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Summary 
An isosceles triangular frame with rotationally resistive joints under a tip load is studied. 
The large in-plane deformation elastica equations are formulated. Stability analysis 
shows the frame can buckle symmetrically or asymmetrically. Post-buckling behavior 
showing limit load and hysteresis are obtained by shooting and homotopy numerical 
algorithms. The behavior of a frame with rigid joints is studied in detail. The effects of 
joint spring constant and base length are found.  
 
1. Introduction 
 
For traditional structures, only small deflections are tolerated before the material fails. 
However, some structures are very flexible and return to their original shapes without 
damage when the disturbance is removed. Examples include springs, linkages, switches, 
antennas, fishing and vaulting poles, etc. Flexible structures are also desirable in space 
technology because they are lightweight, can be packed in a tight space and later fully 
deployed.   
 If the structural member is thin enough, an accurate constitutive relation can be 
described by the elastica theory [1-3], where the local moment m is proportional to the 
local curvature: 
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Here θ  is the local angle of inclination,  is the arc length of the member, and EI is the 
flexural rigidity. The equilibrium shape of an elastica can then be described by a set of 
nonlinear differential equations, which can be integrated numerically or expressed in 
terms of elliptic functions. We shall not discuss the large deflections of simple members 
such as the cantilever under a tip load or the pulling apart of circular and square rings, 
where the deformation behaviors are well understood (see e.g., [3-6]).  
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           In the eccentric loading of a portal frame it was found that the limit load may be 
smaller than the bifurcation load, making the system imperfection sensitive [7-9]. The 
buckling and truly large deformation (up to snap through) of a portal frame was studied 
by Huddleston [10]. Square and gabled frames, although for small deformations, were 
also analyzed [11-14].  
          Thacker et al. [15, 16] considered a rigid platform whose weight is supported by 
elastica legs. Unlike eccentric loading, the buckling load is finite and can be predicted by 



linear bifurcation analysis. There is also a global buckling load (limit load), which is 
lower than the buckling load. Below the global buckling load, the flexible structure 
would return to its original shape after the removal of any imposed disturbance. 
          All of the above sources considered rigidly connected joints. The most basic frame 
with hinged joints is the isosceles triangular frame studied by Wang [17]. Using an 
analytical expression for the force-displacement relation of a single bar [18], Wang was 
able to delineate the complete post-buckling properties of the hinged flexible triangular 
frame, including snap-through. It was found that there is a single linear buckling load, but 
unlike all previous literature on rigid frames, the post-buckling picture is quite 
complicated. There exist distinct bifurcation curves when the legs of the triangular frame 
are both curved and symmetric, both curved and asymmetric, or one straight and one 
curved. Again unlike rigid frames, the hinged frame is always unstable for some finite 
disturbance, thus there is no global buckling load. Notice a rectangular frame with all 
hinged joints would not have any structural rigidity. 
          Structures with flexible joints are also practical and important. Deployable space 
structures have rotational spring joints. On the other hand, the joints of terrestrial 
structures may not be entirely rigid. For a rectangular frame, the effect of flexible joints 
lowers the buckling load, and its immediate post-buckling was also reported [19-21].    
           The triangular frame would behave differently than a rectangular frame. It would 
be interesting to see how the properties of a triangular frame with rigid joints evolve to 
that with hinged joints. The aim of the present paper is to consider the triangular frame 
with rotationally flexible joints. The complicated post-buckling behavior is presented 
here for the first time. 
   
2. Formulation 
 
Fig. 1a shows an isosceles triangular frame with two legs of equal length L and the base 
length bL. The joints are modeled by rotational hinges with spring constant ' . A vertical 
force  acts on the tip of the frame. If the frame buckles, the deformed shape is shown 
in Fig. 1b. Let the left leg be denoted by the subscript 1 and the right by the subscript 2. 
The origin of Cartesian axes  is located at the base of the left leg where the 
vertical and horizontal forces are  and 'G  as shown. For the right leg, the base 
reactions are  and 'G . For equilibrium, 
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'2F ''' F 21 FF += . There are also external moments 
acting at the bases. Considering the equilibrium of an elemental length of the left leg 
(Fig. 1c), the moment balance gives 
 'cos''sin' 111 dsGmdsFdmm θθ +=++ .    (2) 
Normalize the length by L, the forces by  and drop primes. Eqs. (1, 2) then give 
the elastica equation 
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Similarly for the right leg 
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The kinematic conditions are 
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The boundary conditions at the base are 
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Continuity at the top gives 
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In the undeformed state, both legs are straight with the inclination angles 
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At the left base (origin), the moment is proportional to the angle difference: 
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where  is the normalized rotational spring constant. Similarly at the right 
base 
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On the top vertex, the flexible joint condition gives 
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A global moment balance about the origin yields 
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Given the total load , the spread b, and the spring constant k, Eqs. (3-5) are 
eight first order equations plus two unknowns ( , ). There are ten boundary 
conditions Eqs. (6, 7, 10-13). The problem to be solved is highly nonlinear. We note that 
when  all joints are freely hinged and when 

21 FFF +=

2F G

0=k ∞=k  all joints are rigid.  
 
3. Stability analysis 
 
The undeformed state is symmetric (unlike imperfection problems). The vertical and 
horizontal forces in each leg are 
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where 0θ is defined in Eq. (8). We perturb from this state as follows: 
 gGGfFFfFF +=+=+= 0202101 ,, ,   (15) 
 202101 , ϕθθϕθθ +−=+= ,     
 111111 sin,cos ηθξθ +=+= sysx ,    (16) 
 222222 sin,cos ηθξθ +−=+= sbysx .     
Here the last terms in Eqs. (15, 16) are much smaller than unity. Since the total force is F, 
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Upon substitution into Eqs. (3-5), we find the linearized equations are 
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The boundary conditions Eqs. (6, 7, 10-13) become 
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The nontrivial trivial solution to Eqs. (18-31) determines the buckling load. We 
distinguish between the symmetric case and the asymmetric case. 
 
(A) Symmetric case 
  In this case, the frame deforms symmetrically and we can consider only the left 
leg. Since 21 ηη −= , 12 ϕϕ −=  and 012 == ff , Eqs. (27, 30) become 
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Eq. (18) is then integrated to give 
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Eqs. (20, 21, 24) then yield 
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Eqs. (28, 32) give 
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For nontrivial solutions , , and  of Eq. (37) the determinant of the coefficient 
matrix of Eq. (37) must be zero. The characteristic equation is 

1C 2C g

.0]2sin2cos)[(sin
)]cos1(2sin)][cos1([ 2

=++−+
−+−+

AAkAAAAk
AkAAAkA

   (38) 

For a given spring constant k, the eigenvalues A can be found from Eq. (38) by a root 
finder. Eq. (34) then gives the buckling force  
 22

0
2 4cos2 bAAF −== θ .     (39) 

Table 1 gives the lowest eigenvalue A, which depends only on the spring constant k. The 
symmetric buckling force is proportional to  and a factor depending on the leg spread 
b as in Eq. (39). 
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(B) Asymmetric case 
 Since 21 ϕϕ −≠ , let 
 21 ϕϕψ += ,    2121 , ηηζξξχ +=−= ,    (40) 
Adding Eqs. (18, 19) we have 
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The solution is  
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where A is defined in Eq. (34) and  

 2
20

5
sin2

A
f

C
θ

= .       (43) 

Add Eqs. (28, 29) and then use Eq. (42) to obtain 
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Subtracting Eqs. (20, 22) yields 
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Using Eqs. (24, 25, 42) the solution is 
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The boundary condition Eq. (26) gives 
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Adding Eqs. (21, 23) gives 
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With Eqs. (24, 25) the solution is 
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Eqs. (27, 31, 43) lead to the boundary condition 
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or 
        (sin2θ0 + cos Acos2θ0)C3 − sin Acos2θ0 C4 + Asin2θ0 C5 = 0 .             (51) 
For nontrivial ,  and , Eqs. (44, 47, 51) yield a characteristic equation that 
simplifies to 
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After the lowest eigenvalue A is found, Eq. (39) then yields the buckling force. Table 2 
shows the values of lowest A for asymmetric buckling. 
 
4. Numerical Methods 
 
The boundary value problem for the spring jointed triangle frame is defined by Eqs. (3-5) 
with boundary conditions (6, 7,10-13); to solve this, we need values for F, F1, k, G, )0(1θ  
and )0(2θ .  Since there are only four boundary conditions at 1=s , we can only solve for 
four variables; the rest must be given as parameters of the problem.  We use F and k as 
the problem parameters.  The unknowns are )0(1θ , )0(2θ , G, and . 1F
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and let );(1 Vsθ , );(2 Vsθ , , , ,  be the solution to the 
initial value problem given by Eqs. (3-7, 12, 13) with unknown values specified by V.  
The original two-point boundary value problem is mathematically equivalent to solving 
the nonlinear system of equations 
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The software used for solving the initial value problems in the shooting formulation (54) 
(Keller [22]) was the subroutine ODE from ODEPACK (Shampine and Gordon [23]).  
(54) is a very difficult nonlinear system of equations. 



This problem has multiple solutions for certain F and b values. The trivial 
solution  is a solution for all F 
and k.  A quasi-Newton method, implemented in the subroutine HYBRJ from the 
MINPACK library (Moré, Garbow, and Hillstrom [24]), was used to attempt to solve 
(54).  However, starting points close enough to a nontrivial solution for the quasi-Newton 
method to converge to the solution could not be found. HYBRJ would either stagnate in a 
nonzero local minimum of  or converge to the trivial solution. 
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Next, a globally convergent homotopy based nonlinear system solver, subroutine 
FIXPDF from the HOMPACK (Watson, Billups, and Morgan [25]) suite of codes, was 
used.  This method (using the default homotopy map) tracks the zero curve of 
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starting with . 0=Λ 0),0( =Vaρ  when aV = , so a solution is known for 0),( =Λ Vaρ  
when .  From this starting point, solutions of 0=Λ 0),( =Λ Vaρ  are tracked until 1=Λ .  
The HOMPACK codes track this curve allowing Λ to decrease also.  This is needed for 
many nonlinear systems and is not provided with standard continuation. 

The homotopy method did not have problems with local minima like the quasi-
Newton methods.  Whereas, FIXPDF always converged, it sometimes converged to the 
trivial solution.  Instead, AUTO (Doedel, et al.  [26]), a bifurcation analysis package, was 
used to find non-trivial solutions.  Using a nontrivial solution from AUTO as a starting 
point to HYBRJ, problems with slightly different F and k were solved.  Too large a step 
size could not be taken in F or k or HYBRJ would not converge.  When this would 
happen, the HOMPACK system would be used to find a solution. 

For a fixed k, we want to track the zero curve  
 },0);(|),{( 0 mFFFFVVF ≤≤=Ψ=Γ       (56) 

of as F varies between some  and .  This would be possible using HYBRJ 
if the solution  along the zero curve 
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HYBRJ cannot be used to advance the solution from a prior solution because F 
can either increase or decrease along 
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problems, however, and the subroutine STEPS from HOMPACK can be used to trace Γ  
between any two connected solutions and . ),( 00 VF ),( mm VF

The bifurcation diagrams (using vertical displacement of the tip 
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as the dependent variable) were produced using the zero curve results as input to the 
initial value solver ODE to get .  The frames were plotted by reading V into 
Mathematica (Wolfram [27]) and having it solve the initial value problem for ,  and 

, , then performing a parametric plot of these functions. 
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5. Results and Discussions  
 
First consider the case when the joints are hinged with no rotational resistance ( 0=k ). 
Our stability analysis Eqs. (38, 52) show both symmetric and asymmetric buckling occur 
at πnA = . Thus from Eq. (39) the buckling load is 22 4 b−π . The post-buckling 



behavior is then computed by our numerical method. The tip force-vertical displacement 
curves for the equilateral triangle ( 1=b ) case are shown in Fig. 2. In essence, 
infinitesimal buckling begins at the critical force 095.17=F  (Point A). Symmetric 
buckling follows the solid curve ABEK and asymmetric (one leg curved, one leg straight) 
buckling follows the dashed curve AGCH. There is also a secondary both-legs-curved 
asymmetric branch EJ. These results confirm those of [17], which used a completely 
different, individual column method.  
 However, the method used by [17] cannot treat any frame with non-zero joint 
rotational resistance. Consider the important case of a rigidly joined frame, which 
has never been studied.  Eq. (38) shows the symmetric bifurcation occurs at the root of 
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or A=6.2832. For the equilateral triangle, the critical force is F=68.38. On the other hand, 
for the asymmetric case, Eq. (52) reduces to 
          (59) 0tan =− AA
or . The critical force for 4934.4=A 1=b  is 97.34=F . Fig. 3 shows the complete 
force-displacement picture. We note there are two disjoint bifurcation curves. The 
symmetric post-buckling follows ABK while the asymmetric deformation follows 
LGCHM. Let us increase the tip load on this frame from zero gradually. The first critical 
load is reached at state L ( ) but the asymmetric post-buckling is immediately 
unstable since the slope of the path LG is negative, which indicates the load would be 
doing negative work. We expect the frame would catastrophically jump to state C at the 
same load. As the load is further increased, the deformation would follow the segment 
CH, which has positive slope. There is no stable equilibrium load beyond state H 
( ) and the frame would snap through to the other side (via HM). However, a 
hysteresis loop is formed if the load is decreased from state C back to state G 
( ) and then the frame snaps into the undeformed shape. The symmetric mode 
has a much higher critical load (68.38) at state A and is unlikely to occur when the load is 
gradually increased. The segment up to state B (

97.34=F

26.36=F

71.29=F

16.69=F ) is stable. These predictions 
do not apply to large perturbations. For example, a load of 32 (between states L and G) 
when gradually applied would not cause any deformation. However, the same load if 
adequately perturbed (kicked) may land the frame on the stable segment GC. If overly 
perturbed, the frame would snap through to the other side. The stable symmetric 
deformation on AB can be similarly realized. Figure 4 shows the asymmetric deformed 
shapes corresponding to the (rigidly joined) states shown in Fig. 3. Note that the states M 
and K are in equilibrium with zero load, but unstable to any perturbation. The shapes of 
the states C, H, M would bend below the x-axis, if not constrained by a solid base line at 

. Figure 5 shows the corresponding symmetric deformed shapes, which require a 
higher tip load.  

0=x

 The force-displacement curves of a rigidly joined triangular frame for various 
base lengths are shown in Fig. 6. First, consider symmetric post-buckling. If the base 
length is zero ( ), Eqs. (39, 58) show the bifurcation occurs at . This 
agrees with twice the buckling load of a clamped-clamped column, which is . As b is 
increased, the symmetric post-buckling curves gradually collapse into the origin, 
occurring at . More involved are the asymmetric force-displacement curves. For 

, Eqs. (39, 59) give . However, twice the buckling load of a clamped-

0=b 957.78=F
28π

2=b
0→b 381.40=F



free column is . The singular behavior as is also reflected by 
the  asymmetric post-buckling curve. For larger b, the post-buckling curves may 
have several inflection points, and some are quite complicated. For example, the 

curves bend into the negative F half plane, but the 

935.42/2 == πF 0→b
25.0=b

1≥b 1<b  curves tend toward infinite 
F. However, a discussion of the asymptotic trend is academic, since the tip touches the 
base line when the displacement reaches 4/1 2b− , and parts of the bent legs may have 
touched the base line even earlier.  
 The effect of the joint stiffness is shown in Fig. 7 for base length .  For 

, or pinned joints (Fig. 7(a) or Fig. 2), the force-displacement curves include a 
symmetric post-buckling curve, an asymmetric post-buckling curve, and a secondary 
asymmetric post-buckling curve. As the joint stiffness is increased, both buckling loads 
and post-buckling loads increase, as more energy is required to deform a more 
constrained system. The secondary asymmetric bifurcation eventually merges with the 
symmetric post-buckling curve, as depicted in Fig. 7(c).  For large k, the characteristics of 
the force-displacement curves can be represented by the rigidly joined case (Fig. 7(d) and 
Fig. 3).  

1=b
0=k

The effect of narrower or wider base lengths is shown in Figs. 8 and 9. The 
buckling forces are larger for a smaller base length. However, the asymmetric force-
displacement curve is quite horizontal for small displacements, making the frame 
unstable and imperfection sensitive (Fig. 8). On the other hand, when the base length is 
larger (Fig. 9), all modes have negative slope and are unstable. In comparison, the 
equilateral triangular frame ( , Fig. 7) has the advantage of stability (positive slope 
segments) if displacements are limited to some range.  

1=b

In conclusion, we have solved the difficult problem of large elastic deformations 
of a triangular frame. Nonlinear phenomena such as instability, hysteresis, limit load, 
snap through, and imperfection sensitivity are found. It is hoped that our methods and 
results would elicit further research on the large deformations of frames. 
  
References 
 
[1] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th ed. New York: 
Dover 1944. 
[2] Timoshenko, S.P. and Gere, J.M.: Theory of Elastic Stability, 2nd ed. New York: 
McGraw 1961. 
[3] Frisch-Fay, R.: Flexible Bars, London: Butterworths 1962. 
[4] Wang, C.Y.: Large deflections of an inclined cantilever with an end load. Int. J. 
Nonlinear Mech. 16, 155-164 (1981). 
[5] Watson, L.T. and Wang, C.Y.: A homotopy method applied to elastica problems. Int. 
J. Solids Struct. 17, 29-37 (1981). 
[6] Ohtsuki, A. and Ellyin, F.: Large deformation analysis of a square frame with rigid 
joints. Thin Walled Struct. 38, 79-91 (2000). 
[7] Hutchinson, J.W. and Koiter, W.T.: Postbuckling theory. Appl. Mech. Rev. 23, 1353-
1366 (1970). 
[8] Simitses, G.J. and Kounadis, A.N.: Buckling of imperfect rigid joined frames. J. Eng. 
Mech. 104, 569-586 (1978). 



[9] Chistodoulou and Kounadis, A.N.: Elastica buckling analysis of a simple frame. Acta 
Mech. 61, 153-163 (1986). 
[10] Huddleston, J.V.: Nonlinear buckling and snap over of a two-member frame. Int. J. 
Solids Struct. 3, 1023-1030 (1967). 
[11] Brush, D.O. and Almroth, B.O.: Buckling of Bars, Plates and Shells, New York: 
McGraw 1975. 
[12] Simitses, G.J.: An Introduction to the Elastic Stability of Structures, New Jersey: 
Prentice-Hall, 1976. 
[13] Simitses, G.J., Giri, J. and Kounadis, A.N.: Nonlinear analysis of portal frames. Int. 
J. Num. Meth. Eng. 17, 123-132 (1981). 
[14] Qashu, R.K. and DaDeppo, D.A.: Large deflection and stability of rigid frames. J. 
Eng. Mech. 109, 765-780 (1983). 
[15] Thacker, W.I., Wang, C.Y. and Watson, L.T.: The nonlinear stability of a heavy 
rigid plate supported by flexible columns. Int. J. Solids Struct. 30, 3443-3449 (1993). 
[16] Thacker, W.I., Wang, C.Y. and Watson, L.T.: Global stability of a thick solid 
supported by elastica columns. J. Eng. Mech. 123, 287-289 (1997). 
[17] Wang, C.Y.: Analysis of nonlinear deformations of a triangular frame. Mech. Struct. 
Mach. 28, 237-243 (2000). 
[18] Wang, C.Y.: Asymptotic formula for the flexible bar. Mech. Mach. Th. 34, 645-655 
(1999). 
[19] Romstad, K.M. and Subramanian, C.V.: Analysis of frames with partial connection 
rigidity. ASCE J. Struct. Div. 96, 2283-2300 (1970). 
[20] Lui, E.M. and Chen, W.F.: Analysis and behavior of flexibly-joined frames. Eng. 
Struct. 8, 107-118 (1986). 
[21] Goto, Y., Suzuki, S. and Chen, W.F.: Stability behavior of semirigid sway frames. 
Eng. Struct. 15, 209-219 (1993). 
[22] Keller, H.B.: Numerical Solution of Two-Point Boundary Value Problems, 
Philadelphia: Society for Industrial and Applied Mathematics, 1976. 
[23] Shampine, L.F. and Gordon, M.K.: Computer Solution of Ordinary Differential 
Equations, San Francisco: W. H. Freeman, 1975. 
[24] Moré, J.J., Garbow, B.S. and Hillstrom, K.E.:  User Guide for MINPACK-1, ANL-
80-74,  Argonne, IL: Argonne National Laboratory, 1980.  
[25] Watson, L.T., Billups, S.C. and Morgan, A.P.: Algorithm 652: HOMPACK: a suite 
of codes for globally convergent homotopy algorithms, ACM Trans. Math. Software 13, 
281-310 (1987). 
[26] Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., 
and Wang, X.:  AUTO 97: Continuation and Bifurcation Software for Ordinary 
Differential Equations with HomCont.  User Guide.  http://indy.cs.concordia.ca/auto/. 
(1997). 
[27] Wolfram, S.:  Mathematica, A System for Doing Mathematics by Computer, 
Redwood City, CA: Addison-Wesley, 1988.  
 
 



Table 1. Lowest eigenvalue A and corresponding bifurcation value F for various 
constants k (symmetric case). 
 

k A F ( 5.0=b ) F ( 0.1=b ) F ( 5.1=b ) 
0 3.142 19.11 17.09 13.06 
0.02 3.161 19.34 17.30 13.21 
0.1 3.234 20.25 18.11 13.84 
0.2 3.321 21.35 19.10 14.59 
0.5 3.552 24.43 21.85 16.69 
1 3.863 28.90 25.85 19.74 
2 4.311 35.99 32.19 24.59 
5 5.024 48.88 43.72 33.39 
10 5.510 58.78 52.58 40.16 
100 6.190 74.21 66.37 50.69 
∞  6.283 76.45 68.38 52.23 

 
 
Table 2. Lowest eigenvalue A and corresponding bifurcation value F for various 
constants k (asymmetric case). 
 

k A F ( 5.0=b ) F ( 0.1=b ) F ( 5.1=b ) 
0 3.142 19.11 17.09 13.06 
0.02 3.148 19.15 17.16 13.11 
0.1 3.173 19.49 17.44 13.32 
0.2 3.203 19.86 17.77 13.57 
0.5 3.286 20.91 18.70 14.28 
1 3.406 22.46 20.09 15.34 
2 3.909 29.58 26.46 20.21 
5 4.132 33.07 29.58 22.59 
10 4.449 38.34 34.29 26.19 
100 4.489 39.02 34.90 26.66 
∞  4.493 39.10 34.97 26.71 

 
 
 
 
 
 
 
 
 



 
Fig. 1. (a) The undeformed triangular frame (b) Post-buckling under a tip load (c) An 
elemental length. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. 2. Force-displacement curves for the frame with hinged joints ( , ). Solid 
line: symmetric buckling, dashed line: asymmetric buckling, dotted line: secondary 
asymmetric buckling. 

0=k 1=b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. 3 Force-displacement curves for the frame with rigid joints ( , ). Solid 
line: symmetric buckling, dashed line: asymmetric buckling. 

∞=k 1=b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. 4. Asymmetric deformed shapes of the rigidly-joined equilateral frame. Letters 
correspond to states in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Fig. 5. Symmetric deformed shapes of the rigidly-joined equilateral frame. Letters 
correspond to states in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. 6. Force displacement curves for the rigidly-joined frame with various base lengths 
b. Solid line: symmetric buckling, dashed line: asymmetric buckling. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Fig. 7. Force displacement curves for 1=b . (a) 0=k , (b) 5.0=k , (c) , (d) 

. 
0.2=k

∞=k
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Fig. 8. Force displacement curves for 5.0=b . (a) 0=k , (b) 0.1=k , (c) , (d) 

. 
0.2=k

∞=k
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Fig. 9. Force displacement curves for 5.1=b . (a) 0=k , (b) 2.0=k , (c) , (d) 

. 
0.1=k

∞=k
 
 


