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Abstract

Phylogenetic tree reconstruction is one of the grand
challenge problems in Bioinformatics. The search
for a best-scoring tree with 50 organisms, under a
reasonable optimality criterion, creates a topologi-
cal search space which is as large as the number
of atoms in the universe. Computational phylogeny
is challenging even for the most powerful super-
computers. It is also an ideal candidate for bench-
marking emerging multiprocessor architectures, be-
cause it exhibits various levels of fine and coarse-
grain parallelism. In this paper, we present the port-
ing, optimization, and evaluation of RAxML on the
Cell Broadband Engine. RAxML is a provably ef-
ficient, hill climbing algorithm for computing phy-
logenetic trees based on the Maximum Likelihood
(ML) method. The algorithm uses an embarrass-
ingly parallel search method, which also exhibits
data-level parallelism and control parallelism in the
computation of the likelihood functions. We present
the optimization of one of the currently fastest tree
search algorithms, on a real Cell blade prototype.
We also investigate problems and present solutions
pertaining to the optimization of floating point code,
control flow, communication, scheduling, and multi-
level parallelization on the Cell.

1 Introduction

Phylogenetic (evolutionary) tree construction is
one of the grand-challenge problems in compu-

tational biology. A phylogenetic tree depicts the
evolutionary relationships between organisms,
starting from a multiple alignment of DNA or
AA sequences (taxa) representing organisms.
The problem is intractable under the ML crite-
rion [7].

Recent advances in high-performance com-
putational biology enabled the construction of
parallel, heuristic algorithms for the inference
of phylogenetic trees. RAxML-VI-HPC is such
a parallel algorithm, based on the Maximum
Likelihood (ML) method. The original RAxML
algorithm uses a rapid hill climbing search
heuristic, which is able to infer large trees —
in the order of 1,000 organisms— with low
time and space requirements [28]. RAxML
uses an embarrassingly parallel master-worker
algorithm for non-parametric bootstrapping and
multiple inference on distinct reasonable ran-
domized starting trees (random stepwise addi-
tion sequence Maximum Parsimony trees [30])
in order to search for the best-known ML
tree. RAxML’s master-worker scheme is imple-
mented using MPI. RAxML-VI-HPC has been
further parallelized with OpenMP, to exploit the
inherent loop-level parallelism of the likelihood
functions. The shared-memory parallelization
of the algorithm scales well and achieves good
cache performance with inputs comprising large
multi-gene alignments [31].

In this paper, we present the porting and opti-
mization of RAxML on a real IBM Cell micro-
processor. The Cell Broadband Engine [11], as
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it became known in the popular press, has been
developed jointly by Sony, Toshiba, and IBM.
Although originally intended as a processor for
Sony PlayStation3, Cell is a general-purpose ar-
chitecture, offering a unique assembly of thread-
level and data-level parallelization options. Cell
provides eight execution cores, called Synergis-
tic Processing Elements (SPEs), each equipped
with a vector execution unit and an extended
vector ISA. The chip also includes an SMT
PowerPC processor, called the Power Process-
ing Element (PPE), which runs Linux and oper-
ates either as a standalone general-purpose pro-
cessor, or as a front-end controller for the SPEs.
Cell has an aggressive memory and on-chip net-
work architecture with a maximum bandwidth
of over 200 Gigabytes/s. The PPE, SPEs and in-
terconnect are all packaged on a single, thumb-
size die, operating at the upper range of exist-
ing processor frequencies (3.2 GHz for current
models, projected to run at more than 5 GHz
in the near future [33]) and power consumption
comparable to that of mobile processors [33].

Research on programming models, runtime
environments, compiler support and application
adaptation on Cell is highly relevant. The Cell
has officially been adopted by IBM as the pro-
cessor of choice for building a machine with
sustained Petaflop performance before the end
of 20081.

This paper makes the following contributions:
I. We present a detailed empirical optimization
process of RAxML on Cell. We use a real Cell
blade and Cell’s native programming toolkits
for this study. RAxML is seemingly an ideal
target for Cell. The code is embarrassingly par-
allel, and each parallel task includes loop-level
and SIMD-level parallelism, which can be ex-
ploited via multithreading, vectorization or a
combination of these two techniques. Optimiz-
ing RAxML on Cell is a non-trivial exercise,
and one which is unlikely to be done automat-
ically, without some level of support from the

1See http://www.hpcwire.com/hpc/893353.html and
numerous other popular press articles published in
September 2006.

programmer and the runtime environment.

II. We quantify Cell-specific code optimiza-
tions and assess their impact, using RAxML. We
find that merely exposing the multi-level paral-
lelism of RAxML to Cell is insufficient for high
performance. Both conventional and unconven-
tional optimizations are important to accelerate
program execution. Conventional Cell-specific
optimizations include the use of optimized nu-
merical libraries for the SPEs, double-buffering
for communication/computation overlap, vec-
torization of floating point code, multi-level par-
allelization and offloading as much computa-
tion as possible from the PPE to the SPEs.
Less common optimizations include the vector-
ization of conditional statements, asynchronous
communication through direct SPE memory ac-
cesses, and interleaved event-driven scheduling
of tasks across SPEs. Somewhat surprisingly,
the less common optimizations yield higher per-
formance improvements than the common op-
timizations. We find that event-driven task
scheduling and a customized casting and vec-
torization scheme for complex conditionals are
the most effective optimizations for RAxML on
Cell.

III. We find that multi-level parallelization on
Cell is both feasible and necessary, however its
exploitation is intricate. Depending on the in-
put, RAxML can exploit two or three layers of
parallelism, with two layers of parallelism (task-
level parallelism across SPEs and task vector-
ization within each SPE) being more beneficial
for large and realistic workloads and three lay-
ers of parallelism (task-level parallelism across
SPEs, loop-level parallelization of tasks across
SPEs and vectorization of blocks of loop iter-
ations within SPEs) being beneficial for work-
loads with a low degree (less than or equal to
four) of task-level parallelism.

IV. We present a comparison between Cell,
a cutting-edge multicore microprocessor (IBM
Power5) and a mature multithreaded micropro-
cessor (Intel Xeon with HT technology), using
RAxML. To the best of our knowledge this is
one of the first such studies, using a real-silicon
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Cell prototype. The results demonstrate the su-
periority of Cell as a platform for high-end com-
puting and grand-challenge applications.

The rest of this paper is organized as fol-
lows: Section 2 summarizes related work on
programming support for the Cell processor
and studies of computational biology codes
on emerging parallel architectures. Section 3
presents RAxML-VI-HPC, the parallel version
of RAxML for distributed and shared mem-
ory systems. Section 4 outlines the Cell ar-
chitecture. Section 5 presents our step by
step RAxML porting and optimization process,
along with experimental results for each step of
the process. Section 6 compares Cell with the
IBM Power5 and Intel Xeon processors. Sec-
tion 7 concludes the paper.

2 Related Work

Since the introduction of Cell for general-
purpose computing, several researchers engaged
in analyzing the performance of the processor
and developing compiler and programming sup-
port. Kistler et. al [17] provide a performance
analysis of the Cell’s on-chip interconnection
network, including DMA latencies and band-
width. Williams et. al [34] presented an analyt-
ical framework to predict performance of code
written for Cell. They exercised their model us-
ing small linear algebra kernels and, driven by
their observations, they proposed microarchi-
tectural extensions to improve double-precision
floating point performance on the Cell.

Eichenberger et. al [9] presented several
compiler techniques targeting automatic gener-
ation of highly optimized Cell code. The tech-
niques include compiler-assisted memory align-
ment, branch prediction, SIMD parallelization,
and OpenMP task level parallelization. This
work presented also a compiler-controlled soft-
ware cache. Our work departs in that it consid-
ers optimizations which may be hard to derive
automatically in a compiler, such as casting and
vectorization of conditionals, dynamic multi-
level parallelization, event-driven task schedul-

ing, and communication optimizations.
Phylogenetic tree construction has at-

tracted considerable attention from the high-
performance computing community, due to
the computational challenges of the problem.
RAxML has already been studied on distributed
memory architectures [29], shared-memory
multiprocessors [27] and graphics processing
units [5]. Other researchers have studied phy-
logenetic tree construction on shared-memory
parallel architectures using parsimony-based
approaches [2], and distributed memory
multiprocessors using maximum likelihood
methods [32].

3 RAxML-VI-HPC

RAxML-VI-HPC (v2.2.0) (Randomized Axel-
erated Maximum Likelihood version VI for
High Performance Computing) [29] is a pro-
gram for large-scale ML-based (Maximum
Likelihood [12]) inference of phylogenetic
(evolutionary) trees using multiple alignments
of DNA or AA (Amino Acid) sequences. The
program is freely available as open source code
at icwww.epfl.ch/˜stamatak (software frame).

Phylogenetic trees are used to represent the
evolutionary history of a set ofn organisms. An
alignment with the DNA or AA sequences rep-
resenting thosen organisms (also called taxa)
can be used as input for the computation of phy-
logenetic trees. In a phylogeny the organisms of
the input data set are located at the tips (leaves)
of the tree whereas the inner nodes represent ex-
tinct common ancestors. The branches of the
tree represent the time which was required for
the mutation of one species into another, new
one. The inference of phylogenies with com-
putational methods has many important applica-
tions in medical and biological research (see [3]
for a summary). An example for the evolution-
ary tree of the monkeys and the homo sapiens is
provided in Figure 1.

The fundamental algorithmic problem com-
putational phylogeny faces consists in the im-
mense amount of alternative tree topologies
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FIGURE 1: Phylogenetic tree representing the evolution-
ary relationship between monkeys and the homo sapiens.

which grows exponentially with the number
of organismsn, e.g. for n = 50 organisms
there exist2.84 ∗ 10

76 alternative trees (num-
ber of atoms in the universe≈ 10

80). In fact,
it has only recently been shown that the ML
phylogeny problem is NP-hard [7]. In addi-
tion, ML-based inference of phylogenies is very
memory- and floating point-intensive, such that
the application of high performance computing
techniques as well as the assessment of new
CPU architectures can contribute significantly
to the reconstruction of larger and more accu-
rate trees.

Nonetheless, over the last years there has
been significant progress in the field of heuris-
tic ML search algorithms with the release of
programs such as IQPNNI [21], PHYML [14],
GARLI [35] and RAxML [26, 29].

Some of the largest published ML-based bi-
ological analyses to date have been conducted
with RAxML [13, 18, 19, 22]. The program is
also part of the greengenes project [8] (green-
genes.lbl.gov) as well as the CIPRES (Cy-
berInfrastructure for Phylogenetic RESearch,
www.phylo.org) project. To the best of the
authors knowledge RAxML-VI-HPC has been
used to compute trees on the two largest data

matrices analyzed under ML to date: a 25,057-
taxon alignment of protobacteria (length: 1,463
nucleotides) and a 2,182-taxon alignment of
mammals (length: 51,089 nucleotides).

The current version of RAxML incorporates
a significantly improved rapid hill climbing
search algorithm. A recent performance study
[29] on real world datasets with≥ 1,000 se-
quences reveals that it is able to find bet-
ter trees in less time and with lower mem-
ory consumption than other current ML pro-
grams (IQPNNI, PHYML, GARLI). Moreover,
RAxML-VI-HPC has been parallelized with
MPI (Message Passing Interface), to enable em-
barrassingly parallel non-parametric bootstrap-
ping and multiple inferences on distinct starting
trees in order to search for the best-known ML
tree (see Section 3.1 for details). In addition, it
has been parallelized with OpenMP [27]. Like
every ML-based program, RAxML exhibits a
source of fine-grained loop-level parallelism in
the likelihood functions which consume over
90% of the overall computation time. This
source of parallelism scales particularly well
on large memory-intensive multi-gene align-
ments due to increased cache efficiency. Fi-
nally, RAxML has recently been ported to a
GPU (Graphics Processing Unit) [5].

3.1 The MPI Version of RAxML

The MPI version of RAxML exploits the embar-
rassing parallelism that is inherent to every real-
world phylogenetic analysis. In order to con-
duct a “publishable” tree reconstruction a cer-
tain number (typically 20–200) of distinct in-
ferences (tree searches) on the original align-
ment as well as a large number (typically 100-
1,000) of bootstrap analyses have to be con-
ducted (see [13] for an example of a real-world
analysis with RAxML). Thus, if the dataset is
not extremely large, this represents the most
reasonable approach to exploit HPC platforms
from a user’s perspective.

Multiple Inferences on the original alignment
are required in order to determine the best-
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known (best-scoring) ML tree (we use the term
best-known because the problem is NP-hard).
This is the tree which will then be visualized and
published. In the case of RAxML, each inde-
pendent tree search starts from a distinct start-
ing tree. This means, that the vast topological
search space is traversed from a different start-
ing point every time and will yield final trees
with different likelihood scores. For details on
the RAxML search algorithm and the generation
of starting trees, the reader is referred to [26].

Bootstrap Analyses are required to assign
confidence values ranging between 0.0 and 1.0
to the internal branches of the best-known ML
tree. This allows to determine how well-
supported certain parts of the tree are and is
important for the biological conclusions drawn
from it. Bootstrapping is essentially very simi-
lar to multiple inferences. The only difference is
that inferences are conducted on a randomly re-
sampled alignment for every bootstrap run, i.e. a
certain amount of columns (typically 10–20%)
is re–weighted. This is performed in order to
assess the topological stability of the tree under
slight alterations of the input data. For a typical
biological analysis, a minimum of 100 bootstrap
runs is required.

All those individual tree searches be it boot-
strap or multiple inferences are completely in-
dependent from each other and can thus be ex-
ploited by a simple master-worker scheme.

4 The Cell BE

The main components of the Cell BE are a sin-
gle Power Processing element (PPE) and eight
Synergistic Processing Elements (SPEs) [10].
These elements are connected with an on-chip
Element Interconnect Bus (EIB). The PPE is
a 64-bit, dual-thread PowerPC processor, with
Vector/SIMD Multimedia extensions [1] and
two levels of on-chip cache.

The SPEs are the primary computing engines
of the Cell processor. Each SPE is a 128-bit pro-
cessor with two major components: a Synergis-
tic Processor Unit (SPU) and a Memory Flow

Controller (MFC). All instructions are executed
on the SPU. The SPU includes 128 registers,
each 128 bits wide, and 256 KB of software-
controlled local storage. The SPU can fetch in-
structions and data only from its local storage,
and can write data only to its local storage. The
SPU implements a Cell-specific set of SIMD in-
structions. All single precision floating point
operations on the SPU are fully pipelined, and
the SPU can issue one single-precision float-
ing point operation per cycle. Double precision
floating point operations are partially pipelined
and two double-precision floating point opera-
tions can be issued every six cycles. With all
eight SPUs active and fully pipelined double
precision FP operation, the Cell BE is capable of
a peak performance of 21.03 Gflops. In single-
precision FP operation, the Cell BE is capable
of a peak performance of 230.4 Gflops [6].

The SPE can access RAM through direct
memory access (DMA) requests. The DMA
transfers are handled by the MFC. All programs
running on an SPE use the MFC to move data
and instructions between local storage and main
memory. Data transferred between local stor-
age and main memory must be 128-bit aligned.
The size of each DMA transfer can be at most
16 KB. DMA-lists can be used for transferring
large amounts of data (more than 16 KB). A list
can have up to 2,048 DMA requests, each for up
to 16 KB. The MFC supports only DMA trans-
fer sizes that are 1,2,4,8 or multiples of 16 bytes
long.

The EIB handles communication between the
PPE, SPE, main memory, and I/O devices. The
EIB is a 4-ring structure, and can transmit 96
bytes per cycle, for a bandwidth of 204.8 Giga-
bytes/second. The EIB can support more then
100 outstanding DMA requests.

5 Porting and Optimizing
RAxML on Cell

We adapted RAxML to Cell in three steps: we
ported the MPI code on the PPE; we offloaded
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the most time-consuming parts of each MPI pro-
cess on the SPEs; we optimized the SPE code
using vectorization of computation, a special-
ized casting transformation coupled with vector-
ization of control statements, and communica-
tion optimizations; lastly, we developed multi-
level parallelization schemes across and within
the SPEs in selected cases, as well as a sched-
uler for effective simultaneous task, loop, and
vector-level parallelization of the application.
We outline these optimizations in the following
sections.

All results reported in this paper are ob-
tained from a real dual-Cell Blade, located at
the Barcelona Supercomputing Center. Each
Cell processor has a PPE element and eight
SPE elements. Each PPE element is a 2-way
SMT Power architecture processor, running at
3.2 GHz with 512 MB XDR RAM. The size of
the first level instruction and data caches is 32
KB, while the size of the second level cache is
512 KB. The operating system is Fedora Core
5 and Linux kernel version 2.6.16 with Cell-
specific kernel patches. To compile our code,
we used Toolchain 4.0.2.

5.1 Porting MPI Code

In the initial port, we assigned one MPI pro-
cess to each thread on the PPE. Since the PPE is
a dual-threaded processor, up to two processes
can concurrently offload tasks from the PPE to
SPEs. We will see later that this naı̈ve porting
strategy underutilizes the SPEs, since two MPI
processes do not expose enough task-level par-
allelism for all 8 SPEs of Cell. For this reason,
we introduced both loop-level parallelization of
tasks across SPEs and a scheduler which mul-
tiplexes more than two MPI processes on the
PPE using an event-driven model, in order to
expose more task-level parallelism from the ap-
plication.

5.2 Function Off-loading

We profiled the application usinggprofile to
identify the computationally intensive functions
that could be candidates for offloading and op-
timization on SPEs. We used an IBM Power5
processor for profiling RAxML. For both, pro-
filing and all benchmarking runs of RAxML
presented in this paper, we used the input
file 42 SC, which contains 42 organisms, each
represented by a DNA sequence of 1167 nu-
cleotides. The number of distinct data patterns
in a DNA alignment is on the order of 250.

On the IBM Power5, executing the sequential
version of RAxML with the42 SC input file,
we find that 98.77% of the total execution time
is spent in three functions: 76.8% innewview()
- which computes the partial likelihood vec-
tor [12] at an inner node of the phylogenetic
tree, 19.16% inmakenewz() - which optimizes
the length of a given branch with respect to
the tree likelihood using the Newton–Raphson
method, and 2.37% inevaluate() - which calcu-
lates the Log Likelihood score of the tree at a
given branch by summing over the partial like-
lihood vector entries. Note that the log likeli-
hood value is the same at all branches of the tree
if the model of nucleotide substitution is time-
reversible [12, 24]. These functions are the best
candidates for offloading on SPEs.

The prerequisite for computingevaluate()
andmakenewz() is that the likelihood vectors at
the nodes to the right and left of the branch have
been computed. Thus,makenewz() and eval-
uate() initially make calls tonewview() before
they can execute their own computation. The
newview() function at an inner nodep calls it-
self recursively when the two childrenr andq
are not tips (leaves) and the likelihood array for
r and q has not already been computed. Con-
sequently, the first candidate for offloading is
the newview() function. Althoughmakenewz()
andevaluate() are both taking a smaller portion
of the execution time thannewview(), offload-
ing these two functions can also bring signifi-
cant speedup (see Section 5.2.7). Besides the
fact that each function can be executed faster
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on an SPE, having all three functions offloaded
to an SPE significantly reduces the amount of
PPE-SPE communication.

In order to have a function executed on an
SPE, we spawn an SPE thread at the beginning
of each MPI process. The thread executes the
offloaded function upon receiving a signal from
the PPE and returns the result back to the PPE
upon completion. To avoid excessive overhead
from repeated spawning and joining of threads,
threads remain bound on SPEs and perform a
busy-wait for the PPE signal to start executing a
function. Furthermore, we load the code of all
three offloaded functions on each SPE, such that
each thread can execute any of the functions on
demand, including nested combinations of these
functions (makenewz() with calls tonewview(),
andevaluate()). This decision imposes a trade-
off, since the limited capacity of the local stor-
age on the SPEs and the fact that local storage is
used as a unified instruction and data cache, pre-
vent arbitrary function offloading. This proves
not to be a problem in RAxML, where the code
footprints of the offloaded functions are small
enough (117 Kbytes in total) to fit in the local
storage and still leave 139 Kbytes free for stack,
heap and static data.

5.2.1 Optimizing Off-Loaded Functions

The discussion in this Section refers to function
newview(), which is the most computationally
expensive part of the code. Table 1 summa-
rizes the execution times of RAxML before and
after newview() is offloaded. The first column
shows the number of workers (MPI processes)
used in the experiment and the amount of work
performed.

As shown in Table 1, merely offloading a
function causes performance degradation. We
used the SPE decrementer register to measure
the time spent in the SPE thread bynewview().
We profiled the new code in order to get a better
understanding of the major bottlenecks. Inside
newview(), we identified 4 parts where the func-
tion spent almost its entire time: The first in-
cludes math library functions such asexp() and

(a)

1 worker, 1 bootstrap 36.9s

2 workers, 8 bootstraps 207.67s

2 workers, 16 bootstraps 427.95s

2 workers, 32 bootstraps 824s

(b)

1 worker, 1 bootstrap 106.37s

2 workers, 8 bootstraps 459.16s

2 workers, 16 bootstraps 915.75s

2 workers, 32 bootstraps 1836.6s

TABLE 1: Execution time of RAxML (in seconds). The
input file is 42SC: (a) The whole application is executed
on the PPE, (b)newview() is offloaded on one SPE.

log(). Theexp() function is required to compute
the transition probabilities of the nucleotide sub-
stitution matrix for the branches from the root
of a subtree to its descendants. Thelog() func-
tion is used to scale the branch lengths for nu-
merical reasons [12, 23]; the second part in-
cludes a largeif(. . .) statement with a conjunc-
tion of four arithmetic comparisons, that is used
to check if small likelihood vector entries need
to be scaled to avoid numerical underflow (sim-
ilar operations are used in every ML implemen-
tation); the third includes DMA transfers; the
fourth includes the large loops that perform the
actual likelihood vector calculation. In the next
few sections we describe the techniques used to
optimize newview(). Similar techniques were
applied to the other offloaded functions.

5.2.2 Math functions

The average number of floating point opera-
tions during a single invocation ofnewview()
is 25,554, for the 42SC input. 65% of these
operations are multiplications and 34% are ad-
ditions. Theexp() function is called approxi-
mately 150 times. Although it represents a very
small portion of the total number of floating
point operations, theexp() function takes 50%
of the total SPE time. We removed the math
library function exp() from the code and used
the exponential function provided by theexp.h
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header file which comes with the Cell SDK 1.1.
The newexp() function implements a numeri-
cal method for the exponent calculation. The
execution time after replacingexp() is shown in
Table 2. Following replacement ofexp() with
an optimized implementation, execution time is
reduced by 37%–41%, for the 42SC input.

1 worker, 1 bootstrap 62.8s

2 workers, 8 bootstraps 285.25s

2 workers, 16 bootstraps 572.92s

2 workers, 32 bootstraps 1138.5s

TABLE 2: Execution time of RAxML when we use the
exp() function from the SDK library. The input file is
42 SC.

5.2.3 Converting if() statements

Functionnewview() is always invoked at an in-
ner node of the tree (p) which is at the root of
a subtree. The main computational kernel of
newview() has aswitch statement which selects
one out of four paths of execution. If one or both
descendantsr and q of p are tips (leaves) the
computations of the main for-loop innewview()
can be simplified which leads to significant per-
formance improvements [29]. Thus, there are
distinct implementations of the main computa-
tional part ofnewview() for the case thatr andq
are tips,r is a tip,q is a tip, orr andq are both
inner nodes.

Each of the above paths leads to a distinct—
highly optimized—version of the loop which
performs the actual likelihood vector calcula-
tions. Each iteration of this loop executes the
previously mentioned largeif() statement (Sec-
tion 5.2.1), to check for likelihood scaling. Mis-
predicted branches in the compiled code for this
statement incur a penalty of approximately 20
cycles [15]. We profilednewview() and found
that 45% of the function execution time is spent
in this conditional statement. Furthermore, al-
most all the time is spent in checking the condi-
tion, while negligible time is spent in the body

of the conditional statement. The problematic
conditional statement is shown below, whereml
is a constant, and all operands are double preci-
sion floating point numbers.

if (ABS(x3->a) < ml && ABS(x3->g) < ml
&& ABS(x3->c) < ml && ABS(x3->t) < ml) {. . .}

This statement is a challenge for a branch pre-
dictor, since it implies 8 conditions, one for each
of the fourABS() macros and four comparisons
against the minimum likelihood value constant
(ml).

On an SPE, comparing integers can be sig-
nificantly faster than comparing doubles, since
integer values can be compared using the SPE
intrinsics. Although the current SPE intrinsics
support only comparison of 32-bit integer val-
ues, the comparison of 64-bit integers is also
possible by combining different intrinsics that
operate on the 32-bit integers. The currentspu-
gcc compiler automatically optimizes an integer
branch using the SPE intrinsics. To optimize the
problematic branches we exploited the fact that
integer comparison is faster than floating point
comparison on an SPE.

According to the IEEE standard, numbers
represented in float and double formats are “lex-
icographically ordered”, i.e., if two floating
point numbers in the same format are ordered,
then they are ordered the same way when their
bits are reinterpreted as Sign-Magnitude inte-
gers [16]. In other words, instead of compar-
ing two floating point numbers we can interpret
their bit pattern as integers, and do an integer
comparison. The final outcome of comparing
the integer interpretation of two doubles (floats)
will be the same as comparing their floating
point values, as long as one of the numbers is
positive. In our case, all operands are positive,
consequently instead of floating point compari-
son we can perform an integer comparison.

To get an absolute value of a floating point
number, we used thespu and() logic intrinsic,
which performs vector bit-wise AND operation.
We set the left most bit of a floating point num-
ber to be one. If the number is already positive,
nothing will change, since the most significant
bit is already one. In this way, we avoid us-
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ing ABS(), which uses a conditional statement
to check if the operand is greater than or less
than 0. After getting absolute values of all the
operands involved in the problematicif() state-
ment, we cast each operand to anunsigned long
long value and perform the comparison.

After optimizing the conditional statements,
their portion of the execution time in the func-
tion newview() is only 6%, as opposed to 45%
with the original conditional statement. The to-
tal execution time also improves significantly as
shown in Table 3. Casting and vectorization of
the if() statements reduced the execution time
of RAXML with the 42 SC input by a further
19%–21%, after optimization of mathematical
functions with SDK.

1 worker, 1 bootstrap 49.3s

2 workers, 8 bootstraps 230s

2 workers, 16 bootstraps 460.43s

2 workers, 32 bootstraps 917.09s

TABLE 3: Execution time of RAxML after the floating-
point conditional statement is transformed to an integer
conditional statement and vectorized. The input file is
42 SC.

5.2.4 Double Buffering and Memory Man-
agement

Depending on the size of the input alignment,
the major calculation loop (the loop that per-
forms the calculation of the likelihood vector) in
newview() can execute up to 50,000 iterations.
The number of iterations is directly related to
the alignment length. The loop operates on large
arrays, and each member in the arrays is an in-
stance of alikelihood vector structure. The ar-
rays are allocated dynamically at runtime. Since
there is no limit on the size of these arrays, we
are unable to keep all the members of the ar-
rays in the local storage of SPEs. Instead, we
strip-mine the arrays, by fetching a few array el-
ements to local storage at a time, and execute the
corresponding loop iterations on each batch of
elements. We use a 2 KByte buffer for caching

likelihood vectors, which is enough to store the
data needed for 16 loop iterations. It should be
noted that the space used for buffers is much
smaller than the size of the local storage. Con-
sidering that the loop actually executes a recur-
sion, we opted to keep the buffer small, so that
the recursion can be executed without overflow-
ing the local storage. This is another example
of the trade-off between code loading and data
caching on the Cell SPEs. Recursive function
calls in general, necessitate the use of manually
managed code overlays on the Cell. We have
not experimented with this option, relying in-
stead on careful control of the code footprint of
the offloaded functions to avoid overlays, even
in the presence of recursion.

In the original code where SPEs wait for
all DMA transfers, the idle time accounts for
11.4% of the total execution time ofnewview().
We eliminated this waiting time by using double
buffering to overlap DMA transfers with com-
putation. The total execution time of the appli-
cation after applying double buffering and tun-
ing the transfer size (set to 2 KBytes) is shown
in Table 4.

1 worker, 1 bootstrap 47s

2 workers, 8 bootstraps 220.92s

2 workers, 16 bootstraps 441.39s

2 workers, 32 bootstraps 884.47s

TABLE 4: Execution time of RAxML with double buffer-
ing applied to overlap DMA transfers and computation.
The input file is 42SC.

Double buffering and communication-
computation overlap improve execution time by
4%–5%, on top of the improvements obtained
with optimization of mathematical functions
and casting and vectorization of conditional
statements.

5.2.5 Vectorization

All calculations in newview() are executed in
two different loops. The first loop has a small
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trip count (typically 4–25 iterations) and com-
putes the individual transition probability ma-
trices (see Section 5.2.1) for each distinct rate
category of the CAT orΓ models of rate hetero-
geneity [25]. Each iteration executes 36 double
precision floating point operations. The second
loop computes the likelihood vector. Typically,
the second loop has a large trip count, which de-
pends on the number of distinct data patterns in
the data alignment. For the42 SC input file, the
loop has 228 iterations, and executes 44 dou-
ble precision floating point operations per itera-
tion. Each SPE on the Cell is capable of exploit-
ing data parallelism via vectorization. The SPE
has vector registers, each of which can store 128
bits. This is enough space for two double pre-
cision floating point elements. We vectorized
the two dominant loops innewview(). Here, we
present a simplified explanation of our vector-
ization strategy. As an example we are using
the larger loop. The smaller loop is optimized
in a similar way.

Figure 2 illustrates the larger loop (show-
ing the instructions that dominate the body of
the loop). The variablesx1->a, x1->c, x1->g,
x1->t, belong to the same C structure (likeli-
hood vector) and occupy contiguous memory
locations. Only three of these variables are
multiplied by the elements of the arrayleft.
This makes vectorizing more difficult, since the
code requires vector construction instructions
such asspu splats(). Obviously, there are many
different possibilities for vectorizing this code.
The scheme shown in Figure 2 is the one that
achieved the best performance in our experi-
ments. Note that due to involved pointer arith-
metic on dynamically allocated data structures,
automatic vectorization of this code may be
challenging for a compiler. After vectorization,
the number of floating point instructions in the
body of the loops dropped from 36 to 24 for the
first loop, and from 44 to 22 for the second loop.
Vectorization added a total of 25 new instruc-
tions for creating vectors.

Without vectorization, newview() spends
19.57 seconds (or 69.4% of its total execution

time) in the two loops. After vectorization, the
time spent in loops drops to 11.48 seconds, and
accounts for 57% of the total execution time of
newview(). The total execution time of the ap-
plication is reduced by 9%–13% due to vector-
ization, with all optimizations discussed so far
already integrated in the code. Table 5 shows
execution times after vectorization. Somewhat
surprisingly, vectorization of floating point code
has a lesser impact on performance than vector-
ization of control statements in RAxML.

1 worker, 1 bootstrap 40.9s

2 workers, 8 bootstraps 195.7s

2 workers, 16 bootstraps 393s

2 workers, 32 bootstraps 800.9s

TABLE 5: Execution time of RAxML after vectorization.
The input file is 42SC.

5.2.6 PPE-SPE communication

Although most of the total execution time of
RAxML is spent innewview(), the granularity of
this function is actually fine. For the 42SC in-
put, thenewview() function is invoked 230,500
times and the average execution time per in-
vocation is 71µs. In order to invoke an of-
floaded function, the PPE needs to send a sig-
nal to an SPE. Also, after an offloaded function
completes its execution, it needs to send the re-
sult back to the PPE.

In our first implementation, the communi-
cation between the PPE and SPEs was imple-
mented through mailboxes. We found that PPE-
SPE communication can be significantly im-
proved if it is performed through main memory
and SPE local storage instead of mailboxes. Ev-
ery time the PPE needs to signal an SPE, instead
of using mailboxes, the PPE changes a vari-
able that resides in the local storage of the spe-
cific SPE. In the same way, every time an SPE
sends data to the PPE, instead of using mail-
boxes, the SPE commits data directly to main
memory. This optimization improves execution
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for( . . . )
{
ump x1 0 = x1->a;
ump x1 0 += x1->c * *left++;
ump x1 0 += x1->g * *left++;
ump x1 0 += x1->t * *left++;

ump x1 1 = x1->a;
ump x1 1 += x1->c * *left++;
ump x1 1 += x1->g * *left++;
ump x1 1 += x1->t * *left++;
. . .

}

for( . . . )
{
a v = spu splats(x1->a);
c v = spu splats(x1->c);
g v = spu splats(x1->g);
t v = spu splats(x1->t);
l1 = (vector double)(left[0],left[3]);
l2 = (vector double)(left[1],left[4]);
l3 = (vector double)(left[2],left[5]);
ump v1[0] = spu madd(c v,l1,a v);
ump v1[0] = spu madd(g v,l2,ump v1[0]);
ump v1[0] = spu madd(t v,l3,ump v1[0]);
. . .

}

FIGURE 2: Example of one of the large loops innewview(): Non–vectorized code shown on the left, vectorized
code shown on the right.spu madd() multiplies the first two arguments and adds the result to the third argument.
spu splats() creates a vector by replicating a scalar element.

time by 2%–11%. Table 6 shows the new ex-
ecution times, including all optimizations dis-
cussed so far and direct memory to memory
communication, for the 42SC input. It is in-
teresting to note that direct memory-to-memory
communication is an optimization which scales
with parallelism on Cell, i.e. its performance im-
pact grows as the code uses more SPEs. As
the number of workers and bootstraps executed
on the SPEs increases, the code becomes more
communication-intensive, due to the fine granu-
larity of the offloaded functions. Fast communi-
cation therefore becomes critical.

1 worker, 1 bootstrap 39.9s

2 workers, 8 bootstraps 180.46s

2 workers, 16 bootstraps 357.08s

2 workers, 32 bootstraps 712.2s

TABLE 6: Execution time of RAxML after optimizing
communication to use direct memory-to-memory trans-
fers. The input file is 42SC.

5.2.7 Offloading More Functions

After offloading and optimizingnewview(), we
proceeded with offloading the next two most ex-
pensive functions:makenewz() andevaluate().

As mentioned earlier, we offloaded the func-
tions in a single code module loaded on the
SPEs. The advantage of having a single mod-
ule is that it can be loaded to the local storage
once, when an SPE thread is created. The of-
floaded code remains in local storage during the
entire execution of the program, and the cost of
loading code on the SPEs is amortized over the
entire execution. By having all the three func-
tions offloaded to an SPE we reduce the com-
munication between the PPE and SPEs. When
newview() is called bymakenewz() or evalu-
ate(), there is no need for any PPE-SPE commu-
nication (all functions are executed on the same
SPE).

After offloading and optimizing the three
most time-consuming functions, performance
improves by 31%–38%, compared to the op-
timized code with only one of the functions
(newview()) offloaded. A more important im-
plication is that after offloading and optimizing
all three functions, the sequential RAxML code
with the major part of it offloaded on one SPE is
faster than the sequential code executed exclu-
sively on the PPE by 25%. Function offloading
is also an optimization which scales with par-
allelism. When more than one MPI processes
are used and more than one bootstraps are of-
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floaded to SPEs by each process, the gains from
offloading reach 47%. Table 7 illustrates execu-
tion times after complete function offloading.

1 worker, 1 bootstrap 27.7s

2 workers, 8 bootstraps 112.41s

2 workers, 16 bootstraps 224.69s

2 workers, 32 bootstraps 444.87s

TABLE 7: Execution time of RAxML after offloading and
optimizing three functions:newview(), makenewz()
andevaluate(). The input file is 42SC.

5.3 Multilevel Loop-Level and
Task-Level Parallelization

Mapping MPI code on Cell can be achieved by
assigning one MPI process to each thread of
the PPE. Given that the PPE is a dual-thread
engine, MPI processes on the PPE can utilize
two out of eight SPEs, via concurrent func-
tion offloading. We considered two program-
ming models in order to exploit all eight SPEs
on Cell. The first is loop-level parallelization
(LLP) within the offloaded functions and loop
distribution across SPEs. This model is sim-
ilar to the OpenMP programming model used
on conventional shared memory multiproces-
sors. It exposes a total of three levels of par-
allelism, with tasks distributed between some
(up to four) SPEs, loops in each task distributed
across the remaining SPEs, and blocks of loop
iterations in each task vectorized within SPEs.
The second model is event-driven task-level par-
allelization (EDTLP), in which the PPE sched-
uler oversubscribes the PPE with more than two
MPI processes, to increase the availability of
tasks for SPEs. More specifically, the sched-
uler multiplexes more than two MPI processes
on the two threads of the PPE and enforces
a context-switch whenever an MPI process of-
floads a function on the SPE. The EDTLP model
exposes two levels of parallelism, with tasks dis-
tributed between all SPEs, and each task vec-
torized within an SPE. We implemented both

parallelization models and observed that there
is no single model that performs the best in all
cases [4]. Consequently, we also implemented a
dynamic parallelization scheme, named MGPS
(Multi-grain Parallelism Scheduling) [4], where
the LLP and the EDTLP models are combined.

In the MGPS model, the scheduler decides
on-the-fly which parallelization model (EDTLP,
LLP, or both) the application should use at any
instant during execution. The decision is made
at runtime, and it is based on the amount of work
that the application performs. If there is enough
task-level parallelism to keep eight SPEs busy
via concurrent function offloading, the sched-
uler multiplexes up to eight MPI processes on
the PPE, using the “switch-on-offload,, schedul-
ing policy. More MPI processes are served in
batches of eight. If there is not enough work to
keep the eight SPEs busy, (i.e. when the number
of bootstraps in RAxML is less than eight), the
idle MPI processes are suspended, and the re-
maining active MPI processes use the idle SPEs
for loop-level parallelization of the offloaded
functions. Loop-level parallelism can be ex-
tracted from up to four simultaneously execut-
ing MPI processes, using two SPEs per loop.

Using the MGPS model we were able to fur-
ther reduce the execution time of RAxML, as
shown in Table 8. The number of workers
used by MGPS is determined at runtime. At
startup, MGPS uses eight workers scheduled
with EDTLP, anticipating that there is enough
task-level parallelism to utilize the SPEs. When
the number of remaining bootstraps decreases
below eight, the scheduler suspends idle work-
ers and signals the rest of the workers to
use loop-level parallelism. The mechanisms,
policies and ramifications of the EDTLP and
MGPS schedulers, as well as an application-
independent implementation of these schedulers
on Cell are discussed elsewhere [4]. In this pa-
per we only report on the net impact of these
schedulers on the performance of RAxML. The
schedulers have a profound impact on perfor-
mance. They reduce execution time by 36% in
the one-bootstrap case, due to loop-level paral-
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lelization of one task across eight SPEs, and up
to 63% with more bootstraps, due to simultane-
ous exploitation and orchestration of task-level
and loop-level parallelism.

1 bootstrap 17.6s

8 bootstraps 42.18s

16 bootstraps 84.21s

32 bootstraps 167.57s

TABLE 8: Execution time of RAxML when the dynamic
parallelization model (MGPS) is used. The input file is
42 SC. The number of workers is variable and is selected
at runtime by the scheduler.

6 Performance Comparison
with Other Platforms

As a last point in our evaluation, we compare
the performance of the Cell implementation of
RAxML to the MPI implementation of RAxML
on two real multiprocessors based on multicore
and SMT architectures:

• A 32-bit Intel Pentium 4 Xeon with Hyper-
threading technology (2-way SMT), run-
ning at 2GHz, with 8KB L1-D cache,
512KB L2 cache, and 1MB L3 cache.

• A 64-bit IBM Power5 processor. The
Power5 is a quad-thread, dual-core proces-
sor with dual SMT cores running at 1.65
GHz, 32KB of L1-D and L1-I cache, 1.92
MB of L2 cache, and 36 MB of L3 cache.

For all experiments, we use 42SC as an in-
put file. Figure 3 illustrates execution time ver-
sus the number of bootstraps. While conduct-
ing the experiments on the IBM Power5, we
use both cores, and on each core we use both
SMT execution contexts, i.e. a total of four MPI
processes runs simultaneously on the Power5.
Since one Intel Xeon processor has only two
execution contexts, we use two Intel Xeon pro-
cessors (lying on a 4-way SMP Dell PowerEdge

6650 server), and on each processor we use both
execution contexts. This modification favors the
Xeon platform.

One Cell processor clearly outperforms the
Intel Xeon by a large margin (more than a fac-
tor of two), even if two Xeons are used to run
RAxML with the same problem size. Cell per-
forms 9%-10% better than the IBM Power5. Al-
though the margin of difference between Cell
and Power5 seems small, Cell has an edge over
a general-purpose high-end processor such as
Power5, since Cell appears to be significantly
more power-efficient claiming nominal power
consumption in the range of 27W to 43W for a
3.2 GHz model (used in this study) [33], as op-
posed to a reported 150W for the Power5 [20].
Note also that the computation uses double-
precision floating point arithmetic, which is not
optimized for Cell SPE pipelines. The use
of single-precision arithmetic would widen the
margin between Cell and the Power5.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

E
x
ec

u
ti

o
n
 t

im
e 

in
 s

ec
o
n
d
s

Number of bootsrtaps

Cell with MGPS programming model
IBM Power5

Intel Xeon

FIGURE 3: RAxML performance on different multi-
threaded and multicore microprocessors: Intel Xeon,
IBM Power5 and Cell. The number of ML trees created
is 1, 8, 16, 32, 64 and 128.

7 Conclusions

In this paper, we presented the parallelization
and optimization process of RAxML (Random-
ized Accelerated Maximum Likelihood), an im-
portant application from the domain of com-
putational biology, on the Cell Broadband En-
gine. We explored a total of seven Cell-specific
optimizations and the performance implications
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of these optimizations: I) We offloaded the
bulk of the maximum likelihood tree calcula-
tion on the SPEs; II) We replaced expensive
mathematical functions with Cell-specific nu-
merical implementations of the same functions;
III) We casted and vectorized expensive con-
ditional statements involving multiple, hard to
predict conditions; IV) we used double buffer-
ing to overlap completely DMA transfers with
computation; V) we vectorized the core of the
floating point computation; VI) we optimized
PPE-SPE communication using direct memory-
to-memory transfers; VII) we exploited task and
loop-level parallelism dynamically, by oversub-
scribing the PPE and exploiting loop-level par-
allelism when the task-level parallelism exposed
by the program leaves SPEs unused. In total,
starting from an optimized version of RAxML
for conventional uniprocessors and multiproces-
sors, we were able to boost performance on Cell
by more than a factor of five and bring it to a
higher level than the best performance achieved
by the leading current multicore processors.
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