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Abstract

In this paper we study the parallel scalability of variants of additive Schwarz precondition-

ers for three dimensional non-overlapping domain decomposition methods. To alleviate the

computational cost, both in terms of memory and floating-point complexity, we investigate

variants based on a sparse approximation or on mixed 32- and 64-bit calculation. The ro-

bustness of the preconditioners is illustrated on a set of linear systems arising from the finite

element discretization of elliptic PDEs through extensive parallel experiments on up to 1000

processors. Their efficiency from a numerical and parallel performance view point are studied.

1 Introduction

In recent years, there has been important development of domain decomposition algorithms for
numerically solving partial differential equations. Nowadays some preconditioners for Krylov meth-
ods possess optimal convergence rates for given classes of elliptic problems. These optimality or
quasi-optimality properties are often achieved thanks to the use of two-level preconditioners that
are composed of local and global terms acting either in an additive or in a multiplicative way. A
concise and nice overview of domain decomposition techniques can be found in [6]. A series of use-
ful books are also available [18, 21, 22] where the interested reader can find detailed presentations
of these numerical techniques and a complete bibliography.

In this paper we study local components for non-overlapping domain decomposition applied to
the parallel solution of large three dimensional elliptic PDE problems. In Section 2, we describe
a set of parallel local preconditioners that are the main focus of this paper. In order to alleviate
the computational cost of constructing these new local preconditioners, that require the explicit
computation of the local Schur complement, we propose cheaper alternatives based on a sparse
approximation or on mixed 32- and 64-bit calculation. This latter strategy is mainly motivated by
the observation that many recent processor architectures exhibit 32-bit computational power that
is significantly higher than that for 64-bit. We show experimental results that demonstrate their
numerical efficiency. The parallel distributed implementation of these techniques is described in
Section 3 and an extensive parallel scalability study on large numbers of processors is commented
on in Section 4. These numerical experiments are performed on two types of partial differential
equations, heterogeneous and/or anisotropic problems, in three dimensional domains using up
to a thousand processors. Finally, in Section 5 we show a few results to illustrate how these
local preconditioners can be combined with a coarse spatial correction to improve the numerical
scalability, and make a few concluding remarks.
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2 Algebraic additive Schwarz preconditioner and its vari-

ants

We consider the second order self-adjoint three dimensional elliptic problem
{

−div(K.∇u) = f in Ω,

u = 0 on ∂Ω,
(1)

where K is a strictly positive definite bounded symmetric tensor on the open convex bounded
computational domain Ω.

We assume that the domain Ω is decomposed into N non-overlapping open subdomains Ω1,
. . ., ΩN with boundaries ∂Ω1, . . ., ∂ΩN . We assume that a mesh is given that is a refinement of
the subdomain partitioning. We discretize (1) by linear finite elements resulting in a symmetric
and positive definite linear system

Au = f.

Let Γ be the set of all the indices of the mesh points that belong to the interfaces between the
subdomains. Grouping the unknowns for the mesh points corresponding to Γ in the vector uΓ and
the ones corresponding to the unknowns in the interior I of the subdomains in uI , boundaries, we
get the reordered problem:

(

AII AIΓ

AT
IΓ AΓΓ

) (

uI

uΓ

)

=

(

fI

fΓ

)

. (2)

Eliminating uI from the second block row of (2) leads to the following reduced equation for uΓ:

SuΓ = fΓ − AT
IΓA−1

II fI , (3)

where
S = AΓΓ − AT

IΓA−1
II AIΓ (4)

is the Schur complement of the matrix AII in A. The matrix S inherits from A the symmetric
positive definiteness property. Therefore we use preconditioned conjugate gradient iterations [10]
for solving (3).

For the sake of simplicity, we describe the basis of our local preconditioner in two dimensions
as its generalization to three dimensions is straightforward. In Figure 1, we depict an internal

Ωi

Ωj
Ek

EgEm

Eℓ

Figure 1: An internal subdomain.

subdomain Ωi with its edge interfaces Em, Eg, Ek, and Eℓ that define Γi = ∂Ωi\∂Ω. Let RΓi
:

Γ → Γi be the canonical pointwise restriction that maps full vectors defined on Γ into vectors
defined on Γi, and let RT

Γi
: Γi → Γ be its transpose. For a stiffness matrix A arising from a finite

element discretization, the Schur complement matrix (4) can also be written

S =

N
∑

i=1

RT
Γi

S(i)RΓi
,
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where
S(i) = A

(i)
Γi

− AT
iΓi

A−1
ii AiΓi

(5)

is referred to as the local Schur complement associated with the subdomain Ωi. S(i) involves
submatrices from the local stiffness matrix A(i), defined by

A(i) =

(

Aii AiΓi

AT
iΓi

A
(i)
Γi

)

. (6)

The matrix A(i) corresponds to the discretization of Equation (1) on the subdomain Ωi with
Neumann boundary condition on Γi and Aii corresponds to the discretization of Equation (1)
on the subdomain Ωi with homogeneous Dirichlet boundary conditions on Γi. The local Schur
complement matrix, associated with the subdomain Ωi depicted in Figure 1, is dense and has the
following 4 × 4 block structure:

S(i) =











S
(i)
mm Smg Smk Smℓ

Sgm S
(i)
gg Sgk Sgℓ

Skm Skg S
(i)
kk Skℓ

Sℓm Sℓg Sℓk S
(i)
ℓℓ











, (7)

where each block accounts for the interactions between the degrees of freedom of the edges of the
interface ∂Ωi.

While the Schur complement system is significantly better conditioned than the original matrix
A, it is important to consider further preconditioning when employing a Krylov method. It is well-
known, for example, that κ(A) = O(h−2) when A corresponds to a standard discretization (e.g.,
piecewise linear finite elements) of the Laplace operator on a mesh with spacing h between the grid
points. Using two non-overlapping subdomains effectively reduces the condition number of the
Schur complement matrix to κ(S) = O(h−1). While improved, preconditioning can significantly
lower this condition number further. The preconditioner presented below was originally proposed
in [4] in two dimensions and successfully applied to large two dimensional semiconductor device
modeling in [9]. To describe this preconditioner we define the local assembled Schur complement,
S̄(i) = RΓi

SRT
Γi

, that corresponds to the restriction of the Schur complement to the interface

Γi. This local assembled preconditioner can be build from the local Schur complements S(i)

by assembling their diagonal blocks thanks to a few neighbor to neighbor communications. For
instance, the diagonal blocks of the complete matrix S associated with the edge interface Ek,

depicted in Figure 1, is Skk = S
(i)
kk + S

(j)
kk . Assembling each diagonal block of the local Schur

complement matrices, we obtain the local assembled Schur complement, that is:

S̄(i) =









Smm Smg Smk Smℓ

Sgm Sgg Sgk Sgℓ

Skm Skg Skk Skℓ

Sℓm Sℓg Sℓk Sℓℓ









.

With these notations the algebraic additive Schwarz preconditioner reads

Md =

N
∑

i=1

RT
Γi

(

S̄(i)
)−1

RΓi
. (8)

2.1 Sparse Algebraic Additive Schwarz preconditioner

In three dimensional problems the size of the dense local Schur matrices can be large, consequently
it is computationally expensive to factorize and solve linear systems with them. One possible
alternative to get a cheaper preconditioner is to consider a sparse approximation for S̄(i) in (8),
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which may result in a saving of memory to store the preconditioner and saving of computation
to factorize and apply it. This approximation Ŝ(i) can be constructed by dropping the elements
of S̄(i) that are smaller than a given threshold. More precisely, the following symmetric dropping
formula can be applied:

ŝij =

{

0, if |sij | ≤ ξ(|sii| + |sjj |),
sij , otherwise.

(9)

The resulting preconditioner reads

Msp =

N
∑

i=1

RT
Γi

(

Ŝ(i)
)−1

RΓi
.

2.2 Single precision Additive Schwarz preconditioner

Motivated by accuracy reasons, many large-scale scientific applications and industrial numerical
simulation codes are fully implemented in 64-bit floating-point arithmetic. On the other hand,
many recent processor architectures exhibit 32-bit computational power that is significantly higher
than that for 64-bit. We might legitimately ask whether all the calculation should be performed in
64-bit or if some pieces could be carried out in 32-bit. This leads to the design of mixed-precision
algorithms. However, the switch from 64-bit operations into 32-bit operations increases rounding
error. Thus we have to be careful when choosing 32-bit arithmetic so that the introduced rounding
error or the accumulation of these rounding errors does not produce a meaningless solution.

We propose to take advantage of the 32-bit speed and memory benefit and build some part
of the code in 32-bit arithmetic. Our goal is to use costly 64-bit arithmetic only where necessary
to preserve accuracy. We consider here a simple approach of performing all the steps of a Krylov
subspace method except the preconditioning in 64-bit [14]. In this respect, it is important to note
that the preconditioner only attempts to approximate the inverse of the matrix S so introducing
a slight perturbation by performing this step in low precision might not affect dramatically the
convergence rate of the iterative scheme. In our mixed-precision implementation only the precon-
ditioned residual is computed in 32-bit. The import of this strategy [13, 12] is that the Gaussian
elimination (factorization) of the local assembled Schur complement (used as preconditioner), and
the forward and the back substitutions to compute the preconditioned residual, are performed in
32-bit while the rest of the algorithm is implemented in 64-bit.

Since the local assembled Schur complement is dense, cutting the size of this matrix in half
has a considerable effect in terms of memory space. Another benefit is in the total amount of
communication that is required to assemble the preconditioner. As for the memory required to
store the preconditioner, the size of the exchanged messages is also half that for 64-bit. Conse-
quently, if the network latency is neglected, the overall time to build the preconditioner for the
32-bit implementation should be half that for the 64-bit implementation. These improvements are
illustrated by detailed numerical experiments with the mixed-precision implementation reported
in Section 4.

To summarize, we have four variants of the additive Schwarz preconditioner that use various
ways to represent the assembled local Schur complement:

Md−64 that uses dense 64-bit matrices;

Md−mix that uses dense 32-bit matrices,

Msp−64 that uses sparsified 64-bit matrices;

Msp−mix that uses sparsified 32-bit matrices.
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3 Parallel implementation

In a parallel distributed memory environment, the domain decomposition strategy is followed to
assign each local PDE problem (subdomain) to one processor that works independently of other
processors and exchange data using message passing. In what follows we start by taking a brief
look at our parallel implementation that relies on a unique feature of the multifrontal sparse direct
solver Mumps [1, 2]; that offers the possibility to compute the Schur complements matrices S(i) at
an affordable memory and computational cost thanks to its multifrontal approach [7]. Basically,
the Schur complement feature of Mumps can be viewed as an incomplete factorization, where the
factorization of the root (AΓΓ), associated with the interface indices, is disabled. Consequently
this feature fully benefits from the general overall efficiency of the multifrontal approach. Those
local Schur complement matrices computed explicitly on each processor are then assembled using
neighbor to neighbor communication, which is independent of the number of processors. Then
they are either factorized using a dense linear Lapack kernel [3], to construct the dense additive
Schwarz preconditioners denoted by Md−64 or Md−mix, or first sparsified and then factorized again
using Mumps for the sparsified alternatives. We refer to this technique as a sparsified additive
Schwarz preconditioner and denote it as Msp−64 and Msp−mix. Finally, we note that the solution
of this reduced linear system associated with the Schur complement is typically performed by a
distributed preconditioned conjugate gradient solver. In modern parallel numerical libraries [8],
the Krylov solvers are implemented using the reverse communication mechanism such that only
three external parallel computational kernels have to be implemented.

The first is the dot product calculation, which is the only operation that require an overall
communication using the MPI ALLREDUCE routine.

The second is the matrix-vector product involving the local Schur complement. We notice that
with the local Schur complement being explicitly computed, the matrix-vector product is per-
formed using dense kernels from BLAS. Such a calculation makes the iterations cheaper than
the standard approach involving backward/forward substitutions with the sparse Cholesky
factors associated with the Dirichlet problems. This computational step is followed by a
few neighbor to neighbor communications to assemble the resulting vector defined on the
interface.

The third is the preconditioning step, which requires a backward/forward substitution of the
factorized local assembled, possibly sparsified, Schur matrix S̄(i), followed by some neighbor
to neighbor communication to sum all the contributions from the interface degrees of freedom.

4 Parallel scalability studies

In this part of the paper, we first describe in Section 4.1 the computational framework considered
for our parallel numerical experiments. We investigate in Section 4.2 the numerical behaviors of the
sparsified and mixed arithmetic variants and compare them with the classical dense 64-bit additive
Schwarz preconditioner. Section 4.3 is the core of the parallel study where we first illustrate through
classical speedup experiments the advantage of increasing the number of processors for solving a
problem of a prescribed size; then we study the numerical scalability of the preconditioners by
conducing scaled speedup experiments where the problem size is increased linearly with the number
of processors.

4.1 Computational framework

4.1.1 Target parallel platform

Although many runs have been performed on various parallel platforms, we only report in this paper
on experiments conduced on the System X computer installed at Virginia Tech. This parallel
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distributed computer is a 1100 dual node Apple Xserve G5 cluster machine based on 2.3 GHz
PowerPC 970FX processors with a 12.25 Tflops peak performance. This computer has a distributed
memory architecture, where each node has 4 GBytes ECC DDR400 (PC3200) of RAM. Thus,
data sharing among processors is performed using the message passing library MVAPICH. The
interconnection networks between processors are 10Gbps InfiniBand with 66 SilverStorms 9xx0
family switches and Gigabit Ethernet with 6 Cisco Systems 240-port 4506 switches.

1 2 3

4 5 6

(a) Pattern 1

2

43 5 6

1

(b) Pattern 2

Figure 2: variable coefficient domains.

4.1.2 Model problems

To investigate the robustness and the scalability of the preconditioners we consider various model
problems by considering the diffusion coefficient matrix K in (1) as diagonal with piecewise con-
stant function entries defined in the unit cube as depicted in Figure 2. The diagonal entries
a(x, y, z), b(x, y, z), c(x, y, z) ∈ R

3 of K are bounded positive functions on Ω enabling us to define
heterogeneous and/or anisotropic problems. To vary the difficulties we consider both discontinuous
and anisotropic PDEs where constant diffusion coefficients are defined either along vertical beams
(Pattern 1 type problems) or horizontal beams (Pattern 2 type problems). This latter pattern
corresponds to MOSFET problems arising in device modeling simulation. For the sake of com-
pleteness we also consider the classical Poisson problem where all the coefficient functions a, b and
c are identically one. More precisely we define the following set of problems:

Problem 1: Poisson where a(·) = b(·) = c(·) = 1.

Problem 2: heterogeneous diffusion problem based on Pattern 1;

a(·) = b(·) = c(·) =

{

1 in Ω1 ∪ Ω3 ∪ Ω5,

103 in Ω2 ∪ Ω4 ∪ Ω6.

Problem 3: heterogeneous and anisotropic diffusion problem based on Pattern 1; a(·) = 1 and

b(·) = c(·) =

{

1 in Ω1 ∪ Ω3 ∪ Ω5,

103 in Ω2 ∪ Ω4 ∪ Ω6.

Problem 4: heterogeneous and anisotropic diffusion problem based on Pattern 2; a(·) = 1 and

b(·) = c(·) =







1 inΩ1,

103 inΩ2,

10−3 inΩ3 ∪ Ω4 ∪ Ω5 ∪ Ω6.
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4.2 Numerical behavior of the preconditioners

In this section we investigate the numerical behavior of the sparsified and mixed arithmetic pre-
conditioners and compare them to the classical Md−64. To this end we consider the convergence

history of ‖rk‖
‖b‖ along the iterations, where b denotes the right-hand side of the Schur complement

system to be solved and rk the residual at the kth iteration. We notice that this scaled residual
can be viewed as a norm-wise backward error where perturbations are only considered on the
right-hand side [11].

4.2.1 Sparsified preconditioners

The attractive feature of Msp−64 compared to Md−64 is that it enables us to reduce both the
memory requirement to store the preconditioner and the computational cost to construct it (dense
versus sparse factorization). However, the counterpart of this computing resource saving could be
a deterioration of the preconditioner quality that would slow down the convergence of CG. In order
to study the effect of the sparsification of the preconditioners on the convergence rate we display
in Figure 3 the convergence history for various choices of the dropping parameter ξ involved in the
definition of Msp−64 in (9). The reported experiments correspond to the classical Poisson problem
(Figure 3 (a)) and to Problem 2 (Figure 3 (b)). For the various choices of this parameter the
memory spaces required by the preconditioners on each processor are given in Table 1.

ξ 0 10−5 10−4 10−3 10−2

Memory 367MB 29.3MB 7.3MB 1.4MB 0.4MB

Percentage 100% 8% 2% 0.4% 0.1%

Table 1: Amount of memory in Msp−64 vs. Md−64 for various choices of the dropping parameter.

The trends that can be observed on these particular choices of problems (underlying PDEs:
Poisson and Problem 2; domain partition: 350×350×350 mesh partitioned into 1000 subdomains)
have been observed on many other examples. That is, for small values of the dropping parameter
the convergence is marginally affected while the memory saving is already significant; for larger
values of the dropping parameter a lot of resources are saved in the construction of the precondi-
tioner but the convergence becomes very poor. A reasonable trade-off between computing resource
savings and convergence rate is generally for a choice of the dropping parameter equal to 10−4 that
enables us to retain around 2% of the entries of the local Schur complement. This value for the
dropping threshold is used in the rest of this paper to define Msp−64 and Msp−mix.

4.2.2 Mixed arithmetic preconditioners

A distinctive framework feature of this work is the use of mixed-precision preconditioners in domain
decomposition, where the 32-bit calculations are expected to significantly reduce not only the
elapsed time of a simulation but also the memory required to implement the preconditioner. In
that respect all but the preconditioning step are implemented in high precision. The preconditioner
is expected to approximatively solve the original problem, so introducing a slight perturbation by
performing this step in low precision might not affect dramatically the convergence rate of the
iterative scheme.

In order to compare the convergence rate of a fully 32-bit, a fully 64-bit, and a mixed-precision
implementation, we depict in Figure 4 the convergence history for the three implementations of
Md. The problems that are solved correspond to Schur complement systems arising from the
discretization on a 350 × 350 × 350 grid (around 43 million degrees of freedom) decomposed and
mapped onto 1000 processors. We display in Figure 4 (a) the convergence history for the Poisson
problem, while Figure 4 (b) corresponds to Problem 2. It can be observed that for these not too ill
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Figure 3: Convergence history for a 350×350×350 mesh mapped onto 1000 processors for various
dropping thresholds.

conditioned problems, the 32-bit calculation of the preconditioning step does not delay too much
the convergence of CG. Down to the accuracy of about 32-bit machine precision, the three curves
have very similar paths. As expected, the 32-bit implementation of CG reaches a limiting accuracy
at the level of the single precision machine epsilon, while the full 64-bit and the mixed arithmetic
implementations both attained an accuracy at the level of 64-bit machine precision. We should
point out that the mixed strategy can only be considered for problems where the preconditioner
is not too ill-conditioned (respectively, the initial problem is not too ill-conditioned) so that it is
not singular in 32-bit arithmetic.
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Figure 4: Md convergence history for a 350 × 350 × 350 mesh mapped onto 1000 processors.

4.3 Parallel performance

For all the experiments reported in the sequel the stopping criterion for the linear solver is defined
by

‖rk‖

‖b‖
≤ 10−8,
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where rk is the residual computed by CG and b the right-hand side of the Schur complement
system; the initial guess is always the zero vector. We first consider experiments where the size
of the initial linear system (i.e., mesh size) is kept constant when the number of processors is
varied. Such iso-problem size experiments mainly emphasize the interest of parallel computation
in reducing the elapsed time to solve a problem of a prescribed size. We then perform scaled
experiments where the problem size is varied linearly with the number of processors. Such iso-
granularity experiments illustrate the ability of parallel computation in performing large simulation
(fully exploiting the local memory of the distributed platform) in ideally a constant elapsed time.
For all the experiments, each subdomain is allocated to one processor.

4.3.1 Iso-problem size experiments

In these experiments we consider both the Poisson problem and a heterogeneous anisotropic prob-
lem (Problem 4) discretized on a 211×211×211 grid. The number of processors is varied from 216
to 1000 and Tables 2 and 3 display the corresponding parallel elapsed time, memory requirements,
and number of iterations. The number of iterations carried out is given in the row headed “# iter”.
The size of each of the local Schur complement matrices is given in Mbytes in the row entitled
“Memory”. We also display the wall-clock time taken in carrying out the computation of the Schur
complement, the construction and the factorization of the preconditioner (“Setup”), and the time
taken by one CG iteration (“Time/iter”). The total time to solve the problem is given by “Total”.
Finally we give the speedup computed using the elapsed time on 216 processors as reference.

We note that, for a fixed size problem, increasing the number of processors means decreasing the
local sub-problem size. This leads to smaller local Schur complements but the global Schur system
becomes larger, which contributes to an increase in the number of iterations. We observe that the
growth in the number of iterations is not significant while the reduction in the data storage is very
important. The amount of data managed by each processor is smaller, providing a speedup for the
BLAS-2 operations and BLAS-3 operations in the direct solvers. This produces a significant drop
in the setup time and in the time per iteration. Thus one can easily conclude that the growth in
the number of iterations was offset by decreasing the direct solver execution time and by reducing
the amount of data. We notice that superlinear speedups (i.e., speedup larger than the increase
in processor number) are observed for all these experiments. This is mainly due to the nonlinear
complexity of the dense and sparse direct solvers that induces a superlinear reduction in the setup
time.

# subdomains ≡ # processors
216 343 512 729 1000

Memory (MB) 413 223 126 77 54
# iter 33 35 37 40 43

Time/iter 0.86 0.48 0.29 0.21 0.13
Setup 67.13 26.68 12.90 6.85 4.42
Total 95.45 43.63 23.84 15.47 10.15

Speed-up 1 2.18 4.00 6.17 9.40

Table 2: Performance on the Poisson problem discretized on a 211 × 211 × 211 mesh when the
number of processors is varied.

4.3.2 Iso-granularity experiments

In this section we study the numerical efficiency of the preconditioners. We perform scaled exper-
iments where either
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• the size of the subdomains is kept constant (i.e., H
h

constant where H is the diameter of the
subdomains and h the mesh size) when the number of subdomains is increased;

• or the number of processors is kept fixed while increasing the size of the underlying subdomain
mesh (i.e., H

h
varies).

Numerical scalability. In order to illustrate the effect on the convergence rate, we report in
the tables below (Tables 4–6) the number of preconditioned conjugate gradient iterations for the
four considered preconditioners on various model problems and various local problem sizes. Recall
that the threshold used to construct the sparse preconditioners Msp−64 and Msp−mix is 10−4, which
enables us to retain around 2% of the entries of the local Schur complement. In these tables reading
across a row shows the behavior with fixed subdomain size when the number of the processors goes
from 27 up to 1000 while the overall problem size increases; for every column the number of
processors (subdomains) is kept constant while refining the mesh size within each subdomain. In
optimal situations, numerical scalability would mean that the convergence rate would not depend
on the number of subdomains; this would lead to constant computing time when the overall size
of the problem and the number of processors increase proportionally.

Table 4 is devoted to experiments on the Poisson problem, Table 5 to Problem 2, and Table 6
reports results on the heterogeneous and anisotropic problems. We can first observe that the
problems with both heterogeneity and anisotropy are the most difficult to solve and that the
Poisson problem is the easiest.

For all the problems, the dependency of the convergence rate on the mesh size can be significant.
This behavior is similar for the four preconditioners. When we go from subdomains with about
8,000 degrees of freedom (dof) to subdomains with about 43,000 dof, the number of iterations can
increase by over 25%. Notice that with such an increase in the subdomain size, the overall system
size is multiplied by more than five; on 1000 processors the global system size varies from eight
million dof up to about 43 million dof.

None of the preconditioners implements any coarse spatial component to account for the global
coupling of the elliptic PDEs, hence they do not scale perfectly when the number of subdomains
is increased. However, the scalability is not that bad and clearly much better than that observed
on two dimensional examples [4]. The number of iterations is multiplied by about two to 3.5 when
going from 27 to 1000 processors (i.e., multiplying by about 40 the number of processors). The
trend of the growth is similar for all the problems and is comparable for all the variants of the
preconditioners on a given problem. Notice that with 43,000 dof per subdomain the size of the
linear systems that are solved varies from 1.1 million on 27 processors up to 43 million on 1000
processors.

Computing resource behavior. In the sequel, we report experiments with fixed subdomain
size of about 43,000 degrees of freedom while increasing the number of processors from 125 to

# subdomains ≡ # processors
216 343 512 729 1000

Memory (MB) 413 223 126 77 54
# iter 155 184 210 237 246

Time/iter 0.88 0.51 0.28 0.18 0.13
Setup 68.73 26.60 12.81 6.80 4.58
Total 205.40 121.72 72.15 51.22 38.45

Speed-up 1 1.69 2.84 4.01 5.34

Table 3: Performance on Problem 4 discretized on a 211 × 211 × 211 mesh when the number of
processors is varied.
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# subdomains ≡ # processors
subdomain grid size 27 64 125 216 343 512 729 1000

Md−64 16 23 25 29 32 35 39 42
Md−mix 18 24 26 31 34 38 41 46

20 × 20 × 20
Msp−64 16 23 26 31 34 39 43 46
Msp−mix 18 25 27 34 37 41 45 49

Md−64 17 24 26 31 33 37 40 43
Md−mix 19 26 28 33 36 40 44 47

25 × 25 × 25
Msp−64 17 25 28 34 37 42 45 49
Msp−mix 19 26 29 36 41 44 48 53

Md−64 18 25 27 32 34 39 42 45
Md−mix 20 27 29 34 38 41 48 49

30 × 30 × 30
Msp−64 18 26 29 36 40 44 48 52
Msp−mix 19 28 31 39 42 46 52 57

Md−64 19 26 30 33 35 40 44 47
Md−mix 21 29 30 35 39 42 46 50

35 × 35 × 35
Msp−64 19 28 30 38 46 46 50 56
Msp−mix 21 30 33 41 44 49 54 59

Table 4: Number of preconditioned conjugate gradient iterations for the Poisson problem when
the number of subdomains and the subdomain mesh size is varied.

# subdomains ≡ # processors
subdomain grid size 27 64 125 216 343 512 729 1000

Md−64 22 32 34 41 45 55 60 67
Md−mix 23 33 37 44 48 58 63 70

20 × 20 × 20
Msp−64 23 34 39 47 49 62 70 76
Msp−mix 24 35 40 48 52 64 70 79

Md−64 23 33 36 44 47 58 64 69
Md−mix 24 34 39 45 50 60 67 72

25 × 25 × 25
Msp−64 25 34 41 50 53 67 74 82
Msp−mix 26 36 43 51 57 69 78 84

Md−64 24 34 35 46 49 61 65 71
Md−mix 25 35 38 47 52 64 69 74

30 × 30 × 30
Msp−64 27 37 41 53 57 74 77 85
Msp−mix 28 39 44 57 61 76 82 92

Md−64 25 35 40 47 50 61 67 73
Md−mix 25 37 42 49 54 65 70 77

35 × 35 × 35
Msp−64 28 41 45 56 60 74 84 90
Msp−mix 29 43 49 59 64 80 88 96

Table 5: Number of preconditioned conjugate gradient iterations for Problem 2 when the number
of subdomains and the subdomain mesh size is varied.
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# subdomains ≡ # processors
subdomain grid size 27 64 125 216 343 512 729 1000

Problem 3

Md−64 39 56 67 87 90 104 123 132
Md−mix 45 58 69 91 94 108 126 135

20 × 20 × 20
Msp−64 39 57 69 90 92 106 126 134
Msp−mix 42 59 71 93 96 111 129 139

Md−64 43 57 70 91 93 106 125 138
Md−mix 48 61 73 94 97 111 131 142

25 × 25 × 25
Msp−64 44 60 73 94 97 112 131 143
Msp−mix 45 63 76 98 101 116 135 148

Md−64 44 60 71 93 95 109 129 138
Md−mix 50 63 74 96 99 114 136 143

30 × 30 × 30
Msp−64 45 63 75 99 100 118 139 145
Msp−mix 47 65 78 103 104 121 140 151

Md−64 44 62 72 94 96 111 131 137
Md−mix 52 65 76 97 101 115 136 142

35 × 35 × 35
Msp−64 46 66 77 102 105 120 141 149
Msp−mix 49 69 80 106 108 126 145 155

Problem 4

Md−64 49 69 81 110 127 152 156 174
Md−mix 51 71 85 116 132 158 160 179

20 × 20 × 20
Msp−64 50 69 84 111 131 154 159 177
Msp−mix 52 72 87 116 132 157 163 181

Md−64 52 72 85 114 129 154 162 178
Md−mix 55 76 89 119 134 162 171 183

25 × 25 × 25
Msp−64 53 74 89 116 136 158 168 184
Msp−mix 56 77 92 121 138 166 174 188

Md−64 54 75 88 118 132 158 167 180
Md−mix 56 79 91 122 140 163 175 186

30 × 30 × 30
Msp−64 55 77 92 121 146 164 173 189
Msp−mix 58 81 96 125 143 172 180 194

Md−64 55 77 89 120 133 158 169 183
Md−mix 57 80 92 126 141 166 178 188

35 × 35 × 35
Msp−64 58 81 96 124 148 167 177 195
Msp−mix 60 84 99 129 147 175 187 200

Table 6: Number of preconditioned conjugate gradient iterations for the heterogeneous and
anisotropic problems when the number of subdomains and the subdomain mesh size is varied.
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1000. We look at the scaled experiments from a parallel elapsed time perspective considering the
overall elapsed time to solve the problems as well as the elapsed times for each individual step of
the solution process. These steps are initialization, preconditioner setup, and the iterative loop.

• The initialization phase, referred to as initialization, is shared by all the implementations. It
corresponds to the time for factorizing the matrix associated with the local Dirichlet problem
and constructing the local Schur complement using the Mumps package. This phase also
includes the final solution for the internal dof, once the interface problem has been solved
(i.e., solution of the local Dirichlet problem). The computational cost of this initialization
phase is displayed in Table 7.

• The setup time to build the preconditioner includes the communication to assemble the local
Schur complement through neighbor to neighbor exchanges and the factorization of the dense
or sparsified resulting matrix.

• The iterative loop is the CG iterations.

The initialization times, displayed in Table 7, are independent of the number of subdomains
and only depend on their size. We can again observe the nonlinear cost of the direct solver
with respect to the problem size. This nonlinear behavior was the main origin of the superlinear
speedups observed in the iso-problem size experiments in Section 4.3.1.

Subdomain grid size 20 × 20 × 20 25 × 25 × 25 30 × 30 × 30 35 × 35 × 35
Time 1.3 4.2 11.2 26.8

Table 7: Initialization time (sec).

The preconditioner setup time is the time required to build the preconditioner, which is the
time for assembling the local assembled Schur matrix, using neighbor to neighbor communication,
and factorizing this local assembled Schur matrix using Lapack for Md−64 and Md−mix, or first
sparsifying and then factorizing using Mumps for Msp−64 and Msp−mix. This time is reported
in Table 8. We should mention that the assembly time does not depend much on the number
of processors (because the maximum communication is performed among 27 neighbors for the
internal subdomains), but rather on whether 64-bit or 32-bit calculation is used. Using a mixed
approach enables a reduction by a factor around 1.7 for the dense variants and 1.3 for the sparse
ones. Larger savings are observed when dense and sparse variants are compared, the latter being
about three times faster.

Subdomain grid size Md−64 Md−mix Msp−64 Msp−mix

20 × 20 × 20 0.93 0.56 0.50 0.23
25 × 25 × 25 3.05 1.85 1.64 1.15
30 × 30 × 30 8.73 4.82 3.51 3.01
35 × 35 × 35 21.39 12.36 6.22 4.92

Table 8: Preconditioner setup time (sec).

In Table 9 we illustrate the elapsed time scalability of the parallel preconditioned conjugate
gradient iteration. In that table we only give times for 43,000 dof subdomains. The first observation
is that the parallel implementation of the preconditioned conjugate gradient method scales almost
perfectly as the time per iteration is nearly constant and does not depend much on the number of
processors (i.e, 0.76 seconds on 125 processors and 0.82 on 1000 processors for Md−64). The main
reason for this scalable behavior is the efficiency of the global reduction involved in the dot product
calculation that does not depend much on the number of processors; all the other communications
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are neighbor to neighbor and their costs do not depend on the number of processors. Furthermore,
the relative cost of the reduction is negligible compared to the other steps of the algorithm. It can
be observed that 32-bit arithmetic does not reduce much the time per iteration for both Md−mix

and Msp−mix in comparison with the 64-bit ones Md−64 and Msp−64, respectively. This is due to the
fact that the ratio of the 64-bit to the 32-bit forward/backward substitution time is only about 1.13
(compared to almost two for the factorization involved in the setup of the preconditioner phase).
This marginalizes the impact of the 32-bit calculation in the preconditioning step and makes the
time per iteration for both full 64-bit and mixed arithmetic very similar. Finally, it is clear that
the sparsified variants are of great interest as they cut in half the time per iteration compared to
their dense counterparts. Applying the sparsified preconditioners is almost eight times faster than
using the dense ones.

A comparison of the overall solution times is given in Table 10 for the standard Poisson problem,
in Table 11 for Problem 2, and in Table 12 for the two heterogeneous and anisotropic problems.
The block row “Total” is the parallel elapsed time for the complete solution of the linear system. It
corresponds to the sum of the times for all the steps of the algorithm, which are the initialization,
the setup of the preconditioner, and the iterative loop. We notice that the row “Total” permits us
to evaluate the parallel scalability of the complete methods (i.e., combined numerical and parallel
behavior); the time should remain constant for perfectly scalable algorithms. It can be seen that
the growth in the solution time is rather moderate, when the number of processors grows from 125
(about 5.3 million unknowns) to 1000 (about 43 million unknowns). Although the methods do not
scale well numerically, their parallel elapsed time performances scale reasonably well. The ratio of
the total elapsed time expended for running on 1000 processors to the time on 125 processors is
about 1.22 for Md−64 and around 1.28 for the other three variants for the Poisson problem. These
ratios are larger for the more difficult problems as the number of iterations grows.

For the Poisson problem represented in Table 10, we observe that the most expensive kernels
are the initialization and the preconditioner setup. Thus for the two mixed arithmetic algorithms
Md−mix and Msp−mix the slight increase in the number of iterations that introduces a slight in-
crease in the elapsed time for the iterative loop is swiftly covered by the vast reduction in the
preconditioner setup time, especially for the dense mixed preconditioner Md−mix. Therefore, the
mixed arithmetic algorithms outperform the 64-bit ones in terms of overall computing time. By
looking at the sparsified variants we observe a considerable reduction in the time per iteration and
in the preconditioner setup time induced by the use of the sparse alternatives. Since the use of
these variants only introduces a few extra iterations compared to their dense counterparts, this
time reduction per iteration is directly reflected in a significant reduction of the total time.

The performances on Problem 2 are displayed in Table 11. The results show that the most
time consuming part is the iterative loop. We see that the time saved in the preconditioner setup
by the use of mixed-precision arithmetic still compensates for a slight increase in the number of
iterations. Consequently on the heterogeneous diffusion problem the mixed-precision algorithm
outperforms the 64-bit one. If we now look at the sparsified variant, the tremendous reductions in
both the time per iteration (two times faster than the dense one) and the preconditioner setup time
(three times faster than the dense one) offset the gap in the number of iterations. Consequently,
the sparse alternatives clearly outperform the dense ones. Similar comments can be made for the
performances on Problems 3 and 4 as shown in Table 12. In all the experiments the sparsified

# processors 125 216 343 512 729 1000

Md−64 0.76 0.76 0.77 0.78 0.79 0.82
Md−mix 0.73 0.75 0.75 0.76 0.77 0.80
Msp−64 0.40 0.41 0.41 0.42 0.42 0.44
Msp−mix 0.39 0.39 0.40 0.41 0.42 0.43

Table 9: Parallel elapsed time for one iteration of the preconditioned conjugate gradient (sec).
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versions outperform their dense counterparts and the mixed sparse variant often gives the fastest
scheme.

We now examine the four variants from a memory requirement perspective. For that, we
depict in Table 13 the amount of memory required on each processor of the parallel platform. We
report in each column of Table 13 the size in megabytes for a preconditioner when the size of the
subdomains is increased. For the sparse variants, we give in parenthesis the percentage of retained
entries. These figures indicate that both the mixed arithmetic approach and the sparse variant
reduce significantly the memory usage. A feature of the sparse variants is that they reduce the
memory usage dramatically. The mixed precision strategy cut in half the required data storage,
which has a considerable effect in terms of computing system operation and execution time, and
also cut in half the time for assembling the local Schur matrix, due to halving the total neighbor
to neighbor subdomain communication.

5 Concluding remarks and future work

Although these preconditioners are local, consequently not numerically scalable, they exhibit a
fairly good parallel time scalability as the relative cost of the setup partially hides the moderate
increase in the number of iterations. A possible remedy to overcome this lack of numerical scala-
bility is to introduce a coarse grid component. To illustrate the ability of our preconditioners to

Total solution time
# processors 125 216 343 512 729 1000

Md−64 71.0 73.3 75.1 79.4 83.0 86.7
Md−mix 61.1 65.4 68.4 71.1 74.6 79.2
Msp−64 45.0 48.6 51.9 52.3 54.0 57.7
Msp−mix 44.6 47.7 49.3 51.8 54.4 57.1

Time in the iterative loop
# processors 125 216 343 512 729 1000

Md−64 22.8 25.1 26.9 31.2 34.8 38.5
Md−mix 21.9 26.2 29.2 31.9 35.4 40.0
Msp−64 12.0 15.6 18.9 19.3 21.0 24.6
Msp−mix 12.9 16.0 17.6 20.1 22.7 25.4

Table 10: Parallel elapsed time for the solution of the Poisson problem (sec).

Total solution time
# processors 125 216 343 512 729 1000

Md−64 78.6 83.9 86.7 95.8 101.1 108.0
Md−mix 69.8 75.9 79.7 88.6 93.1 100.8
Msp−64 51.0 56.0 57.6 64.1 68.3 72.6
Msp−mix 50.8 54.7 57.3 64.5 68.7 73.0

Time in the iterative loop
# processors 125 216 343 512 729 1000

Md−64 30.4 35.7 38.5 47.6 52.9 59.9
Md−mix 30.7 36.8 40.5 49.4 53.9 61.6
Msp−64 18.0 23.0 24.6 31.1 35.3 39.6
Msp−mix 19.1 23.0 25.6 32.8 37.0 41.3

Table 11: Parallel elapsed time for the solution of Problem 2 (sec).
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Problem 3
Total solution time

# processors 125 216 343 512 729 1000

Md−64 102.9 119.6 122.1 134.8 151.7 160.5
Md−mix 94.6 111.9 114.9 126.6 143.9 152.8
Msp−64 63.8 74.8 76.1 83.4 92.2 98.6
Msp−mix 62.9 73.1 74.9 83.4 92.6 98.4

Time in the iterative loop
# processors 125 216 343 512 729 1000

Md−64 54.7 71.4 73.9 86.6 103.5 112.3
Md−mix 55.5 72.8 75.8 87.4 104.7 113.6
Msp−64 30.8 41.8 43.0 50.4 59.2 65.6
Msp−mix 31.2 41.3 43.2 51.7 60.9 66.7

Problem 4
Total solution time

# processors 125 216 343 512 729 1000

Md−64 115.8 139.4 150.6 171.4 181.7 198.2
Md−mix 106.3 133.7 144.9 165.3 176.2 189.6
Msp−64 71.4 83.9 93.7 103.2 107.4 118.8
Msp−mix 70.3 82.0 90.5 103.5 110.3 117.7

Time in the iterative loop
# processors 125 216 343 512 729 1000

Md−64 67.6 91.2 102.4 123.2 133.5 150.1
Md−mix 67.2 94.5 105.8 126.2 137.1 150.4
Msp−64 38.4 50.8 60.7 70.1 74.3 85.8
Msp−mix 38.6 50.3 58.8 71.8 78.5 86.0

Table 12: Parallel elapsed time to solve the heterogeneous and anisotropic problems (sec).

Subdomain grid size Md−64 Md−mix Msp−64 Msp−mix

20 × 20 × 20 35.8MB 17.9MB 1.8MB ( 5%) 0.9MB ( 5%)
25 × 25 × 25 91.2MB 45.6MB 2.7MB ( 3%) 1.3MB ( 3%)
30 × 30 × 30 194.4MB 97.2MB 3.8MB ( 2%) 1.6MB ( 2%)
35 × 35 × 35 367.2MB 183.6MB 7.3MB ( 2%) 3.6MB ( 2%)

Table 13: Local data storage for the four preconditioners.
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act efficiently as the local component of a two-level scheme, we consider a simple two-level precon-
ditioner obtained by adding an additional term to them. This term is RT

0 A−1
0 R0, where R0 is a

projection onto a coarse space V0 and A0 = R0ART
0 . Many definitions for the coarse space and the

corresponding R0 operator have been considered (and are still being developed). For our experi-
ments, the coarse spatial component extracts one degree of freedom per subdomain as described
in [5]. Its performance on Problem 2 is displayed in Table 14 and can be compared with those in
Tables 9 and 11. We observe that the coarse grid correction significantly ameliorates the growth
in the number of iterations when the number of subdomains is increased—on 1000 processors,
almost half the number of iterations are saved. This saving of iterations does not directly translate
into time savings. Each iteration becomes marginally more expensive, but the dominating part is
clearly spent in the setup.

Total solution time
# processors 125 216 343 512 729 1000

Md−64 78.1 85.2 83.8 89.1 91.4 94.3
Msp−64 47.7 52.8 51.5 54.2 56.0 57.5

Time for coarse setup
# processors 125 216 343 512 729 1000

Md−64 2.04 2.05 2.20 2.38 2.76 3.68
Msp−64 2.04 2.05 2.20 2.38 2.76 3.68

Time in the iterative loop
# processors 125 216 343 512 729 1000

Md−64 29.9 37.0 35.6 41.0 43.2 46.1
Msp−64 14.7 19.8 18.5 21.2 22.9 24.4

# iterations
# processors 125 216 343 512 729 1000

Md−64 34 42 40 45 47 48
Msp−64 35 46 42 47 51 52

Time per iteration
# processors 125 216 343 512 729 1000

Md−64 0.88 0.88 0.89 0.91 0.92 0.96
Msp−64 0.42 0.43 0.44 0.45 0.45 0.47

Table 14: Performance of a parallel two-level preconditioner on Problem 2 using a 35 × 35 × 35
subdomain mesh.

This paper describes four local preconditioners, that can be viewed as additive Schwarz pre-
conditioners for the Schur complement in non-overlapping domain decomposition, for the solution
of large three dimensional elliptic problems. These four variants are based on dense or sparse local
assembled Schur complements that are computed either in 32- or 64-bit arithmetic. On most of
the numerical examples, Msp−mix gives the fastest solution time and consumes the least memory.
It appears to be the best trade-off from both a numerical and a computational cost perspective.
Such mixed arithmetic algorithms deserve more study, especially if the trend initiated by the IBM
CELL multiprocessor is followed. This processor is projected to have a peak performance near 256
Gflops in single precision and “only” 26 GFlops in double precision.
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