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Abstract—Feature reduction in a remote sensing dataset isften desirable to decrease the processing
time required to perform a classification and improve overal classification accuracy. This work introduces
a feature reduction method based on the singular value decoposition (SVD). This feature reduction
technique was applied to training data from two multitemporal datasets of Landsat TM/ETM+ imagery
acquired over a forested area in Virginia, USA and Rondnia, Brazil. Subsequent parallel iterative guided
spectral class rejection (pIGSCR) forest/non-forest clasfications were performed to determine the quality
of the feature reduction. The classifications of the Virgina data were five times faster using SVD-based
feature reduction without affecting the classification acaracy. Feature reduction using the SVD was also
compared to feature reduction using principal components nalysis (PCA). The highest average accuracies
for the Virginia dataset (88.34%) and for the Rondbnia dataset (93.31%) were achieved using the SVD.
The results presented here indicate that SVD-based featureeduction can produce statistically significantly
better classifications than PCA.

I. INTRODUCTION

In the remote sensing and image processing disciplinee ldega volumes and slow processor speeds have
necessitated feature reduction. Since the cost of clestsifits is dependent upon the number of discriminating
features (bands) associated with each pixel in multispksprace, it is desirable to reduce the number of features
in a dataset [25]. Even as processing speeds increase dwstey Eomputers and better algorithms, such as
the parallel iterative guided spectral class rejectiorGRCR) classification algorithm [22], the need for feature
reduction methods remains as modern sensors increase sitidgn Iterative guided spectral class rejection
(IGSCR) [30][21] is a hybrid classification method, whichnaoines the automation of the cluster (spectral)
class creation of unsupervised classification with the erattical cluster assignment procedure of supervised
classification [14][4][5]. A supervised classification as& decision rule to assign individual pixels (or objects)
to a particular prelabeled spectral class (training dagpamed by an analyst). An unsupervised classification
uses a clustering method to mathematically group pixelofpects) within an image and then an analyst assigns
a label to each cluster. Hybrid classifiers that often exlibaracteristics of both supervised and unsupervised
classification may be suitable for feature selection, f@aneduction, or creative methods unique to the hybrid
classifier [26][3].

Traditional methods of feature selection include the ussepfarability indices such as divergence, the Jeffries
Matusita Distance, and transformed divergence [25]. A $etpectral classes are analyzed to determine which
combinations of bands will result in the greatest sepatgl{ijreatest distinction between classes), and only those
bands are used for the ensuing classification. Another po@mpproach is that of feature reduction, where the
image is transformed to a new coordinate system requiringdfully) fewer bands to accurately represent the
image. Most feature reduction methods do not require aisabfstraining data, making this an attractive option
for a classification method that does not require traininghsas unsupervised classification methods and some
hybrid classification methods. Standard feature reduati@thods include principal components analysis (PCA)
(also called Karhunen-Loeve analysis) [14], maximum ndiaetion (MNF) [12], canonical analysis [9], and the
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Kauth-Thomas tasseled cap transformation [16]. The tedsep transformation has a fixed axis and is therefore
somewhat confined in its application. The other feature ctdn methods mentioned are transformations that
align the data along axes of decreasing variance, and thdtingslow order de-correlated bands are sufficient
to perform a classification in many cases. However, Lowifd] [And Chang [6] have shown that sometimes the
higher order components resulting from such transformati@re necessary to differentiate between classes in a
classification. Also, the axes generated using PCA may awdbr accurate classification of the data using fewer
dimensions while a different set of axes exists that wilbwallifor class discrimination using fewer dimensions, the
premise upon which canonical analysis is based [25]. Furtbee, rather than directly revealing the rank and
basis of the data from the data itself, these methods atteampveal these attributes indirectly from a summary of
the data, such as the covariance matrix. This explains whyébulting PCA data has full rank (no reduction is
possible), but it is still possible that a different alignmef the data will result in a feature reduction.

A mathematical construct that directly reveals the rank aodesponding ideal basis of a dataset is the
singular value decomposition (SVD). For a dataset-idimensional space, for arly < n, the SVD will show the
ideal basis for representing that data using dnlgimensions, as will be explained in a later section. If theDSV
reveals that the dataset is full rank and no feature redudsigpossible along the calculated axes, then no axes
exist for which a reduction is possible.

In remote sensing applications, the SVD is a popular altemactorization to QR factorization for solving
least squares problems [20][7]. The use of the SVD as a feaaguction tool has been limited in remote sensing
as the storage and processing are expensive, especiallgrfier datasets such as entire images [8][13]. In the
discipline of chemistry, van den Broek et al. [28] used theD reveal the rank and reduce the data dimension
of multivariate images.

This paper presents a feature reduction method using tlgailainvalue decomposition (SVD). The SVD is
applied in a new way, drastically reducing the computer @ssing time and memory requirements and therefore
making the SVD feasible for feature reduction in large datsas This work examines various feature reduction
methods for the pIGSCR classification algorithm, and dernates that the proposed SVD method significantly
decreases classification execution times while not affgatlassification accuracy, and the SVD outperforms some
other commonly used feature reduction methods such asipaintomponents analysis.

IT. PIGSCR

pIGSCR [22] begins with the user inputting an image to besiliesl, training data specific to that image,
and various parameters for the unsupervised classificatiohthe spectral class homogeneity test. Clustering is
performed on the input image, and the resulting spectrasekare analyzed for informational class homogeneity
to ensure that only one informational class is present (Wighh probability) in each spectral class. If more than
one informational class is present with significant proligbithat spectral class will be rejected, and all pixels
belonging to that class will have the opportunity to be retued. In order to conduct the homogeneity test,
the training data must be analyzed to determine how manytpdiom each informational class fall into each
spectral class. For any training poitit the point’s coordinates in the original image are used terd@ne to
which spectral class it was assigned in the unsupervisessifitaation. Each spectral class has an informational
class count vector that has a length equal to the number ofnrational classes, and the component of the
vector that corresponds to the informational class that ass®ciated t@,; (by the analyst in the training phase)
is incremented. After this process has been applied to eadtirig point, the homogeneity test is conducted for
each spectral class. The homogeneity test [21] is given as

Ni(1 —po) > 5 (spectral class must have minimum
number of pixels) an& > Z(«) (homogeneity test),

where
Z = (p—po — (0.5/Ng))/\/po(1 — po)/Nk,
@ is the type-I error rate,

Z(a)) is the value such thaP(Z > Z(«)) = « for a



N(0,1) variableZ,

]3 = maj/N]m
Do is the user input threshold,
Ny, is the total number of training pixels in the

spectral class, and

Nmaj is the majority informational class count (count
of training pixels belonging to the informational
class with the highest count).

If a spectral class is determined to be pufe % Z(«)), then the majority informational class is assigned
to the spectral class, and each pixel that was assigned tepéetral class by clustering is recoded to the
informational class value in the output classification imagurthermore, each pixel belonging to a pure spectral
class is removed from the input image for successive agjgita of clustering. The pure spectral class and its
signature (a set of statistics for the class such as meanamdiance among bands) are kept for later processing.
After all spectral classes have been processed, clustésiitiy the same number of clusters that was used in each
previous iteration) is used again on the remaining pixets the homogeneity test ensues. This iteration continues
until no pixels belonging to impure classes remain in theutnimage, no pure classes were found during the
previous iteration, or a maximum number of iterations hasuaed. In this manner, all pixels belonging to impure
spectral classes are reclustered during the subsequeatioteand each iteration operates on a proper subset of
the pixels used in the previous iteration.

Once the iteration terminates, there is a set of pure spedtrsses, a stacked clustering image recoded to
informational class values with zeroes for background amdassified pixels, a set of unclassified pixels remaining
from the original image, and the original image. There aredhoptions for output classification images at this
stage, and any or all of them may be selected by the user., Ridécision rule may be applied to the original
image using the pure spectral classes as training classpsotluce a Decision Rule (DR) image. Second, all
unclassified pixels may be recoded to a reserved value desigrunclassified pixels (the number of informational
classes plus one) and added to the stacked clustered imgmedoce an Iterative Stacked (IS) image. Finally a
decision rule may be applied to only the unclassified pixalsng the pure spectral classes as training classes),
and the resulting classification may be added to the stackestieced image to produce an Iterative Stacked plus
(IS+) image. The pIGSCR algorithm is given below.

Algorithm pIGSCR
User inputs an image, training dataset, maximum number
of iterations,a andp, for the homogeneity test,
and number of clusters to be created in each iteration.
The output that is produced includes a set of pure class
signatures that is used in the final decision rule,
and any of the following three classification images:
Decision Rule (DR), Iterative Stacked (IS), or
Iterative Stacked plus (IS+).
begin
do until maximum number of iterations is reached,
no pixels remain in original image,
or no pure classes are found:
Cluster remaining pixels in parallel.
do for each point in the training data set:
determine the spectral class assignment based on
clustering, and increment the appropriate
informational class count and spectral class count
end do
do for each cluster:



use the homogeneity test given above to
determine informational class assignment.
if a particular cluster is purghen
Add that cluster’s signature to the set of pure
class signatures and mask all vectors/pixels
belonging to that class out of the input image.
Recode pixels belonging to that spectral class
in the cluster image to the value of the
assigned informational class for IS image.
end if
end do
end do
Apply a parallel decision rule to the input image
using the pure signature set to create DR image.
do in parallel
Recode all impure classes in the clustering output
image to value reserved for impure classes and add
this to the clustering image to produce IS image.
end do
Perform a parallel decision rule on only the impure
pixels and add them to the clustering image to produce
the 1S+ image.
end

III. FEATURE REDUCTION WITHIN PIGSCR

Previous work [22] showed that pIGSCR is significantly fagtean IGSCR, and therefore input parameters
may be selected using a factorial analysis to determine pleeific combination of parameters that results in
the highest classification accuracy. This approach has eetmded to factorially determine which combination
of bands would produce the best classification accuracy fepecific set of input parameters, dataset, and
training dataset. Initial experimental runs on images aimmg six bands demonstrated that the most accurate
classifications on all experimental images typically uskdia bands. This approach was then further extended to
experimentally determine the most accurate combinatiobanfds for each unsupervised classification performed
within each iteration of pIGSCR. Unfortunately, each itena requires thaR?*"?s — 1 classifications be performed
to determine the most accurate combination of bands, and thérefore not feasible for images with large
numbers of bands. A classification performed on an imageauing six bands would require that 63 individual
unsupervised classifications be run per iteration, and agéwith as few as ten bands would require over 1000
classifications be performed for each iteration of pIGSCHdifional algorithmic improvements and additional
processing power would be required to make this band sefeelgorithm a feasible option.

IV. FEATURE REDUCTION USING THE SVD

At a high level, the SVD reveals the minimum number of dimensirequired to represent a matrix or
linear transformation [18][27]. Often multi-dimensiondhta may be represented equivalently (or approximately
so) in fewer dimensions due to redundancies in data. If afsetdimensional vectors all lie in &-dimensional
subspacek < n, then each-vector effectively has only: degrees of freedom, and can be uniquely described by
k numbers. The natural correlations that occur in nature nilakeSVD a good candidate for feature reduction.
Furthermore, if no reduction is possible, this will be shomynthe magnitudes of the singular values revealed by
the SVD.

The SVD of a linear transformatioA : R™ — R™ is

A=UxV,
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whereU : R™ —— R™ is orthogonal *U = I), ¥ : R* — R™ is a diagonal matrix whose diagonal elements
are called the singular values df, andV? : R — R™ is orthogonal as well. Each linear transformation in the
SVD is expanded and shown as follows, assuming: n:

aill ai12 e A1n
Aml1 Am2 ... Qmn
U1 Ulm J11 g12 O1n
Um1 oo Umm Oml Om2 oo Omn
V11 V12 ... UVUin
V21 V22 ceo Von
X
Un1 Un2 ce. Unn

Since entriesr;; whenj > m are all zero, the produ V™ will produce entries of zero for rows: + 1 through
n. The SVD may be rewritten as

a1 ai2 e A1n
am1 Am2 . Amn,
Uil . Ulm, o1 O O
= 0 0
Uml -+ Umm 0 0 on
V11 V12 Vin
« .
Um1 Um?2 e Umn
This shows that a columA.; of A, anm vector, can be expressed as a linear combination ofitH®asis vectors
inU (U1,Us,...,U,,), using the singular values iR (o1,03,...,0,), and theith columnV! in V. The
diagonal elements of are nonnegative, and can be ordered suchdhat o5 > ... > o,,. If some entries on the
diagonal ofX are zero, then for somie, 01 > 02 > ... > 0} > 041 = ... = oy, = 0. Using the above logic that

allowed a reduction in the number of rows ¥ff from n to m, the number of columns iy can be reduced tb,
the number of rows and columns &f can be reduced t&, and the number of rows ifr* can be reduced té,
yielding

a1 a2 e A1n
am1 Am2 e Amn,
U1 SN Uik o1 0 0
= : 0 0
Um1 Umk 0 0 Ok
V11 V12 Uin
« .
Vg1 Ug2 cee Ukn

An operation such as a classification that would be perforovedhe entirem x n matrix A can now be
equivalently performed on the entikex n matrix SVt wherek < m, resulting in a reduction in the number of
bands present in each vector. For practical purposes, laingalues may in fact be nonzero yet be sufficiently
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close to zero to reduce the dimension of the data. The singalaesoy1,...,o0, represent distances from the
subspace spanned BY¥4, ..., U., and very small distances may not affect the operation tlilabe performed on
the reduced data, such as classification. If none of the Eingalues on the diagonal are close to zero, then the
data is already represented using as few dimensions asfgossiowever, this seems unlikely in the application
of remote sensing as geographic data is naturally redundant

Practically speaking, it would be necessary to think of a&ehdimensional (pixel row, pixel column, data
bands) image in two dimensions in order to take advantagéeofdature reduction made possible by using the
SVD. This would also be an expensive computation as the ngadimension of the matrix would be the number
of bands, but the second dimension would be equal to the nuafilpixels in the image. One of the features of an
SVD is that it reveals the basis vectdrsthat can be used to transform any vector from the originatorespace
(range ofA) to the new vector space (range@t). If a training dataset (columns @f) is truly representative of
a particular image (columns of), then the resulting SV’ = USV'* will also reveal a set of basis vectors for
the range ofA. Using this result, it is possible to perform the SVD on artiag data matrix that isn x p in
dimension, where is the number of points in the training data set, and use theltnreg SVD to transformA.
In order to do this, it is necessary to project the columnshefrmatrix A onto the subspace spanned by the first
k columns ofU. This is accomplished by simply computit..,U.s,...,U.)!A. This result can be arrived at
algebraically. Assume that the x p matrix 7" is a submatrix of then x n matrix A, and that dim rangel = dim
rangeT = k. Then rang€U.q,...,U) = rangeA = rangeT = range(U.h ..., U.), which means each column
of A can be reduced to its coordinates with respect to the orthogonal bdsis ..., U of range(U.; ...,U.).
These coordinates are given by multiplying US].l, ceey U.k)t. After the original image has been transformed and
the number of bands has been reduced, the pIGSCR classifiaorithm is run with no modifications.

V. DATA DESCRIPTION AND PREPARATION

pIGSCR with the SVD or PCA was tested using Landsat Thematppdr (TM) and Enhanced Mapper
(TM/ETM+) images (path 17/row 34) acquired on December B9 March 6, 2000, June 10, 2000. The images
from 1999 and 2000 were layered together to form a composiii reasonal image, and all images were
registered to a rectified 2003 image with an RMSE of 1/5 a pixdess. Using Leica Geosystems Erdas Imagine
8.7 software, registration was performed with 24 contrahfmofor each image pair, eight of which were randomly
selected as check points. A first order transformation wasl,uand resampling was performed using nearest
neighbor. Each of the three images used for the compositgeémeas converted to reflectance in accordance with
the Landsat 7 user’s guide [17], and dark object subtractvas performed in ITT ENVI 4.2 using the band
minimum method. The composite image, which will be refetr®@s VA17, contained 18 total bands. Figures 1,
2, and 3 show representative subsets of the VA17 image (br@isand 2), the VA17 PCA (first three bands) and
VA17 SVD (first three bands), respectively. Figure 4 showes lttcations of the subset and VA17 in relation to
each other and Virginia.

The training data for these images was created by the imtetpyn of point locations from a systematic,
hexagonal grid over Virginia Base Mapping Program (VBMRJeticolor digital orthophotographs [29]. The data
were collected in the Spring of 2002 at a scale of 1:4,800,wack subsequently resampled to a 1 meter spatial
resolution. The data were used to perform a two-class €@lestsdn, forest or non-forest. For the purpose of
accuracy assessment, validation data in the form of potdtions at the center of USDA Forest Service Forest
Inventory and Analysis (FIA) ground plots [24][2] were uskxdvalidate the classifications. Only homogeneous
FIA plots were used (either 100 percent forest or non-fpresid these plots were visited between 1997 and 2001.

A second dataset consisting of a multitemporal series of Tid BETM+ images from path 232/row 67
(1995-2002) acquired over Rotwia were used, each image registered to the 2001 image. (0t ilhage was
rectified by the US National Center for Earth Resources Qlasen & Science, and the remaining registrations
were performed using Leica Geosystems Erdas Imagine 85 atitleast 50 control points and 25 randomly
selected check points. The root mean squared error washiassl{3 of a pixel for each image registration, and
nearest neighbor resampling was used [15][31]. This neatforal image will be referred to as AM232. Figures
5, 6, and 7 show representative subsets of AM232 (bands 4n@,2afrom the 1998 image, corresponding to
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Fig. 2. VA17 PCA (bands 1, 2, and
a subset of interest.

3 shown) zoomed to

training data used for classification), AM232 PCA (first #hlgands), and AM232 SVD (first three bands). Figure
8 shows the locations of the subset and AM232 in relation th edher and Rortthia, Brazil.

Collecting training data for this region was a challengedascribed by [15][31]. The training data used for
a forest/non-forest pIGSCR classification was collecteidgusletailed interviews, Landsat imagery, and detailed
maps of various farms shown in the images. At least 67 pixaigéch of the two classes (forest and non-forest)
were present, and these points were used as seed pixels &wian rgrowing algorithm (Erdas Imagine 8.5).
Because of the difficulties in acquiring training data, ataf 200 validation pixels were randomly selected from

the training data. This ensured a representation of edgaraxed pixels, which is necessary in order to avoid
inflated classification accuracies [23].

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A two class classification (forest, non-forest) using pl&@ith 80 initial classes and a homogeneity
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Fig. 3. VAL7 SVD (bands 1, 2, and 3 sho
a subset of interest.

Legend
I:l Virginia
- Subset
VA17

RGB

- Red: Layer 4
- Green: Layer_3
- Blue: Layer_2

Kilometers
0 25 50 100 150 200

Fig. 4. Locations of Virginia, VA17 (Landsat TM path 17/row acquired December 1, 1999), and zoomed subset

shown in Figures 1-3 in relation to each other.

threshold of 80 percent was run on VA17 and AM232 and both efabove feature reduction methods were used.

pIGSCR was applied to the composite VA17 image using all 18lbabut applying pIGSCR to AM232 without
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Fig. 5. AM232 (bands 4, 3, and 2 of image acquwed in
1998 shown) zoomed to a subset of interest.

Fig. 6. AM232 PCA (bands 1, 2, and 3 shown) zoomed
to a subset of interest.

feature reduction was infeasible considering the numbebarfds (52) in AM232. The above algorithms were
implemented using Fortran 95 [11] and LAPACK [1]. These sifisations were run using an SGI Altix 3300 with
24GB of RAM and twelve 1.3 GHz Itanium processors.

pIGSCR was applied to the VA17 SVD image using as few as fout asm many as fourteen bands.
Each resulting SVD classification was compared to the cpomding classification of the entire eighteen band
VA17 image using McNemar’s test for statistical significaraf the difference between the two classifications as
described by Foody [10]. A chi-square distribution with aegree of freedom and = .05 (3.841) was used
where

o (21 —x9)?
xr1 + X2

with x; being the number of pixels correctly classified by the firstsslfication but incorrectly classified by the
second, and vice versa far,. Using this test, all classifications using five or more bafitdm the SVD image
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Fig. 7. AM232 SVD (bands 1, 2, and 3 shown) zoomed
to a subset of interest.

were not statistically different from the classificatiorsing all eighteen bands of VA17. Out of eleven tests run
(four through fourteen bands) four tests using the SVD of ¥Adere actually marginally higher in accuracy than
the classification accuracy of 88.62% using all eighteerdbaifrigures 9 and 10 show the resulting classification
images of VA17 and VA17 SVD (using six bands), respectivelgere green pixels were determined to be forest
and tan pixels were determined to be non-forest. Althougdsehtwo classifications are statistically the same
classification (as determined by McNemar's test), it is cclgt using the SVD image resulted in the correct

classification of the large river that is prominent in thigse, while the classification using all eighteen bands of
VA17 determined most of the river to be forest.

Fig. 9. VAL7 DR classification, green = forest, tan =
non-forest.

Using all eighteen bands resulted in a pIGSCR execution tifreughly 1650 seconds, more than five times
as long as the quickest run of just over 300 seconds using fiveld of the SVD image. In general, using
more bands increases the execution time, however, exactitie is also dependent on the number of iterations
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Fig. 8. Locations of Ron@hia, AM232 (Landsat TM path 232/row 67 acquired 1998), andnzed subset shown
in Figures 5-7 in relation to each other.

performed during the iterative clustering and the numbepwk classes used for the decision rule. It is therefore
advantageous to use as few bands as possible when exedumi#ista great concern, and the accuracies resulting
from using five through fourteen bands of the SVD image aresistently around 88%, both above and below
the classification accuracy of VA17. These consistent awies indicate that the choice &f the singular value
cutoff, is not crucial past five bands.

A. SVD versus PCA

Table 1 summarizes all of the experimental runs of pIGSCR ath ldatasets, using the SVD or PCA as
a means of feature reduction. The values in the table are wmupy averaging the results of 11 runs for
the Virginia data (four through fourteen bands used) and uk® rfor the Amazon data (three through twenty).
Classification accuracies are reported for both pIGSCRututpages that contain only two classes (the DR and
IS+ images), corresponding to the validation set contgiinly two classes. Consider the classification accuracies
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Fig. 10. VA17 SVD DR classification, green = forest, tan
= non-forest.

TABLE 1
COMPARISON OF AVERAGES FOR
PCA AND SVD PIGSCR CLASSIFICATIONS

SvD PCA
VA DR accuracy 88.18 88.01
VA IS+ accuracy 88.34  88.16
VA execution time (secs.) 817 818
VA iterations 6.5 6.27
VA classes 78.2 77
AM DR accuracy 92.75 92.5
AM IS+ accuracy 93.31 92.94
AM execution time (secs.) 528 643
AM iterations 2.33 25
AM classes 18.33 20.11

listed, and notice that using the SVD to reduce the data dsinarresulted in higher accuracies than using the
PCA for both classification images (DR and 1S+) using botlasktis.

Considering now just the VA dataset, a comparison betweenS¥D and PCA using McNemar’s test for
statistically different classifications as described @&skiowed that the classifications were consistently the same
All of the classification accuracies of the Virginia data ammilar, but the accuracies for the SVD are more often
higher (seven out of eleven cases). For this particularseatand classification (forest/non-forest), the subspace
spanned by the first few axes of decreasing variance is likghilar to the subspace revealed by the SVD,
accounting for the lack of distinction between the two featxeduction methods.

Applying the same feature reduction methods and classditéab the data from the Amazon region, however,
demonstrated more separation between the two featuretr@dueethods. Table 2 lists all classification accuracies
for the SVD and PCA AM232 images where the SVD and PCA redadtiothe same number of bands resulted
in statistically different classifications. In seven outtef cases, the SVD feature reduction resulted in a higher
classification accuracy. Figure 11 contains a graph comgatie classification accuracies of the two feature
reduction methods for different numbers of bands kept (dargvalue or eigenvalue cutoff). Notice that the
SVD accuracies are consistently higher than the PCA acias;aand increasing the number of bands does not
usually result in increased accuracy. Of particular irdesze the cases where the number of bands is six or nine,
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TABLE 2
CLASSIFICATION ACCURACIES OF STATISTICALLY
DIFFERENT CLASSIFICATIONS

bands class SVD accuracy PCA accuracy

6 DR 95 91.5
6 IS+ 95.5 92.5
7 DR 93.5 91
7 1S+ 94.5 92
9 DR 92.5 95.5
9 IS+ 92.5 95.5
10 IS+ 94 91.5
12 DR 94 92
12 1S+ 94.5 92.5
19 IS+ 92 94

where one method drastically outperformed the other réggrdccuracy. Figures 12-15 contain subsets of the
classification results of AM232 for the SVD and PCA imageshgi®ither six or nine bands. Observing Figures
12 and 15, it appears that these images contain more migieldSsrested regions due to cloud cover. Also notice
that in Figure 14, the most accurate PCA classification, ther running vertically through the image has been

incorrectly classified as forest, showing that this clasaifon is not necessarily better than the corresponding SVD
classification.

S A
, =

Fig. 12. AM232 PCA IS+ classification (6 bénds), green
= forest, tan = non-forest.

A more subtle advantage of using the SVD over PCA for featadaiction prior to pIGSCR classification is
the unexpected execution time savings. Although the timenga in the Virginia classifications was minimal, the
execution times for the classification applied to the SVD A¥Jdmage are consistently shorter than execution
times for the classification applied to the PCA AM232 image,shown in Figure 16. An analysis of pIGSCR
reveals that execution time can be affected by the size ofnttage, the number of iterations required, and the
number of pure classes. Since the PCA and SVD produce imdgtee cexact same size, the differences in
execution time can be attributed to differences in the nunaddterations and classes. Notice that the peaks
in the execution time graph (Figure 16), correspond to péakSigure 17 (number of iterations) and peaks in
Figure 18 (number of classes). A small number of iterationd elasses does not appear to negatively impact
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Fig. 14. AM232 PCA IS+ cla
= forest, tan = non-forest.

overall classification accuracy. For example, at six banl#ssification accuracies were higher using the SVD for
feature reduction (and were statistically different dfésations than when using PCA), yet the classification on
the PCA data required more iterations and resulted in more plasses. Although this advantage seems tailored
to pIGSCR, the implications extend to classification in gahéoth supervised and unsupervised, as pIGSCR is a
hybrid classification algorithm and exhibits charactéssbf both.

VII. CONCLUSION AND FUTURE WORK

This paper presents a feature reduction method for remetziged data using the singular value
decomposition. This new feature reduction technique wadiexpto training data from two multitemporal datasets
of Landsat TM/ETM+ imagery acquired over a forested area ingiMa, USA and Rondnia, Brazil. pIGSCR
forest/non-forest classifications of the Virginia data evéive times faster using SVD reduction without affecting
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Fig. 16. Execution time for AM232.

the classification accuracy. Feature reduction using the #%(s also compared to feature reduction using principal
components analysis (PCA) for both datasets. The highestige accuracies for the Virginia dataset (88.34%)
and for the Rondnia dataset (93.31%) were achieved using the SVD. SVDeb&sature reduction can yield
statistically significantly better classifications than/C

This paper demonstrated the utility of SVD-based featudkicBon on images containing fewer than 100
bands, however, SVD-based feature reduction of higher minaal data (i.e., hyperspectral) should be evaluated
in the future. Another area for future exploration with SWased feature reduction is classification with increased
categorical specificity. With less variability betweendmhational classes, feature reduction based on variance
(such as with PCA) is likely to produce a lower quality cléisstion on a reduced dimension image than feature
reduction based on SVD. Finally, this paper demonstratsapplying the SVD to training data in order to reduce
the dimension in an entire image produces good classifitatisults. An ideal implementation would apply the
SVD to the entire image to reveal the exact basis vectorsan@pproximation derived from the training data. A
parallel SVD implementation on multiple processors woudldvathe SVD to be performed on a large image in a
reasonable amount of time, likely resulting in greater sifasation accuracy.
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