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ABSTRACT
We introduce a new data mining problem: mining truth ta-
bles in binary datasets. Given a matrix of objects and the
properties they satisfy, a truth table identifies a subset of
properties that exhibit maximal variability (and hence, com-
plete independence) in occurrence patterns over the underly-
ing objects. This problem is relevant in many domains, e.g.,
bioinformatics where we seek to identify and model inde-
pendent components of combinatorial regulatory pathways,
and in social/economic demographics where we desire to de-
termine independent behavioral attributes of populations.
Besides intrinsic interest in such patterns, we show how the
problem of mining truth tables is dual to the problem of
mining redescriptions, in that a set of properties involved in
a truth table cannot participate in any possible redescrip-
tion. This allows us to adapt our algorithm to the problem
of mining redescriptions as well, by first identifying regions
where redescriptions cannot happen, and then pursuing a
divide and conquer strategy around these regions. Further-
more, our work suggests dual mining strategies where both
classes of algorithms can be brought to bear upon either data
mining task. We outline a family of levelwise approaches
adapted to mining truth tables, algorithmic optimizations,
and applications to bioinformatics and political datasets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining; I.2.6
[Artificial Intelligence]: Learning

General Terms: Algorithms.

Keywords: truth tables, levelwise algorithms, indepen-
dence models.

1. INTRODUCTION
Consider the dataset shown in Fig. 1(a), which outlines

nine hypothetical senators and their votes (1 for yes, 0 for
no) on four bills. Given binary matrices such as these, our
goal in this paper is to identify a truth table embedded inside
them. Our first observation is that, given nine rows, we can
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find truth tables having at most blog2(9)c = 3 bills. How-
ever, the reader can verify that no such truth table exists.
In fact, the only two truth table present is a two-column
one, spanning the bills ‘War’ and ‘Tax Cuts,’ as shown in
Figure 1(b). This truth table suggests that these two bills
constitute independent dimensions along which politicians
distinguish themselves. Observe that the senators partition
into four (22) disjoint subsets with each subset having at
least two senators. We separate these subsets using dashed
lines in Figure 1(b).

This problem of finding truth tables can be considered or-
thogonal to mining association rules [1], correlations [21], or
redescriptions [13] which capture various forms of attribute
dependencies and overlaps. From the perspective of these
works, truth tables constitute an ‘anti-pattern,’ i.e., the vari-
ables participating in it defy similarity judgements, and are
hence interesting. (Later we show how truth tables can be
harnessed to find patterns of similarity as well).

Several application domains possess characteristics that
are amenable to truth table mining. In bioinformatics, we
are given a matrix of genes (rows) versus transcription fac-
tors (columns), where a 1 indicates that the transcription
factor binds upstream of the given gene, and regulates it
(0 otherwise). A truth table in such a matrix indicates a
set of transcription factors that can be recruited in arbi-
trary combinations to regulate genes. This further suggests
that they are likely to form independent components of reg-
ulatory pathways. Similar relationships underlie signaling
pathway analysis [10] and exploration of therapies for drug
discovery [3].

As a second example, consider the domain of recommender
systems where the rows denote people, the columns denote
movies, and a 1/0 indicates approval/disliking (assume for
now that everybody has seen and rated every movie). When
a new person joins the system, a typical problem faced in
recommenders is to identify a (small) set of movies that
this new person should be requested to rate, in order to
be connected to the underlying social network of users. By
identifying a truth table in the original matrix, we can learn
a set of movies that serve to maximally distinguish a user
from others, and hence situate the user in a suitable neigh-
borhood. Thus, the ratings for these movies are the most
informative questions to ask a new user. This application
directly maps to recommender system designs like Jester [6]
which request all users to rate the same set of artifacts.
Truth table mining identifies what these artifacts should be.

A truth table can be viewed as a partition of rows where
each block in the partition is a ‘constant-row’ bicluster [9].



War Electoral Tax Environmental
Reforms Cuts Reforms

Adam 1 0 0 0
Bill 1 0 1 1
Clinton 0 0 1 1
Dwight 0 0 1 1
Edwards 0 1 0 1
Frank 0 1 0 1
Ganguly 0 0 0 1
Hildebrand 0 1 1 1
Ironside 0 0 0 1

(a) The voting records of nine senators on four bills.

Electoral War Tax Environmental
Reforms Cuts Reforms

Edwards 1 0 0 1
Ganguly 0 0 0 1
Ironside 0 0 0 1
Clinton 0 0 1 1
Dwight 0 0 1 1
Adam 0 1 0 0
Frank 0 1 0 1
Bill 0 1 1 1
Hildebrand 0 1 1 1

(b) Rearranged matrix from (a) revealing a truth table
formed by voting patterns on ‘War’ and ‘Tax cuts’.

Figure 1: Example dataset for truth table mining.

The most familiar type of constant-row patterns are those
where all cells are 1, and such biclusters correspond to item-
sets as studied in association mining. Hence algorithms
for mining truth tables must explicitly and necessarily keep
track of an exponentially greater number of occurrence pat-
terns than algorithms for mining associations. At the same
time, truth tables expose several structural constraints that
can be harnessed to create effective algorithms. In particu-
lar, although the definition of the underlying pattern is more
complicated, we show how the search for truth tables can be
structured levelwise, drawing upon established notions from
data mining.

“Truthiness” [20] is a term coined by television comedian
Stephen Colbert to describe things that a person claims
to know intuitively, instinctively, or “from the gut.” The
Newspeak word “bellyfeel” [19] has similar connotations.
The truth tables we compute have high truthiness, which
we capture using two parameters: (i) we insist that each
pattern of occurrences occur in as many rows as demanded
by a balance criterion; (ii) however, we allow a small num-
ber of patterns to appear in fewer rows, controlled using the
support parameter. More information on these parameters
is provided in Section 2.

Our main contributions in this paper are:

1. We formulate truth table mining as a new data min-
ing task, with associated algorithms and applications.
We define the notions of balance and support to char-
acterize the quality of a truth table. These notions
smoothly decrease with an increase in the number of
properties in a truth table.

2. We give theoretical insights into the relationships be-
tween truth tables and redescriptions [22] and cast
these as duals of each other. This allows us to adapt
insights from algorithms for mining one type of pattern
toward mining the other type of pattern.

3. We present experimental results on both synthetic and
real-world datasets, helping demonstrate the scalabil-
ity of our implementation and also shedding domain-
specific insight.

Section 2 formally defines the truth table mining problem
and Section 3 outlines how our definitions of balance and
support lend themselves to levelwise search algorithms. Sec-
tion 4 describes the levelwise algorithm in detail, along with
some associated optimizations for improving efficiency. Sec-
tion 5 presents relationships to redescription mining and

outlines the context in which it is dual to truth table mining.
Section 6 gives experimental results on both synthetic and
real-world datasets. Sections 7 and 8 provide comparisons
to related work and offer a discussion, respectively.

2. PROBLEM FORMULATION
Let O denote a set of n objects, P a set of m properties,

and R ⊆ O × P a relation that connects objects to proper-
ties they contain. We are interested in identifying complete
independence in the occurrence of subsets of P among the
objects in O. Let Q ⊆ P denote a subset of properties.
Given any object o ∈ O, let oQ denote the binary vector
with |Q| elements given by the values of the properties in

Q in o.Since there are 2|Q| possible distinct values of this
binary vector, Q partitions the objects in O into at most
2|Q| equivalence classes. Let EQ denote this partition. Each
element of EQ is a set of objects and each object appears in
precisely one element of EQ. A truth table is a pair (Q, EQ),

where Q ⊆ P and |EQ| = 2|Q|.
Note that if no two properties in P are identical (i.e.,

both properties appear in precisely the same set of objects),
a truth table (Q, EQ) is naturally closed: by definition, the
truth table includes all objects and any property in P − Q
will induce a refinement of EQ if added to Q. Henceforth,
we will abuse notation and use Q to refer both to a subset
of properties and the induced truth table.

Truth tables have natural notions of balance and support,
which we define next. Ideally, in a truth table (Q, EQ),

each subset of objects in EQ will have size at least bn/2|Q|c.
To accommodate deviations from this ideal, we define the
balance β(Q) of (Q, EQ) to be the quantity

β(Q) =
minS∈EQ |S|

n
.

Thus, every element of EQ contains at least β(Q)n objects.

Values of balance range between 0 and 1/2|Q|. Given a bal-
ance threshold 0 ≤ b ≤ 1, we say that a truth table Q is
balanced if β(Q) ≥ b. As we will show in the next two sec-
tions, our definition of balance is anti-monotone, a property
we exploit in our truth table mining algorithms.

Observe that we could have defined balance in a way that
normalised it with respect to the number of properties in Q,

e.g., β(Q) =
minS∈EQ

|S|

n/2k . In this case, although β(Q) ranges

between 0 and 1, it does not exhibit anti-monotonicity. In
particular, a version of Lemma 3.2 below does not hold for
this definition.



We also desire to mine ‘almost truth tables,’ where most,
but not all, of the presence/absence combinations of proper-
ties satisfy the balance constraint. Given a balance thresh-
old b, we define the support σ(Q, b) of a truth table (Q, EQ)
with balance at least b to be the fraction of possible object
sets whose size is at least bn, i.e.,

σ(Q, b) =
|{S ∈ EQ, |S| ≥ bn}|

2|Q| ,

where 2|Q| is the maximum possible number of object sets
in EQ. Given a support threshold 0 ≤ s ≤ 1, we say that a
balanced truth table Q is supported if σ(Q, b) ≥ s.

We illustrate the notions of balance and support using the
data in Figure 1. For example, the balance of the truth ta-
ble formed by the bills ‘War’ and ‘Tax Cuts’ in Figure 1(b)
is 2/9 and its support is 1. A two-bill truth table in this
dataset (with nine senators) cannot have balance greater
than 2/9: such a truth table partitions the senators into
four groups, one of which must contain at most two sen-
ators. If we were to form a truth table involving the bills
on ‘War,’ ‘Tax Cuts,’ and ‘Environmental Reforms’, we note
that of the eight expected groups of senators, only five occur
in this dataset. One of these groups has size three (senators
Edwards, Ganguly, and Ironside), two groups have size two
(Clinton-Dwight and Bill-Hildebrand), and the other two
groups have one senator each. Thus, with a balance thresh-
old of 1/9, this truth table has a support of 5/8. If we
increase the balance threshold to 2/9, then the support of
the truth table drops to 3/8.

Thus, the pair of values (b, s) together characterise the
“truthiness” [20] of desirable truth tables. An ideal truth
table (say, one with k properties) has balance b1/2kc and
support equal to 1. However, any truth table with high
balance and high support also “feels like a real truth table
in the gut,” a phenomenon that is the hallmark of truthiness.

Given a set O objects, a set P of properties, a relation
R ⊆ O×P that connects objects to properties they contain,
a balance threshold 0 ≤ b ≤ 1, and a support threshold
0 ≤ s ≤ 1, the truth table mining problem is the task of
computing all truth tables Q in R with σ(Q, b) ≤ s.

3. PROPERTIES OF TRUTH TABLES
We now prove a series of lemmas that establish the anti-

monotone properties of balance and support. We also list
some properties of balanced and supported truth tables that
lead to algorithmic optimisations in the computation of truth
tables. First, we define some useful notation. In a truth ta-
ble Q, let UQ ⊂ EQ be the set of object sets with size less
than bn, i.e., those that do not satisfy the balance constraint.
Consider two truth tables Q′ and Q such that Q′ ⊂ Q and
Q contains one more property than Q′. Consider any object
set S in EQ′ . In Q, this object set partitions into two object
sets, depending on whether the new property is present or
not in the objects in S. Call them S1 and S2. We refer to S
as a parent of S1 and S2. Note that S1 and/or S2 may be
empty. Figure 2 illustrates this notion.

Our first lemma, which we state without proof, simply
states that as we include more properties in a truth table,
the support cannot increase.

Lemma 3.1. If Q and Q′ are two truth tables with Q ⊂
Q′, then σ(Q, b) ≥ σ(Q′, b).

The next lemma establishes the anti-monotonicity of bal-
ance and support.

Lemma 3.2. If a truth table Q has balance b and sup-
port s, then every truth table Q′ ⊆ Q such that |Q′| = |Q|−1
has balance b and support s.

QQ′

UQ′

EQ′

UQ

EQ

B

C

D

A1

A2

B1

B2

C1

C2

D1

p

D2

A

Figure 2: An example of a truth table Q′ with k −
1 properties and a truth table Q that contains an
additional property p.

Figure 2 illustrates the ideas used in the proof. In this
figure, vertical lines denote the extent of EQ′ , EQ, UQ′ ,
and UQ. Shaded rectangles denote object sets. The figure
indicates that the object set

1. A ∈ EQ′ − UQ′ is the parent of A1, A2 ∈ EQ − UQ,

2. B ∈ EQ′ − UQ′ is the parent of B1 ∈ EQ − UQ and
B2 ∈ UQ,

3. C ∈ EQ′ − UQ′ is the parent of C1, C2 ∈ UQ, and

4. D ∈ UQ′ is the parent of D1, D2 ∈ UQ.

Proof. Let Q have k properties. By the definition of
support, |UQ| ≤ (1 − s)2k. Let Q′ be a truth table such
that Q′ ⊆ Q and |Q′| = k − 1. Consider any object set S
in EQ′ . There are three cases to consider:

(i) S ∈ UQ′ (e.g., object set D in Figure 2): Since |S1|, |S2| ≤
|S| ≤ bn, both S1 and S2 are elements of UQ.

(ii) S ∈ EQ′ − UQ′ and both S1 and S2 have size at least
bn (e.g., object set A in Figure 2): both S1 and S2 are
elements of EQ − UQ.

(iii) S ∈ EQ′ − UQ′ and at least one of S1 or S2 has size
less than bn (e.g., object set C in Figure 2).

Let x be the number of object sets in UQ whose parent is
in EQ′ − UQ′ . The number of such parents is at most x.
Therefore, we have the following inequality:

|UQ| = 2|UQ′ |+ x ≤ (1− s)2k.

Since x ≥ 0, we have |UQ′ | ≤ (1 − s)2k−1, which implies
that Q′ has balance b and support s.

Note that if we had defined the balance of a truth table Q

as β(Q) =
minS∈EQ

|S|

n/2k , this lemma may not hold. In partic-

ular, if the truth table Q′ in the proof has σ(Q′, b) < s, any
object set S ∈ UQ′ has size less than bn/2k−1. However, one
of the object set S partitions into in EQ may have size at
least bn/2k, thus enabling σ(Q, b) to be at least s, violating
the desired anti-monotonicity.



Lemma 3.3. Let Q be a truth table with k properties, bal-
ance b and support 1. If there is at least one object set in
EQ with size less than 2bn, then every truth table Q′ ⊃ Q
with balance b has support strictly less than 1.

Proof. Let S be the offending object set in EQ. Let Q′ ⊃
Q be a truth table with k+1 properties. The object set S is
the parent of two object sets S1 and S2 in EQ′ . Since |S| <
2bn, at least one of S1 or S2 must have size less than bn,
which implies that Q′ does not have support 1.

The previous lemma implies a stronger form of the anti-
monotone property guaranteed by Lemma 3.2 for the case
when the support is 1.

Corollary 3.4. If Q is a truth table with k properties,
balance b and support 1, then every sub-truth table of Q with
k − 1 properties has balance 2b and support 1.

We can generalise the previous lemma to all values of sup-
port s.

Lemma 3.5. Let Q be a truth table with balance b and
support s. Suppose that there are lQ object sets in EQ with
size at least bn and 2bn and that there are vQ object sets in
EQ with size at least 2bn. If lQ + vQ < s2k+1, then every
truth table that contains the properties in Q and has balance
b has support strictly less than s.

Proof. Consider any truth table Q′ ⊃ Q with k + 1
properties. Consider any of the lQ − vQ object sets in EQ

with size between bn and 2bn; each such object set is the
parent of at most one object set in EQ′ whose size is at least
bn. An example is object set B in Figure 2. Each of the vQ

object sets in EQ with size at least 2bn is the parent of at
most two object sets in EQ′ whose size is at least bn. All
other object sets in EQ are elements of UQ. Hence, they are
parents of object sets in UQ′ . Therefore EQ′ can contain at
most lQ − vQ + 2vQ = lQ + vQ object sets with size at least
bn. If lQ + vQ < s2k+1, then σ(Q′, b) < s.

4. MINING TRUTH TABLES
Since our balance and support constraints apply anti-

monotonically (see Lemma 3.2), we present a simple level-
wise algorithm, a la Apriori, to find all truth tables in a
relation that satisfy given balance and support constraints.
For each k ≥ 1, given all truth tables with k properties,
we construct candidate truth tables with k + 1 properties.
We use the heuristic of generating candidate truth tables at
level k by merging two balanced and supported truth ta-
bles at level k − 1 such that they share k − 2 properties
in common [1] (we encapsulate this step in the Generate-
Candidates subroutine, which is identical to the one in the
Apriori algorithm [1]). For each candidate truth table T ,
we check if every sub-truth table of T with k properties
satisfies the balance and support constraints. Finally, we
perform one pass over the relation to compute the balance
and support of each candidate truth table. We output only
those candidates that satisfy these constraints.

Any truth table Q with k properties that satisfies σ(Q, b) ≥
s must contain at least s2k non-empty row subsets in EQ.
Since a trivial bound on the size of EQ is n, the number of
objects in O, we see that no truth table can contain more
than dlog(n/s)e properties.

Algorithm 1 FindTruthTables(O, P , R, b, s):

Input: A relation R relating objects in O to properties in P ,
a balance threshold 0 ≤ b ≤ 1 and a support threshold
0 ≤ s ≤ 1.

Output: All truth tables T such σ(T, b) ≥ s.
1: T ← {p ∈ P | σ({p}, b) ≥ s}
2: while T is not empty do
3: for every truth table T ∈ T do
4: for every truth table T ′ ⊆ T, |T ′| = |T | − 1 do
5: if σ(T ′, b) < s then
6: Discard T
7: end if
8: end for
9: Compute σ(T, b)

10: if σ(T, b) ≥ s then
11: Output T
12: Insert T into T
13: end if
14: end for
15: T ← Generate-Candidates(T )
16: end while

P1 P2 P3

o1 0 0 0
o2 1 0 1
o3 1 1 0
o4 0 1 1

Figure 3: Example dataset for illustrating relation-
ships between truth tables and redescriptions.

In each outer loop, we efficiently compute σ(T, b) for ev-
ery truth table T in the current set of candidates T , as fol-
lows. Suppose we are currently processing candidates with
k properties. Recall that for an object o ∈ O, oQ denotes
the binary vector with |T | elements given by the values of
the properties in T in o. We consider oQ to be a number in
binary notation. For each truth table T ∈ T , we maintain
2k + 2 quantities:

(i) cT,i, 0 ≤ i < 2k counts the number of objects o ∈ O
such that oT = i,

(ii) lT = |{cT,i, 0 ≤ i < 2k | cT,i ≥ bn}|, i.e., the number of
object sets in ET with size at least bn, and

(iii) vT = |{cT,i, 0 ≤ i < 2k | cT,i ≥ 2bn}|, i.e., the number
of object sets in ET with size at least 2bn.

As we read the properties contained in each object o from
R, we compute oT and update the corresponding values.
Assume oT = i. After incrementing cT,i, we increment lT if
cT,i equals bn or we increment vT is cT,i equals 2bn. After
we finish processing R, we can compute σ(T, b) as lT /n.

Computing vT allows us to exploit Lemma 3.5 to prune
our search further. If lT + vT < s2k+1, then we know that
for any truth table T ′ that contains the properties in T ,
σ(T ′, b) < s. We can remove T from the list T used to
generate candidates for the next level.

5. RELATIONS TO REDESCRIPTIONS
We now outline relationships between truth tables and re-

descriptions. Redescriptions are a newly introduced class of
data mining patterns [13] that establish similarity relation-
ships between general boolean formulae.



^P2 P2P1 XOR P2P1^P1P1 equiv P2

^P1^P2 ^P1P2P1P2P1^P2

FALSE

P1+^P2 ^P1+P2^P1+^P2P1+P2

TRUE

Figure 4: A relaxation lattice over expressions in-
volving two boolean variables.

Consider as before relation R ⊆ O×P ; a descriptor over P
is a boolean expression on a set of properties V ⊆ P . Given
a descriptor e, we will denote the set of objects for which e
is true (for a presumed R) by O(e). Two descriptors e1 and
e2 defined over (resp.) V1 and V2 are distinct (denoted as
e1 6= e2), if one of the following holds: (i) V1 6= V2, or (ii)
there exists some R for which O(e1) 6= O(e2). Note that this
condition rules out tautologies. For instance, the descriptors
P1 ∩P2 and P1 − (P1 −P2) are not distinct. A descriptor e′

is a redescription of e if and only if e 6= e′ and O(e) = O(e′)
holds for the given R. In this case, we say that e⇔ e′.

Observe that redescriptions subsume association rules in
expressive power, since they generalize implications to equiv-
alences. Every (100% confident) association rule can be re-
stated as a redescription but not the reverse. For instance,
the association rule P1 → P2 (i.e., objects that have prop-
erty P1 also have property P2) is equivalent to the redescrip-
tion P1 ⇔ P1 ∩ P2 (i.e., objects that have property P1 are
the same as the objects that have both of properties P1 and
P2).

Consider the artificial dataset shown in Figure 3 with four
objects and three properties. Let us attempt to identify re-
descriptions by enumerating all possible boolean expressions
and, for simplicity, focus on only the two properties P1 and

P2. We know that two properties can induce 222
boolean

expressions, which can be arranged in a relaxation lattice
as shown in Fig. 4. In this lattice, we have an arrow from
expression e1 to e2 iff e1 entails e2, i.e., iff ¬ e1 ∨ e2 is a
tautology; we then say that e2 is a relaxation of e1. Observe
that the relaxation relation is dataset-agnostic, whereas re-
descriptions are not.

To mine redescriptions between expressions in Fig. 4, we
assess if two or more of them induce the same object set.
The reader can verify that, in fact, all 16 boolean expres-
sions induce all possible 24 = 16 subsets of objects from
Fig. 3, and hence there are no possible redescriptions in this
dataset! This is because the two properties P1 and P2 form
a truth table over the given objects.

We have thus shown, by means of an example, that a
dataset that induces a truth table of support 1 (i.e., all bit-
wise combinations are present) cannot induce redescriptions.
The reader can verify that the balance parameter is not rele-
vant for this relationship, as long as it is non-zero. We hence
state the following (for a proof, see [11]):

Theorem 5.1. Let R ⊆ O × P be a relation between n

objects and m properties such that each of the possible 2m

presence/absence combination of properties is observed in R.
Let e be a descriptor over P . Then e has no redescription
with any other descriptor defined over P .

To make the analogy more concrete, consider what hap-
pens when we delete a single row from the dataset in Fig. 3,
say the last row. When we delete row o4, we see noticeable
changes in the landscape of redescription terrains (Figure 5
(left)). Now, not only do redescriptions happen, every pos-
sible expression has a redescription! For instance, we obtain
the redescription P1 ⇔ P1 +P2 where the + symbol denotes
logical OR, or union. This redescription states that objects
that have either P1 or P2 (or both) are the same as objects
that have P1. Observe that this results because we deleted
object o4, the only object that had P2 but not P1. Similarly,
the redescription P1 AND P2 ⇔ P1 XOR P2 results for the
same row deletion.

Theorem 5.2. Let R ⊆ O × P be a relation between n
objects and m properties such that at least one of the pos-
sible 2m presence/absence combination of properties is not
observed in R. Then every descriptor e over P has a re-
description e′ 6= e.

As more rows are deleted, we observe a progressive, sys-
tematic, halving of the number of equivalence classes, as
depicted in Figure 5 (middle, right).

Corollary 5.3. Let R ⊆ O × P be a relation between
n objects and m properties such that κ of the possible 2m

presence/absence combination of properties are not observed
in R. Then every descriptor e over P has 2κ − 1 distinct
redescriptions.

The net effect of the above results culminates in:

Theorem 5.4. (Dichotomy Law) Let R ⊆ O × P be a
relation between n objects and m properties. Then either
no expression e over P has a distinct redescription or all
expressions e over P have distinct redescriptions.

(Although this theorem makes mining redescriptions ap-
pear to be a fruitless exercise, the task becomes interesting
if we restrict the form of e, e.g., to be monotone, or to
be conjunctions, in which case the dichotomy law doesn’t
hold, and the problem becomes non-trivial.) Returning to
the example in Fig. 3, it is clear that, since every pair of
columns induces a truth table, no redescriptions are possi-
ble between P1 and P2, between P2 and P3, and between
P1 and P3. Nevertheless, there are redescriptions possible
between all three of them, since the set of three properties
does not induce a truth table. For instance, the redescrip-
tion P1 ∪ P2 ⇔ P2 ∪ P3 holds. This suggests that the al-
gorithm presented in this paper can be combined with the
one described in [11] (that identifies redescription terrains)
to fruitfully complement each other. The truth table miner
can suggest to the redescription miner to directly proceed to
expressions involving all three variables. Similarly, the re-
description miner can suggest to the truth table miner that
it is not worthwhile to proceed beyond level 2 in its levelwise
search. This helps create a dual mining strategy to model
either class of patterns. This approach is akin to algorithms
such as Pincer search [8] that maintain two borders of pat-
terns.
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^F2 F2F1 XOR F2F1^F1F1 equiv F2
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Figure 5: Redescription terrains form as rows are successively deleted from a truth table. (left) one row
deletion, (middle) two row deletions, and (right) three row deletions. The redescription terrains displayed
as closed curves are based on the data shown in Fig. 3 restricted to the first two columns F1, F2. The first
figure uses rows o1, o2, o3. The middle figure uses rows o1, o2. The right figure uses o1.

6. APPLICATIONS
We present our results in three parts. First, we perform

a comprehensive analysis of the ability of our algorithm to
recover a truth table planted in a random binary matrix.
Next, we discuss how our method unravels complex features
of the network regulating gene expression in a cell. Finally,
we mine voting patterns of U.S. senators to detect patterns
of independence among them. Due to space constraints, we
chose to highlight different aspects of our algorithm in these
case studies: (i) synthetic data: scalability and the effect of
dataset characteristics on algorithm running time; (ii) gene
expression regulation: effect of balance and support thresh-
olds on running time as well as truthy nuggets of discovered
knowledge; (iii) senatorial voting patterns: statistical inde-
pendence of properties in a truth table and domain-specific
insights.

6.1 Synthetic Data
To systematically study the ability of our algorithm to

find truth tables, we planted them in random binary matri-
ces and tested the ability of our algorithm to discover the
planted truth tables. We first describe our protocol in detail.
We constructed random matrices based on three parameters
k, r, and p. Note that these values are parameters for the
simulation and not for the truth table mining algorithm. For
each such triple, we perform the following steps:

1. Generate a binary matrix M with k columns and 2k

rows.
2. Select a random integer r, where 2 ≤ r ≤ k, and plant

a truth table with r columns in M . The truth table
has balance 1/2r and support 1. The r columns are
interspersed randomly among the columns on M .

3. Set every element of M not belonging to the truth ta-
ble to be a 1 with probability p and a 0 with probability
1− p.

4. Execute the truth table finding algorithm on M with
b = 1/2r and s = 1.

We executed these steps 10,000 times for the following choices
of parameters: k ∈ {5, 10, 15, 20, 25}, five random values of
r, and 11 values of p between 0 and 1 in increments of 0.1
For every (k, r, p) triple, we computed the average running
time of our algorithm.

Our algorithm successfully recovered the planted truth
table in every case. Therefore, in this section, we focus on

presenting various slices of the three-dimensional function
defined by the k, r, p and t (denoting time) values. A key
feature of these results is the symmetric dependence of the
running time on p. Unlike itemset and association rule min-
ing algorithms, whose running time increases with p, the
performance of our truth table mining algorithm is worst
for p = 0.5 and symmetrically reduces around this value.

Dependence on p. Figure 6 displays how the running time
of our algorithm depends on the probability p. Each plot in
the figure corresponds to a fixed value of k. Each curve in a
plot represents a fixed value of r. Due to lack of space, we
only plot values for k = 5 and k = 10. As expected, these
plots are symmetric around the line p = 0.5. For all values
of k, the plot for r = k is a nearly horizontal line, which is
to be expected since the truth table spans the entire matrix.

Observe that in Figure 6(a) (where k = 5), the curve for
any value of r dominates the curves for all smaller values
of r. However, the behaviour is subtly different for k = 10
(Figure 6(b)). Whereas the curves for the range r = 2 to
r = 7 follow this trend, none of the curves for r = 7, 8, 9,
and 10 dominate each other. In particular, focus on r = 7
and r = 8. The curve for r = 7 dominates the curve for
r = 8 for values of p approximately between 0.4 and 0.6.
We further examine this apparent discrepancy below.

Dependence on k. Next, we examined how the running
time varied with the number of columns k in the matrix, for
fixed values of p. We fixed k = 10, since this case exemplifies
higher values of k as well. Each plot in Figure 7 corresponds
to a fixed value of p. We show the plots only for p ≤ 0.5,
because of symmetry. Consider Figure 7(a), where p = 0.
The larger the value of the size of the planted truth table (r),
the greater the running time of the algorithm. Now consider
the other extreme p = 0.5 (Figure 7(f)). The running time
has an inflection point at r = 7.

The running time of our algorithm on these synthetic
datasets is primarily composed of two factors: 1. the time
taken to discover the planted truth table and 2. the time
spent in processing properties that do not belong to the
planted truth table. The first component monotonically in-
creases with r whereas the second component is influenced
both by k−r and by p. The second component is not mono-
tonic in r. In this case, the contribution of the second com-



(a) k = 5 (b) k = 10

Figure 6: Plots of running time (t) vs. k for fixed values of the probability p.

(a) p = 0 (b) p = 0.1 (c) p = 0.2

(d) p = 0.3 (e) p = 0.4 (f) p = 0.5

Figure 7: Plots of running time (t) vs. the probability p for fixed values of r.



ponent to the running time starts decreasing dramatically
for r ≥ 7. The exact relationship between these components
is worth further study.

Scalability. Finally, we examined the scalability of our al-
gorithm as dataset size increases. Recall that as k increases
linearly from 5 to 20, the number of rows in the matrix in-
creases exponentially in k. We focus on smaller values of r
(in particular two and three) so as to make the dependence
of running time on dataset size more explicit. Figure 8(a)
and (b) show the dependence on running time for r = 2 and
values of p = 0.1 and p = 0.5, respectively. The y-axis in
these figures is on a logarithmic scale. Observe that p has
negligible effect and that the running time mirrors the expo-
nential growth in dataset size. Figure 8(c) and (d) show the
dependence on running time for r = 3 and values of p = 0.1
and p = 0.5, respectively. Although we observe the same
trends in each of the last two graphs, note that for r = 3 and
p = 0.5, the algorithm runs an order of magnitude slower
(the range of the y-axis in Figure 8(c) is [0, 104] while the
range in Figure 8(c) is [0, 105]). This observation reinforces
the breakdown of running time into two components, in par-
ticular the role played by sparsity.

(a) Running time t vs. balance threshold b for fixed
values of the support threshold s.

(b) Running time t vs. support threshold s for fixed
values of the balance threshold b.

Figure 9: Performance of the truth table mining
algorithm on the S. cerevisiae TF dataset.

6.2 Combinatorial Regulatory Networks
Gene expression in eukaryotic cells is controlled by the

combinatorial interaction of transcription factors (TFs) and
their binding motifs in DNA [2]. TFs often operate hi-
erarchically: master regulators govern gene expression in
multiple conditions, and act combinatorially with tissue- or
condition-specific TFs to modulate gene expression. Truth
tables representing TFs and the genes they regulate promise
to capture the complexity of combinatorial regulation in eu-
karyotic cells.

To investigate this possibility, we analyzed a dataset of
transcriptional regulation in S. cerevisiae [7] (baker’s yeast).
The dataset is a binary matrix whose columns represent 112
transcription factors and whose rows represent 4603 genes
in S. cerevisiae; the matrix contains 12804 non-zero entries.
A matrix entry contains a one if a ChIP-on-chip experiment
indicates that the transcription factor binds to the promoter
of the gene with a p-value at most 0.001. Although ChIP-
on-chip data is noisy and significant effort may be needed to
clean it up, the analysis we present next demonstrates that
truth tables in such datasets can provide useful biological
insights.

We ran our truth table finding algorithm on this dataset
for balance values of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005
and support values of 1, 0.99, 0.95, 0.9, 0.85, 0.8, and 0.75.
Figure 9(a) displays on a log-log plot how the running time
of the algorithm depends on the balance threshold we use.
Each curve is this plot corresponds to a fixed value of sup-
port. We see that the logarithm of the running time is in-
versely proportional to the logarithm of the balance, for any
given value of support. The plots also indicate that the case
s = 1 requires less effort from the algorithm than values of
support less than 1. Figure 9(a) displays on a log-log plot
how the running time of the algorithm depends on the sup-
port threshold we use. As long as the support is less than 1,
changing it does not have an adverse affect on the running
time of the algorithm.

We mined truth tables by executing our algorithm on this
data with b = 0.001 and s = 0.75. Our algorithm computed
6105 two-TF, 60570 three-TF, 6298 four-TF, and nine five-
TF truth tables. We further examined the five-TF truth ta-
bles. One truth table includes the TFs CIN5, PHD1, RAP1,
SKN7, and SWI4. The other eight truth tables involved
various combinations of seven TFs: ACE2, FKH2, MBP1,
NDD1, SKN7, SWI4, and SWI6. Note that the two sets
share the TFs SKN7 and SWI4.

We first discuss the truth table involving RAP1, PHD1,
CIN5, SWI4, and SKN7 in detail. PHD1 and SKN7 are TFs
that regulate different aspects of cell growth. SWI4 is a key
TF regulating the G1/S transition of the mitotic cell cycle.
RAP1 is involved in chromatin silencing. SKN7 responds to
different types of osmotic and oxidative stress while CIN5
is responsible for inducing the cell’s response to drugs. The
presence of all five TFs in a truth table suggests an intricate
process of regulation that governs how the cell responds to
external agents of stress potentially by shutting down the
cell cycle and controlling its growth.

The truth tables that include ACE2, FKH2, MBP1, NDD1,
SKN7, SWI4, and SWI6 shed light on other aspects of cellu-
lar growth and cell cycle control. FKH2 and NDD1 regulate
G2/M-specific transcription in the mitotic cell cycle whereas
ACE2 controls G1-specific transcription. MBP1 regulates
progression through the cell cycle and is involved in DNA



(a) r = 2, p = 0.1 (b) r = 2, p = 0.5 (c) r = 3, p = 0.1 (d) r = 3, p = 0.5

Figure 8: Plots of running time (t) vs. k for fixed values of the probability p.

replication. The shared membership of SKN7 and SWI4 in
both groups of truth tables leaves open the possibility that
as we discover more relationships between TFs and target
genes, we may detect truth tables involving all ten TFs, thus
coming closer to a more complete picture of transcriptional
regulation in conditions of external stress.

6.3 Voting Dimensions of U.S. Senators
We also applied our truth table finding algorithm to voting

patterns of the U.S. Senate. In particular, we obtained the
roll call votes for first session of the 102nd Congress in 1991
from the Thomas database at the Library of Congress. This
data contains the votes of 101 senators on 280 bills. A roll
call vote guarantees that every senator’s vote is recorded.
We considered a “yes” vote to be a 1 and “no” vote or an
abstension to be a 0.

When we used b = 0.01, and s = 1, all truth tables we
mined had five or fewer bills. We used the χ2 test to assess
the independence of the bills in a truth table. Of the 60481
five-bill truth tables we found, 17976 were significant at the
0.01 level. We selected one of these significant truth tables
at random to qualitatively assess the independence of the
bills in it. The truth table we chose contained the bills
1 Nunn Resolution Re: Persian Gulf - S.J. Res. 1; A joint

resolution regarding United States policy to reverse
Iraq’s occupation of Kuwait.

16 Dodd Amdt. No. 11; To amend the Export-Import
Bank Act of 1945

39 Motion To Table S. Amdt. 59; To eliminate or reduce
certain appropriations.

133 Byrd amdt.; To provide for an equalization in certain
rates of pay, to apply the honoria ban and the provi-
sions of title V of the Ethics in Government Act of 1978
to Senators and officers and employees of the Senate,
and for other purposes

267 Motion To Table D’Amato Amendment No. 1405; To
amend the Harmonized Tariff Schedule of the United
States to clarify the classification of certain motor ve-
hicles

These bills span diverse aspects of the political landscape:
war, banking, pork, ethics, and trade.

We also counted the frequency of occurrence of each bill
in significant truth tables. Interestingly, the five most fre-
quent bills—39, 66, 97, 267, and 279—form a truth table
themselves! Notice that we have already encountered bills
39 and 267. The subjects of the other three bills are the
following:
66 Moynihan Amdt. No. 249; To amend the Ethics in

Government Act of 1978 to apply the limitations on
outside earned income to unearned income.

97 Motion To Table Amdt. No. 358; To eliminate lan-
guage which lowers the Federal share payable for cer-
tain projects

279 Conference Report; Comprehensive Deposit Insurance
Reform and Taxpayer Protection Act of 1991

In addition to war (bill 39) and trade (bill 267), these bills
pertain to ethics, pork, and insurance reform. Such patterns
shed direct light on the weighty deliberations that occupied
the members of the 102nd Congress.

7. RELATED WORK
As stated earlier, truth tables form the anti-pattern to

many concepts studied by other researchers. Brin et al. [16]
were one of the first groups to find correlated sets of (bi-
nary) attributes using the χ2 significance test. The TAPER
algorithm [21] uses the Pearsons correlation metric instead;
this work employs a upper bound on the correlation coef-
ficient (for binary variables) to expose monotonicity con-
straints [21] that are useful for conducting all-pairs queries.

Truth tables with k properties, balance b1/2kc, and sup-
port 1 can be viewed as a special case of dense itemsets (de-
fined in [15]) where the density is 50%. Observe, however,
that, the density is of a particular nature and is more restric-
tive than the definition given by Seppanen and Mannila [15].
In particular, the form of density captured by a truth table
obeys anti-monotonicity constraints without defining it as a
statistic over densities of all its constituent sub-truth tables
(as is done with the definition of weak density [15]). In gen-
eral, the sparsity constraints of truth tables can be viewed as
a sophisticated intersection statistic [14] over all (conjunc-
tive) boolean expressions over the truth table’s columns.

Truth tables are inherently also related to approaches
that seek to quantify independence in binary datasets, e.g.,
Pavlov et al. [12] (whose end goal is to approximate answers
to complex queries) and those that assess the dimensional-
ity of the underlying dataset, e.g., Tatti et al. [17] by count-
ing the number of independent columns. In fact, our work
can be generalized into yielding graphical models for binary
data [18]. One of the critical issues in building such models
is identifying subsets of variables that induce conditional in-
dependence constraints. To support such analyses, we can
generalise our definition of truth tables to conditional truth
tables i.e., a truth table that surfaces only in a subset of the
given data.

The partition of the rows of a truth table into distinct
blocks with sufficient balance each is reminiscent of the work
by Gionis et al. [5] that aims to identify subsets of rows and
columns with a certain level of sparsity. Viewed in light of
this work, a truth table is a patchwork of combinatorial rect-
angles each with a characteristic level of sparsity. However,



as mentioned earlier, by exploiting properties that are satis-
fied by truth tables (but not combinatorial tiles in general),
we are able to design effective algorithms.

8. DISCUSSION
We have formulated the novel data mining problem of

finding truth tables in a binary matrix. In the continuum
of informative patterns, truth tables reside at the end op-
posite that where itemsets and association rules lie, since
truth tables represent properties that have no depenency
patterns between them. The levelwise nature of the pro-
posed mining algorithm means that we can employ many
optimizations originally defined for Apriori-like algorithms,
such as bounding the number of possible candidate patterns
at a certain level based on the number of frequent patterns
at the level below it [4].

The notion of truth tables displaying 50% sparsity in a
characteristic manner deserves further study. For instance,
the theoretical question of feasibility of identifying truth ta-
bles can be posed under given distributional assumptions
(e.g., a Zipf distribution of the 0-1 data). We also intend to
explore further the relationships between truth table min-
ing and redescription mining toward designing dual-mining
approaches.
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