by Amdahl’s Law (3):

S =
1

1− C
(1)

where S is the speed-up of the application and C is the portion
of the application that is concurrent. When an application is only
10% non-concurrent (i.e., 90% concurrent), the application can
only achieve a maximum speedup of 10x. Therefore, to achieve
optimum performance a program built using FOP requires that
the product line have as many lowly-coupled, highly-concurrent
features as possible.

As a consequence, identifying concurrency only via FOP may
not be suitable for high-end computing experts seeking to obtain
optimal performance. However, FOP provides a powerful tool for
general programmers wishing to obtain reasonable performance
improvements in a maintainable and extensible fashion without the
requirement of first understanding low-level concurrency details of
any specific parallel programming technology.

4. Implementation: Concurrent Mixin Layers
To verify the concept of using FOP as a parallel programming
methodology, we have implemented a novel application of mixin

layers that combines a mixin layers architecture with proven con-
current programming technologies. The implementation, that we
call concurrent mixin layers , enables a general programmer to cre-
ate specialized parallel applications without the need to understand
low-level concurrency details.

The process of using concurrent mixin layers is shown in Fig-
ure 6. First, a programmer starts with their PLA viewed as an FOP
design. Second, each feature is created using the standard abstrac-
tions of mixin layers and assembled into a feature stack. Then con-
currency is introduced on an “as needed” basis by utilizing the pro-
gramming abstractions of concurrent mixin layers with a generator
adding the final “glue-code” to create a parallel application. That
is, to transform a stack of mixin layers into a parallel application
capable of executing on a multi-core system, the programmer sim-
ply declares which layers should be executed as concurrent units
and generates the requisite intercepting methods. A key feature of
concurrent mixin layers, is that the entire process can shield the
programmer from explicitly having to interact directly with low-
level concurrency constructs in order to introduce parallelism into
a product line.

Product Line

Architecture

Mixin Layers Concurrent

Mixin Layers

Concurrent

Concurrent

Concurrent

Concurrent

Feature-Oriented

Design

.

.

.

Generator
Parallel

Application

Figure 6. Progression from a PLA to a Parallel Application

As a concrete implementation strategy, concurrent mixin layers
follows the active object pattern (26) by introducing a new mixin
layer, Concurrent, to encapsulate layers (i.e., features) into con-
current objects at different levels of granularity. To ensure that the
original application semantics are preserved, concurrent mixin lay-
ers refines this pattern with a set of invariants. Additionally, while
shielding the general from low-level concurrency details, our im-
plementation allows expert programmers to add low-level concur-
rency within a layer to further improve performance.

To demonstrate how concurrent mixin layers can deliver these
practical benefits to the programmer, we next describe our C++
implementation. It is worth noting, however, that concurrent mixin
layers is language and concurrency-mechanism agnostic.

4.1 Encapsulating Concurrency
The primary means of specifying concurrent execution in concur-
rent mixin layers is a special layer, called Concurrent, which en-
capsulates other layers into a single concurrent execution unit. Fur-
thermore, Concurrent hides the specific low-level concurrency
mechanisms from the programmer’s view, effectively separating
the implementation of concurrency from the design of the appli-
cation. To enforce the requirement that Concurrent be a com-
pletely encapsulated unit of execution, private inheritance is used to
form a “barrier” between the layers above and below itself. Thus,
Concurrent requires that all method calls passing through it are
intercepted.

The interception of method calls is necessary when executing
layers within different execution contexts. When a layer attempts
to invoke a method in a different concurrent execution unit, the in-
vocation of that method must be redirected, altering the original
control flow of the program. To enable this, we employ (and gen-
erate) proxy methods – methods that interface with the underlying
low-level concurrency mechanisms.
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As a concrete example, consider Figure 7, in which object AB is
a mixin layers hierarchy of B < A > allowing A and its associated
methods to be accessible from within B. On the other hand, when
object ABparallel is defined as B < Concurrent < A > >, A and B

execute concurrently. Therefore, if the programmer tries to invoke
a method in A directly from B, where Concurrent does not first
explicitly intercept the invocation, the compiler will signal an error.

template < typename Super >
class Concurrent : private Super {

public:
/** intercept ‘baz (...) ’ **/
void baz (...) { /** proxy body **/ }

};

class A {
public:

void foo (...) { /** body **/ }
void baz (...) { /** body **/ }

};

template < typename Super >
class B : public Super { };

int main (int argc , char** argv) {
typedef B < A > Serial;
Serial AB;
AB.foo (...); /** Allowed **/

typedef B < Concurrent < A > > Parallel;
Parallel ABparallel;
ABparallel.foo (...); /** Unallowed

‘Error :: void A::foo()’ is inaccessible;
‘A’ is not an accessible base of
‘B<Concurrent <A> >’ **/

ABparallel.baz (...); /** Allowed **/

return 0;
}

Figure 7. Allowed and Unallowed Accesses of A

The process of creating these proxy methods by hand would be
tedious and error prone. Therefore, we have automated this process
using generative techniques.

4.1.1 Generating Requisite Proxy Methods
Since the generation of the proxy methods is a cross-cutting con-
cern, we first considered using an aspect extension of C++, As-
pectC++ (35), which can add methods to existing classes. How-
ever, we ended up not using AspectC++, as its current version can-
not weave into template classes, which C++ mixins use heavily.
We also briefly considered using the aspectual mixin layers of Fea-
tureC++ (4), but the current implementation is only available for
Windows.

Our current implementation of concurrent mixin layers uses a
C++ parsing utility called GCCXML (20), which taps into the plat-
form’s C++ compiler (e.g., GCC on UNIX or Visual C++ on Win-
dows) to create a structured XML description of the user’s mixin
layers stack. The XML description is passed to a Perl script that
generates the corresponding proxy methods within Concurrent
creating a parallel application (Figure 8).

4.2 Creating Parallelism at Multiple Granularities
By using a mixin layer to encapsulate concurrency, concurrent
mixin layers enables programmers to create parallelism at differ-
ent levels of granularity. That is, concurrent mixin layers enables
programmers to choose which layers to combine into concurrent

GCC-XML

Parser

Wrapper Method

Generator

Concurrent

Mixin

Layers

Parallel

Application

Generator

Figure 8. Proxy Method Generation Process

execution units in order to better take advantage of the underlying
hardware for improved performance and greater flexibility in real-
izing the identified concurrency in the FOP design.

As seen in Figure 9, a single mixin layers application can de-
composed for concurrent execution in many ways. At a basic level,
both layers (Figure 9(a)) and inner classes (Figure 9(b)) offer sim-
ple and orthogonal delineations of concurrent execution. Combin-
ing these orthogonal units of encapsulation geometrically increases
the level of concurrency (Figure 9(c)).

This is not to say though that concurrent units can only be de-
fined at the intersection of a layer and an inner class. On the con-
trary, because Concurrent is just another layer, the programmer
can choose to logically combine any “neighboring” layers into a
single concurrent unit, as shown in Figure 9(d). This flexibility im-
proves performance in two ways: 1) by allowing tightly coupled
objects to be conglomerated in order to facilitate inter-procedural
optimizations (e.g., function inlining and register assignment); 2)
by enabling concurrency throttling, an optimization where fewer
than M processes performs better than M processes (13).

4.3 Introducing Concurrency Orthogonally
Concurrent mixin layers introduces concurrency orthogonally to
the high-level design by using the active object pattern (26) for
each concurrent execution unit and through the use of futures at
the method level (21). That is, multiple methods, with at most one
per concurrent unit, execute simultaneously returning a reference to
a value that will eventually be computed. These technologies facil-
itate the extension and maintenance of the application orthogonally
to the mechanisms providing low-level concurrency.

To create and synchronize concurrent tasks, we implement a
“wait-by-necessity” policy using single-assignment futures. A fu-
ture blocks if the client code attempts to retrieve its value before
the value is defined. Using futures as the return type of every proxy
method allows methods to execute concurrently by avoiding the
immediate data-dependency. Implementing each future as a single-
assignment datatype also improves performance and concurrency,
as multiple active objects can simultaneously access the same fu-
ture once the value is defined.

Moreover, our implementation transfers “execution ownership”
between different concurrent execution units using “functoids” (4).
This is required due to the caller and the callee executing within
different execution contexts when a method has been intercepted by
Concurrent. To provide the callee with the requisite parameters,
a functoid encapsulates the caller’s input parameters and future
return value. The caller then pushes the functoid onto the callee’s
execution queue and continues executing (concurrently with the
callee) until it invokes value() on any future.

4.3.1 Preserving Application Semantics
While futures and active objects facilitate concurrent execution,
a simple implementation of these approaches is insufficient for
our purposes. We wish to guarantee that the original semantics
of the application are preserved, while simultaneously hiding low-
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Figure 9. Decomposing Concurrent Mixin Layers to Achieve Multiple Granularities of Parallelism

level concurrency details (necessary in stateful languages) from the
programmer’s view. For example, consider the methods add and
sub, as shown in Figure 10.

struct SodaDispenser {
int numSodas , addCalled , subCalled;

SodaDispenser () : numSodas (0),
addCalled (0), subCalled (0) { }

Future <bool > add() {
addCalled ++;
numSodas ++;
return Future <true >

}

Future <bool > sub() {
subCalled ++;
if (numSodas > 0) numSodas --;
return Future <true >

}
};

int main{int argc , char** argv} {
SodaDispenser machine;
Future <void > f = machine.add();
Future <void > g = machine.sub();
f.value (); g.value ();
return machine.numSodas;

}

Figure 10. Potentially Ambiguous Execution Behavior

Since both add and sub modify the state variable numSodas,
the value of numSodas is ambiguous depending on the interleaving
of the accesses to numSodas. When, add completely precedes sub,
numSodas equals 0; when, sub completely precedes add, numSodas
equals 1. When the instructions for add and sub are interleaved
in some fashion, numSodas depends on the exact interleaving. This
ambiguity can be resolved by introducing a low-level synchroniza-
tion mechanism around the access of numSodas. However, in the
absence of a parallelizing compiler, this approach requires that the
programmer explicitly introduce the required synchronization, a
burden concurrent mixin layers aims to remove.

To alleviate this burden on the programmer and still fulfill the
original application semantics without deadlock, concurrent mixin
layers refines the active object pattern in the following ways:

1. Each active object completely fulfills each future in the order
that it is placed in its first-in-first-out (FIFO) execution queue.

2. A future can only reach the necessary active object by traversing
the feature stack in a stepwise fashion.

3. Argument parameters are evaluated eagerly.

While the above invariants can affect the level of concurrency
available, we will demonstrate in Section 5 that reasonable perfor-
mance can still be achieved.

We now present, through proof-by-contradiction, how total or-
dering is preserved and how deadlocks are avoided.

Preserving Total Ordering Suppose we have the feature stack,
A < Concurrent < B < Concurrent < C > > >. Let, A.main() is-
sue B.f() followed by B.g() followed by C.h().

Proposition: Total ordering is always preserved.
Proof (by contradiction): Assume to the contrary that there

exists an alternative ordering whereby C.h() will be executed prior
to either B.f() or B.g(). By invariant 2, there is only one path for
C.h() to reach AO_C, which is traversing from AO_A to AO_B and then
AO_B to AO_C. Furthermore, by invariant 1, C.h() will only traverse
to AO_C when reaching the front of AO_B’s FIFO queue. For C.h()
to execute prior to either B.f() or B.g(), one of these functions
must still be on AO_B’s FIFO queue. This implies that this function
traversed from AO_A to AO_B after C.h() did and similarly this
function must have been behind C.h() on AO_A’s queue according
to invariant 1. For this to occur, C.h() must have been issued
before this function, however, C.h() was issued after both B.f()

and B.g() creating a contradiction.

Avoiding Deadlock Suppose we have the the same feature stack,
as above.

Proposition: Deadlock is always avoided.
Proof (by contradiction): Assume that deadlock occurs such

that B.f() depends on the value of C.g() yet C.g() is in the
FIFO queue after B.f(). For B.f() to depend on the value of
C.g(), B.f(C.g()) must have occurred. Invariant 3 stipulates that
parameters are eagerly evaluated, and thus C.g() must be issued
and placed in the FIFO queue before B.f(). This contradicts our
assumption that C.g() is in the FIFO queue after B.f().

4.4 Enabling Optimizations for Expert Programmers
Although concurrent mixin layers strives to enable the general pro-
grammer to obtain reasonable performance with minimal knowl-
edge of low-level concurrency details, it also enables expert pro-
grammers to optimize the performance even further. For example,
Figure 9 shows how concurrency is geometrically proportional to
the number of layers (P ) and inner classes (Q). However, consider
the case in which the underlying hardware contains M cores, where
M >> P ∗Q.

Recall from Section 4.2 that concurrent mixin layers only log-
ically decomposes the application into concurrent execution units
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but does not specify how to implement each unit. Therefore, an
expert programmer can create an explosion of parallelism by in-
troducing parallelism within each layer using any complementary
parallel technology such as OpenMP (15) (Figure 11(a)).

L1

L2

L3Cell

L4L4OMP

L3OMP

L2OMP

L1OMP

(a) Adding Parallelism within
Layers with OpenMP

L1

L2

L3Cell

L4L4OMP

L3OMP

L2OMP

L1OMP

(b) Swapping in an IBM Cell
Acceleration Layer

Figure 11. Two Approaches of Adding Parallelism within a Layer

Additionally, should N of the M cores reside within a special-
ized accelerator, such as the IBM Cell processor, a specialized ac-
celerator module may be swapped in since concurrent mixin lay-
ers retains the modularity and extensibility benefits of mixin layers
(Figure 11(b)).

5. Case Study
In some ways, concurrent mixin layers is an evolutionary technol-
ogy. Thus, we present a case study that not only validates its appli-
cability to the problem of developing parallel programs for multi-
core systems, but also highlights the evolutionary path from PLAs
and FOP to concurrent mixin layers. Specifically, we evaluate how
our implementation enables a product line of multimedia applica-
tions to execute on an Intel quad-core system without requiring the
programmer to manage low-level concurrency explicitly. We will
also demonstrate that this approach effectively transforms a product
line into parallel applications capable of utilizing multiple cores.

Our product line of multimedia applications is comprised of
six features: schedule, read, flip, invert, negative, and write.
Following FOP methodology, we map each feature to an individual
layer, creating a feature-stack of up to height six. Despite the well-
known advantages offered by a layered architecture, the resulting
application is bound to using exactly one core if no parallelism
has been added explicitly. In order to augment this product line
for effective use on multi-core systems, we evolve the original
implementation to concurrent mixin layers. A graphical view of
the evolution of this multimedia product line to concurrent mixin
layers is visible in Figure 12.
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Figure 12. Evolution of a Multimedia Product Line to Concurrent
Mixin Layers

In the following subsections, we document our experiences
using concurrent mixin layers to execute a multimedia product line
on a multi-core system.

5.1 Running N Features on N Cores
For the initial experimental setup, we chose to evaluate the perfor-
mance of concurrent mixin layers using an application comprised
of four features running on four cores. This setup provides a per-
formance baseline by providing a perfect balance between features
and cores. In addition, this setup makes it possible to determine how
the ordering of layers can affect overall performance by varying the
execution flow. A summary of our results is shown in Figure 13.
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Figure 13. Speedup Achieved by Various Product-Line Applica-
tions on a Quad-core System

5.1.1 Explicit: Minimal Changes to the Original Code
To determine our performance baseline, we transformed the orig-
inal implementation in a minimal way – changing the return type
of every method into a future, and explicitly calling value() im-
mediately after the method returns (Figure 14). The resulting code
executes in lock-step similar to the original serial application.

for each(image* im in input) {
image* r1 = read(im). value ();
image* p1= process(r1). value ();
image* w1 = process(p1).value ();
write(w1);

}

Figure 14. Example Code of “Explicit”

As one can see in Figure 13, the performance of this “explicit”
concurrent mixin layers version exhibits an insignificant amount of
computational overhead as compared to the original version. From
this result, one can infer that the overhead incurred by concurrent
mixin layers is minimal.

5.1.2 Partial: Using Futures to Overlap Computations
With our baseline established, we modify the product line to take
advantage of futures, so that multiple methods may execute concur-
rently. As seen in Figure 15, value() is not invoked immediately
following a method invocation. Instead, the methods are modified
to accept futures as arguments.

for each(image* im in input) {
Future <image*> f1 = read(im);
Future <image*> f2 = process(f1);
Future <image*> f3 = process(f2);
write(f3);

}

Figure 15. Example code of “Partial”
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While the introduced changes can increase the code’s complex-
ity (due to the use of futures), they do not change the overall algo-
rithm’s structure. As such, this “partial” parallelization achieves an
average speedup of 2.3x on four cores (Figure 13). Although the
speedup does not reach the ideal 4.0x, the ability to use more than
one core improves the performance substantially as compared to
the performance of a single-threaded version (i.e., 1.0x).

5.1.3 Pipelined: Leveraging the Layered Architecture
A performance analysis of the previous product lines shows that the
ordering of the layers within the feature stack significantly affects
the resulting speedup (Figure 13). When the layers are stacked
bottom-to-top, in the same order that their features are utilized
by the algorithm, a larger speedup can be realized. Leveraging
this insight, one can identify a natural pipeline flow of execution
inherent to the architecture.

Building on this observation, we refactor the algorithm of our
multimedia application into dataflow pipelines (Figure 16). This
approach exploits parallelism by treating each layer as a worker
on a virtual assembly line, in which each worker operates on a
different set of data simultaneously. A piece of data is considered
fully processed after it has passed through the entire assembly line.
A beneficial side affect of using a dataflow approach is that the
resulting code tends to be shorter in length and less coupled.

// scheduler
for each(image* im in input ){

Future <image*> f1 = process(im);
}
...
Future <image*> process(image) {

Future <image*> f1 = do_something(image );
return Super :: process(f1);

}

Figure 16. Example Code of “Pipelined”

Correspondingly, as the results show in Figure 17, this “pipelined”
approach further improves performance. As such, we believe that
using dataflow pipelines within concurrent mixin layers to be a
promising approach for achieving high performance on multi-core
systems.

5.2 Running N Features on M Cores
We now examine the situations in which the number of features
does not equal the number of cores, to identify the adaptability of
concurrent mixin layers under more typical conditions.

5.2.1 More Features Than Cores
In the case of a product line having more features than available
cores, concurrent mixin layers allows the programmer to combine
multiple layers into a single execution unit to provide better load
balancing. For our tests, we evaluated the “invert” application,
which consists of four total features, running on three cores and
two cores, using three and two execution contexts, respectively.

These tests showed that performance varies significantly de-
pending on which layers are combined. On three cores, the fastest
performing combination was nearly 3x faster than the slowest com-
bination; on two cores, the best combination was approximately
1.5x faster. Although, it is currently up to the programmer to decide
how layers should be combined, a process that can be automated in
the future, concurrent mixin layers greatly facilitates this process
as the programmer simply has to change the typedef as shown in
Figure 18.

typedef Concurrent C;
// Execution units: read/flip; invert; write
typedef C < Read < Flip < C < Invert < C

< Write > > > > > > Object;
// Execution Units: read; flip; invert/write
typedef C < Read < C < Flip < C < Invert

< Write > > > > > > Object;

Figure 18. Two Decompositions of the Same Feature Stack

5.2.2 Fewer Features Than Cores
As current hardware trends continue, it is possible that program-
mers will soon have many more cores than available features. As
discussed earlier in Section 4.4, concurrent mixin layers allows the
ability to add parallelism orthogonally to the number of features.
However, at this time, we are unable to obtain computation time
on an adequate many-core system and cannot evaluate concurrent
mixin layers within this context.

5.3 Summary
From this case study, one can conclude that concurrent mixin layers
delivers tangible performance and usability benefits to the program-
mer charged with the challenge of utilizing multi-core systems. The
results show that it is possible to achieve improved performance
with varying levels of modification to the original code without re-
quiring the programmer to add low-level concurrency mechanisms
explicitly. It has also been made apparent that one can achieve im-
proved performance benefits when one is willing to transform their
imperative algorithms to dataflow pipelines.

6. Related Work
While parallel programming has only recently entered mainstream
computing with multi-core technology, it has been the prerogative
of high-end computing (HEC) for several decades. In particular,
HEC scientists have explored a plethora of parallel programming
technologies including vector machines, shared memory multipro-
cessors, distributed memory computing cluster, grids of computing
clusters, massively parallel supercomputers, and hybridization of
the above (28).

Today parallel programming is dominated by two primary mod-
els of parallel computing: threading and message passing. The
threading model relies on each concurrent unit having access to the
entire global memory space, with OpenMP (15) and PThreads (19)
being the predominant implementations. While our current imple-
mentation, concurrent mixin layers, utilizes PThreads as its concur-
rency mechanism, the higher level of abstraction of FOP leaves the
programmer unaware of this low-level implementation detail.

For message passing, the message passing interface (MPI) (18),
is becoming the de facto standard for parallel programming due to
its support for both shared and distributed memory computers with
a “write once, run anywhere” advantage. However, while MPI pro-
grams can achieve high performance, its programming abstractions
are often found to be too low-level for experts, let alone the gen-
eral programmer (22). Similarly to the threading model mentioned
above, concurrent mixin layers offer a higher level of abstraction
to the programmer; as an alternative low-level concurrency imple-
mentation, we plan to evaluate the use of MPI, as discussed in Sec-
tion 7.

Recent trends in the HEC community have shifted the em-
phasis from strictly high-performance to high-productivity, in
which performance and ease of development and maintenance
play equally important roles (25). To realize this vision, several
high-performance, high-productivity languages and technologies
are being explored (2; 11; 12; 16; 30; 38). These new program-
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Figure 17. Leveraging the Layered Architecture to Minimize Pipeline Stalls

ming languages and technologies offer new specialized constructs
and abstractions, designed specifically for high-productivity paral-
lel programming. By contrast, concurrent mixin layers offer similar
productivity advantages, but remains within the confines of existing
mainstream programming languages. We believe that our approach
aligns well with the recent insights gained by software engineering
researchers, who point out that the average developer is resistant to
changing their development tools and languages (7). Fully accom-
modating this resistance to change in the face of the radical change
to multi-core processing may not be an ideal compromise, but in
our view, allowing incremental changes toward the next-generation
parallel programming technologies is a pragmatic solution.

Concurrent mixin layers also bears similarity to a hybridiza-
tion of the Common Component Architecture (CCA) (6) and Se-
quoia (17). Like CCA, concurrent mixin layers modularizes func-
tionality (e.g., features) and can expose a dataflow model to the
programmer. Unlike CCA, however, concurrent mixin layers does
not impose a strict API on the programmer. Instead, the program-
mer is free to choose an interface that is most beneficial for the
task at hand. In addition, concurrent mixin layers enables the pro-
grammer to combine multiple units of functionality into a single
“meta-component” at will.

As for Sequoia, the hierarchical abstract machine model resem-
bles a concurrent mixin layers feature stack, in which commu-
nication occurs only in a vertical fashion. Nevertheless, Sequoia
provides parallel abstractions for the hierarchical memory model,
whereas concurrent mixin layers aims to provide abstractions for
multi-core processors.

Lastly, concurrent mixin layers closely resembles an actor
model (1). However, the invariants listed in Section 4.3.1 would
restrict an actor model so significantly, that the resulting concurrent
execution unit would no longer provide the capabilities one would
expect from an actor, such as dynamic out-of-order execution.

7. Future Work
As future work, we plan to improve the generality, scalability, and
usability of our methodology and implementation.

While the current implementation of concurrent mixin layers
utilizes PThreads as the vehicle for concurrent execution, we are

interested in exploring whether alternative low-level parallel tech-
nologies such as MPI (18) could be used instead and their affect
on performance. We also plan to evaluate how languages other
than C++ can serve as an implementation platform. Specifically,
implementations in the mainstream language such as Java, Lisp,
and Python as well as emerging languages such as X10 (12) or
Scala (31) could provide valuable insights.

Our performance evaluation assessed the advantages of concur-
rent mixin layers on a “small” multi-core system. An evaluation on
larger many-core systems such as the 8-core (32-thread) Sun Nia-
gara2, the 64-core Tilera TILE64, and the 80-core Intel Teraflops
Research Chip, will provide insights into the applicability of this
approach on massively parallel hardware. Simultaneously, we will
evaluate larger product lines to leverage the larger number of avail-
able cores.

Lastly, we plan to experiment with state-of-the-art generative
programming technologies in aiding the transformation of product
lines into parallel programs. In particular, the technologies of Fea-
tureC++ (4) and Morphing (23) look especially promising.

8. Conclusions
We presented concurrent mixin layers, a novel methodology for
constructing parallel applications that effectively utilizes the avail-
able processing power on multi-core systems. By using feature-
oriented programming, a general programmer can readily iden-
tify concurrency within a product-line architecture, and through
higher-level parallel programming abstractions can transform a se-
rial mixin layers implementation into a parallel program. Further-
more, the transformation allows for multiple granularities of paral-
lelism, but does not require the programmer to introduce low-level
concurrency constructs explicitly. To demonstrate that our imple-
mentation can improve performance by leveraging multiple cores
in parallel, we applied concurrent mixin layers to a product line of
multimedia applications and realized a speedup of up to slightly
over 3x on four cores. Unsurprisingly, since the resulting architec-
ture closely resembles a processing pipeline, a dataflow program-
ming model within this architecture achieves the best speedup. As
such, we believe concurrent mixin layers can be an enabling plat-
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form for efficient and intuitive parallel programming on multi-core
systems.
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