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ABSTRACT
This paper addresses the problem of orchestrating and scheduling

parallelism at multiple levels of granularity on heterogeneous mul-
ticore processors. We present policies and mechanisms for adaptive
exploitation and scheduling of multiple layers of parallelism on the
Cell Broadband Engine. Our policies combine event-driven task
scheduling with malleable loop-level parallelism, which is exposed
from the runtime system whenever task-level parallelism leaves
cores idle. We present a runtime system for scheduling applications
with layered parallelism on Cell and investigate its potential with
RAxML, a computational biology application which infers large
phylogenetic trees, using the Maximum Likelihood (ML) method.
Our experiments show that the Cell benefits significantly from dy-
namic parallelization methods, that selectively exploit the layers
of parallelism in the system, in response to workload characteris-
tics. Our runtime environment outperforms naive parallelization
and scheduling based on MPI and Linux by up to a factor of 2.6.
We are able to execute RAxML on one Cell four times faster than
on a dual-processor system with Hyperthreaded Xeon processors,
and 5–10% faster than on a single-processor system with a dual-
core, quad-thread IBM Power5 processor.

1 INTRODUCTION
In the quest for delivering higher performance to scientificappli-

cations, hardware designers began to move away from conventional
scalar processor models and embraced architectures with multiple
processing cores. Although most commodity microprocessorven-
dors are already marketing multicore processors, these processors
are largely based on replication of simple scalar cores. Unfortu-
nately, these scalar designs exhibit well-known performance and
power limitations. These limitations, in conjunction witha sus-
tained requirement for higher performance, stimulated a renewed
interest in unconventional processor designs. The Cell Broadband
Engine (BE) is a representative of these designs, which has recently
drawn considerable attention by industry and academia. Since it
was originally designed for the game box market, Cell has lowcost
and a modest power budget. Nevertheless, the processor is able to
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achieve unprecedented peak performance for some real-world ap-
plications. IBM announced recently the use of Cell chips in anew
Petaflop system with 16,000 Cells, due for delivery in 2008.

The potential of the Cell BE has been demonstrated convinc-
ingly in a number of studies [6, 19, 25]. Thanks to eight high-
frequency execution cores with pipelined SIMD capabilities, and
an aggressive data transfer architecture, Cell has a theoretical peak
performance of over 200 Gflops for single-precision FP calcula-
tions and a peak memory bandwidth of over 25 Gigabytes/s. These
performance figures position Cell ahead of the competition against
the most powerful commodity microprocessors. Cell has already
demonstrated impressive performance ratings in applications and
computational kernels with highly vectorizable data parallelism,
such as signal processing, compression, encryption, denseand
sparse numerical kernels [6, 9, 20].

This paper explores Cell from a different perspective, namely
that of multigrain parallelization. The Cell BE is quite unique as a
processor, in that it can exploit orthogonal dimensions of task and
data parallelism on a single chip. The processor is controlled by an
SMT Power Processing Element (PPE), which usually serves asa
scheduler for computations off-loaded to 8 Synergistic Processing
Elements (SPEs). The SPEs are pipelined SIMD processors and
provide the bulk of the Cell’s computational power.

A programmer is faced with a seemingly vast number of options
for parallelizing code on Cell. Functional and data decompositions
of the program can be implemented on both the PPE and the SPEs.
Typically, heavier load should be placed on the SPEs for higher
performance. Functional decompositions can be achieved bysplit-
ting tasks between the PPE and the SPEs and by off-loading tasks
from the PPE to the SPEs at runtime. Data decompositions may
exploit the vector units of the SPEs, or be parallelized at two lev-
els, using loop-level parallelization across SPEs and vectorization
within SPEs. Functional and data decompositions can be static or
dynamic, and they should be orchestrated to fully utilize both the
eight SPEs and the PPE. Although the Cell vendors already pro-
vide programming support for using some of the aforementioned
parallelization options, actually combining and scheduling layered
parallelism on Cell can be an arduous task for the programmer.

To simplify programming and improve efficiency on Cell, we
present a set of dynamic scheduling policies and the associated
mechanisms. The purpose of these policies is to exploit the proper
layers and degrees of parallelism from the application, in order
to maximize efficiency of the Cell’s computational cores. Weex-
plore the design and implementation of our scheduling policies us-
ing RAxML [24]. RAxML is a computational biology code, which
computes large phylogenetic trees, using the Maximum Likelihood
(ML) criterion. RAxML is extremely computationally intensive.
The code is embarrassingly parallel at the task-level and exhibits
intrinsic loop-level parallelism in each task. Therefore,it is a
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good candidate for parallelization on Cell. For a real worldbio-
logical analysis, RAxML typically needs to execute 100 and 1000
tree searches as well as bootstrapped tree searches. Each ofthose
searches represents an independent task, with single-nested loops
that are both parallelizable and vectorizable.

This paper makes the following contributions:

• We present a runtime system and scheduling policies that ex-
ploit polymorphic (task and loop-level) parallelism on Cell.
Our runtime system is adaptive, in the sense that it chooses
the form and degree of parallelism to expose to the hardware,
in response to workload characteristics. Since the right choice
of form(s) and degree(s) of parallelism depends non-trivially
on workload characteristics and user input, our runtime sys-
tem unloads an important burden from the programmer.

• We show that dynamic multigrain parallelization is a neces-
sary optimization for sustaining maximum performance on
Cell, since no static parallelization scheme is able to achieve
high SPE efficiency in all cases.

• We present an event-driven multithreading execution engine,
which achieves higher efficiency on SPEs by oversubscribing
the PPE.

• We present a feedback-guided scheduling policy for dynam-
ically triggering and throttling loop-level parallelism across
SPEs on Cell. We show that work-sharing of divisible tasks
across SPEs should be used when the event-driven multi-
threading engine of the PPE leaves more than half of the SPEs
idle. We observe benefits from loop-level parallelization of
off-loaded tasks across SPEs. However, we also observe that
loop-level parallelism should be exposed only in conjunction
with low-degree task-level parallelism. Its effect diminishes
as the degree of task-level parallelism in the application in-
creases.

To put our study in a broader context, we present comparisons
of the Cell BE against IBM Power5, a leading multicore processor
with SMT cores, and against a dual-processor SMP system with
Hyperthreaded Xeon processors. Cell outperforms both platforms.
Taking into account cost and power efficiency, Cell exhibitsgreat
promise as the processor of choice for high-end systems and chal-
lenging applications.

The rest of this paper is organized as follows: Section 2 pro-
vides a brief overview of related work on Cell. Section 3 describes
RAxML. Section 4 outlines the architecture of the Cell BE. Sec-
tion 5 presents our runtime system and scheduling policies,along
with their experimental evaluation. Section 6 summarizes the paper.

2 RELATED WORK
We briefly summarize published research on Cell, which includes

performance analysis of various aspects of the processor, and vari-
ous compiler/runtime support environments.

Kistler et. al [15] present results on the performance of theCell’s
on-chip interconnection network. They show a series of experi-
ments that estimate the DMA latencies and bandwidth of Cell,using
microbenchmarks. They also investigate the system behavior under
different patterns of communication between local storageand main
memory. Williams et. al [26] present an analytical framework to
predict performance on Cell. In order to test their model, they use
several computational kernels, including dense matrix multiplica-
tion, sparse matrix vector multiplication, stencil computations, and
1D/2D FFTs. In addition, they propose micro-architecturalmodi-
fications that can increase the performance of Cell when operating
on double-precision floating point elements. Our work considers

the performance implications of multigrain parallelization strate-
gies on Cell, using a real-world parallel application from the area
of computational biology.

Eichenberger et. al [9] present several compiler techniques tar-
geting automatic generation of highly optimized code for Cell.
These techniques attempt to exploit two levels of parallelism,
thread-level and SIMD-level, on the SPEs. The techniques include
compiler assisted memory alignment, branch prediction, SIMD par-
allelization, OpenMP thread-level parallelization, and compiler-
controlled software caching. The study of Eichenberger et.al. does
not present details on how multiple levels of parallelism are ex-
ploited and scheduled simultaneously by the compiler. Scheduling
layered and polymorphic parallelism is a central theme of this pa-
per. The compiler techniques presented in [9] are also complemen-
tary to the work presented in this paper. They focus primarily on ex-
tracting high performance out of each individual SPE, whereas our
work focuses on scheduling and orchestrating computation across
SPEs.

Although Cell has been a focal point in numerous articles in pop-
ular press, published research using Cell for real-world HPC appli-
cations beyond games is scarce. Hjelte [14] presents an implemen-
tation of a smooth particle hydrodynamics simulation on Cell. This
simulation requires good interactive performance, since it lies on
the critical path of real-time applications such as interactive sim-
ulation of human organ tissue, body fluids, and vehicular traffic.
Benthin et. al [3] present an implementation of ray-tracingalgo-
rithms on Cell, targeting also at high interactive performance.

3 RAXML-VI-HPC
RAxML-VI-HPC (v2.1.3) (Randomized Axelerated Maximum

Likelihood version VI for High Performance Computing) [24]is
a program for large-scale ML-based (Maximum Likelihood [11])
inference of phylogenetic (evolutionary) trees using multiple align-
ments of DNA or AA (Amino Acid) sequences. The program is
freely available as open source code at icwww.epfl.ch/˜stamatak
(software frame).

Phylogenetic trees are used to represent the evolutionary history
of a set ofn organisms. An alignment with the DNA or AA se-
quences representing thosen organisms (also called taxa) can be
used as input for the computation of phylogenetic trees. In aphy-
logeny the organisms of the input data set are located at the tips
(leaves) of the tree whereas the inner nodes represent extinct com-
mon ancestors. The branches of the tree represent the time which
was required for the mutation of one species into another, new
one. The inference of phylogenies with computational methods
has many important applications in medical and biological research
(see [2] for a summary). An example for the evolutionary treeof
the monkeys and the homo sapiens is provided in Figure 1.

Due to the rapid growth of sequence data over the last years,
it has become feasible to compute large trees which often com-
prise more than 1,000 organisms and sequence data from several
genes (so-called multi-gene alignments). This means that align-
ments grow in the number of organisms as well as in sequence
length. The computation of the tree-of-life containing representa-
tives of all living beings on earth is still one of thegrand challenges
in Bioinformatics.

The fundamental algorithmic problem computational phylogeny
faces consists in the immense amount of alternative tree topologies
which grows exponentially with the number of organismsn, e.g. for
n = 50 organisms there exist 2.84∗1076 alternative trees (number
of atoms in the universe≈ 1080). In fact, it has only recently been
shown that the ML phylogeny problem is NP-hard [7]. In addition,
ML-based inference of phylogenies is very memory- and floating
point-intensive such that the application of high performance com-
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Figure 1. Phylogenetic tree representing the evolutionaryrela-
tionship between monkeys and the homo sapiens

puting techniques as well as the assessment of new CPU architec-
tures can contribute significantly to the reconstruction oflarger and
more accurate trees.

Nonetheless, over the last years there has been significant
progress in the field of heuristic ML search algorithms with the re-
lease of programs such as IQPNNI [18], PHYML [13], GARLI [27]
and RAxML [22, 24].

Some of the largest published ML-based biological analysesto
date have been conducted with RAxML [12, 16, 17, 21]. The pro-
gram is also part of the greengenes project [8] (greengenes.lbl.gov)
as well as the CIPRES (CyberInfrastructure for Phylogenetic RE-
Search, www.phylo.org) project. To the best of the authors knowl-
edge RAxML-VI-HPC has been used to compute trees on the two
largest data matrices analyzed under ML to date: a 25,057-taxon
alignment of protobacteria (length: 1,463 nucleotides) and a 2,182-
taxon alignment of mammals (length: 51,089 nucleotides).

The current version of RAxML incorporates a significantly im-
proved rapid hill climbing search algorithm. A recent performance
study [24] on real world datasets with≥ 1,000 sequences reveals
that it is able to find better trees in less time and with lower memory
consumption than other current ML programs (IQPNNI, PHYML,
GARLI). Moreover, RAxML-VI-HPC has been parallelized with
MPI (Message Passing Interface), to enable embarrassinglyparal-
lel non-parametric bootstrapping and multiple inferenceson distinct
starting trees in order to search for the best-known ML tree (see
Section 3.1 for details). In addition, it has been parallelized with
OpenMP [23]. Like every ML-based program, RAxML exhibits a
source of fine-grained loop-level parallelism in the likelihood func-
tions which consume over 90% of the overall computation time.
This source of parallelism scales particularly well on large memory-
intensive multi-gene alignments due to increased cache efficiency.
Finally, RAxML has also recently been ported to a GPU (Graphics
Processing Unit) [5].

3.1 The MPI Version of RAxML
The MPI version of RAxML exploits the embarrassing paral-

lelism that is inherent to every real-world phylogenetic analysis. In
order to conduct a “publishable” tree reconstruction a certain num-
ber (typically 20–200) of distinct inferences (tree searches) on the

original alignment as well as a large number (typically 100-1,000)
of bootstrap analyses have to be conducted (see [12] for an exam-
ple of a real-world analysis with RAxML). Thus, if the dataset is
not extremely large, this represents the most reasonable approach
to exploit HPC platforms from a user’s perspective.

Multiple Inferences on the original alignment are required in or-
der to determine the best-known (best-scoring) ML tree (we use
the term best-known because the problem is NP-hard). This isthe
tree which will then be visualized and published. In the caseof
RAxML, each independent tree search starts from a distinct starting
tree. This means, that the vast topological search space is traversed
from a different starting point every time and will yield final trees
with different likelihood scores. For details on the RAxML search
algorithm and the generation of starting trees, the reader is referred
to [22].

Bootstrap Analyses are required to assign confidence values
ranging between 0.0 and 1.0 to the internal branches of the best-
known ML tree. This allows to determine how well-supported cer-
tain parts of the tree are and is important for the biologicalcon-
clusions drawn from it. Bootstrapping is essentially very similar to
multiple inferences. The only difference is that inferences are con-
ducted on a randomly re-sampled alignment for every bootstrap run,
i.e. a certain amount of columns (typically 10–20%) is re–weighted.
This is performed in order to assess the topological stability of the
tree under slight alterations of the input data. For a typical biologi-
cal analysis, a minimum of 100 bootstrap runs is required.

All those individual tree searches be it bootstrap or multiple in-
ferences are completely independent from each other and canthus
be exploited by a simple master-worker scheme.

4 THE CELL BROADBAND ENGINE
The main components of the Cell BE are a single Power Pro-

cessing element (PPE) and eight Synergistic Processing Elements
(SPEs) [10]. These elements are connected with an on-chip Ele-
ment Interconnect Bus (EIB).

The PPE is a 64-bit, dual-thread PowerPC processor, with Vec-
tor/SIMD Multimedia extensions [1] and two levels of on-chip
cache. The L1-I and L1-D caches have a capacity of 32 KB, while
the L2 cache has a capacity of 512 KB. In this work we use a Cell
blade with two Cell BEs running at 3.2 GHz, and 1GB of XDR
RAM (512 MB per processor). The PPEs run Linux Fedora Core 5.
We use the Toolchain 4.0.2 compilers.

The SPEs are the primary computing engines of the Cell proces-
sor. Each SPE is a 128-bit processor with two major components: a
Synergistic Processor Unit (SPU) and a Memory Flow Controller
(MFC). All instructions are executed on the SPU. The SPU in-
cludes 128 registers, each 128 bits wide, and 256 KB of software-
controlled local storage. The SPU can fetch instructions and data
only from its local storage and can write data only to its local stor-
age. The SPU implements a Cell-specific set of SIMD instructions.
All single precision floating point operations on the SPU arefully
pipelined, and the SPU can issue one single-precision floating point
operation per cycle. Double precision floating point operations are
partially pipelined and two double-precision floating point opera-
tions can be issued every six cycles. Double-precision FP perfor-
mance is therefore significantly lower than single-precision FP per-
formance. With all eight SPUs active and fully pipelined double
precision FP operation, the Cell BE is capable of a peak perfor-
mance of 21.03 Gflops. In single-precision FP operation, theCell
BE is capable of a peak performance of 230.4 Gflops [6].

The SPE can access RAM through direct memory access (DMA)
requests. The DMA transfers are handled by the MFC. All pro-
grams running on an SPE use the MFC to move data and instruc-
tions between local storage and main memory. Data transferred be-
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tween local storage and main memory must be 128-bit aligned.The
size of each DMA transfer can be at most 16 KB. DMA-lists can
be used for transferring large amount of data (more than 16 KB). A
list can have up to 2,048 DMA requests, each for up to 16 KB. The
MFC supports only DMA transfer sizes that are 1,2,4,8 or multiples
of 16 bytes long.

The EIB is an on-chip coherent bus that handles communication
between the PPE, SPE, main memory, and I/O devices. The EIB is
a 4-ring structure, and can transmit 96 bytes per cycle, for aband-
width of 204.8 Gigabytes/second. The EIB can support more then
100 outstanding DMA requests.

5 SCHEDULING AND RUNTIME SUPPORT
FOR M ULTIGRAIN PARALLELIZATION ON
CELL

In this section we present our scheduling policies and runtime
support environment on Cell. We use RAxML to evaluate the poli-
cies and mechanisms. We first discuss briefly the optimization of
RAxML bootstraps for the Cell SPEs (Section 5.1). We discuss
our event-driven multithreading scheduler for task-levelparalleliza-
tion in Section 5.2. In Section 5.3, we discuss our adaptive loop
scheduler and its implementation. Section 5.4 presents policies and
mechanisms to adaptively merge task-level and loop-level paral-
lelism.

5.1 SPE Optimizations
A straightforward adaptation of the MPI version of RAxML on

Cell is to execute multiple MPI processes on the PPE and to have
the major computational kernels of each process offloaded toan
SPE. Each MPI process executes one RAxML bootstrap at a time.
To identify the parts of RAxML that are suitable for SPE execution,
we profiled the code executed by an MPI process using thegprof
profiler. For all profiling and production run experiments presented
in this paper, we used the file 42SC as input to RAxML. 42SC
contains 42 organisms. Each organism is represented by a DNA
sequence of 1167 nucleotides.

On an IBM Power processor, 98.77% of the execution time of
RAxML is spent in the three main functions which compute the
likelihood: 76.8% of execution time is spent innewview(), 2.37%
of execution time is spent inevaluate(), and 19.6% of execu-
tion time is spent inmakenewz(). These functions are the obvious
candidates for off-loading to SPEs. We off-load the functions as a
group, in a single code module loaded on each SPE. The advantage
of having a single module is that it can be loaded to the local storage
of an SPE once and reused throughout the execution of the applica-
tion, unless a change in the degree or form of parallelism executed
on the SPEs is dictated by the runtime system.

A possible drawback with merging off-loaded functions is that
the larger size of the code module reduces the space available on
the SPE for the stack and heap segments. In the case of RAxML,
when all three functions are off-loaded, the total size of the code
segment in the off-loaded file is 117KB. The remaining space in the
local storage (139 KB) is sufficient for the stack and heap segments,
since the working set of the SPE functions is small for realistic
problem sizes. In the general case, off-loading should be controlled
dynamically to achieve a good trade-off between code locality, data
locality and overall performance.

Naive off-loading has negative effect on performance for
RAxML. We measure the execution time of RAxML before and
after the three dominant functions are off-loaded, using one thread
on the PPE and one SPE. The execution time of RAxML before
off-loading any function to an SPE with the 42SC input is 38.23s.
The execution time after off-loading the three functions increases

to 50.38s. There are several reasons which explain the performance
degradation caused by naive off-loading:

• The off-loaded code is working on double-precision floating
point numbers, and the double-precision FP operations are
neither vectorized, nor fully pipelined in the original code.

• Each mispredicted branch executed on an SPE incurs a 20
cycle penalty. In the off-loaded code, 45% of the execution
time is spent in condition checking, and the inherently random
distribution of branch targets in the code makes the outcome
of the conditions hard to predict.

• The DMA transfers between the local storage and the main
memory are not optimized.

• The code uses expensive mathematical functions such as
log() andexp().

• The communication between the PPE and the SPEs is not op-
timized.

We used this itemized list as a guideline for optimizing the off-
loaded code of RAxML on Cell. We implemented vectorization
of the ML calculation loops and vectorization of conditionals. We
pipelined the vector operations, aggregated data transfers and re-
placed the original mathematical functions with numericalapprox-
imations of the same functions from the Cell SDK library. The
specifics of these optimizations are beyond the scope of thispa-
per. A detailed description is provided elsewhere [4]. The exe-
cution time of the optimized SPE code of RAxML was reduced
from 50.38s to 28.82s, which corresponds to a speedup of 1.32over
single-threaded execution on the PPE. The optimizations apply 1 to
1 to multiple inferences on the original alignment.

5.2 Scheduling Task-Level Parallelism
Mapping MPI code on Cell can be achieved by assigning one

MPI process to each thread of the PPE. Given that the PPE is a
dual-thread engine, MPI processes on the PPE can utilize twoout
of the eight SPEs via concurrent function off-loading. We consider
two strategies to use the rest of the SPEs on Cell. The first is multi-
level parallelization, and more specifically loop-level paralleliza-
tion within the off-loaded functions and loop distributionacross
SPEs. The second is a model for event-driven task-level paral-
lelism, in which the PPE scheduler oversubscribes the PPE with
more than two MPI processes, to increase the availability oftasks
for SPEs.

We first examine the event-driven task parallelization model,
since it provides an opportunity for coarse-grained parallelization.
We will refer to this model as EDTLP, for event-drivel task-level
parallelism, in the rest of the paper. In EDTLP, tasks correspond to
off-loadable functions from MPI processes running concurrently or
in a time-shared manner on the PPE. These tasks are served by run-
ning MPI processes using a fair sharing algorithm, such as round-
robin. The scheduler off-loads a task immediately upon request
from an MPI process, and switches to another MPI process while
off-loading takes place. Switching upon off-loading prevents MPI
processes from blocking the code while waiting for their tasks to
complete on the SPEs.

EDTLP can be implemented using a user-level scheduler to in-
terleave off-loading across MPI processes. The scheduler is simple
to implement and it can be integrated transparently in the original
MPI code, provided that the tasks that need to be off-loaded are
annotated. EDTLP overcomes the problem of crippling underuti-
lization of the cores, both PPEs and SPEs, when PPE threads do
not have tasks to off-load, or when PPE threads wait for completion
of already off-loaded tasks.

Multiplexing more than two MPI processes on the PPE intro-
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duces system overhead due to context switching and due to implicit
costs following context-switching across address spaces,such as
cache and TLB pollution. Furthermore, the granularity of the off-
loaded code is critical as to whether the multiplexing cost can be
tolerated or not. The off-loaded code should be coarse enough to
mask the overhead of multiplexing. Our EDTLP scheduler uses
granularity control and voluntary context switches to address these
issues.

Formally, the EDTLP scheduler executes a task graph compris-
ing PPE tasks and SPE tasks. The scheduler follows a dependence-
driven execution model. If the scheduler locates a task to beoff-
loaded in an MPI process, it searches for an idle SPE, and if itfinds
one, it sends a signal to begin task execution. If no idle SPE is
found, the scheduler waits until an SPE becomes available. Let tspe
denote the execution time of a task on an SPE,tcode denote the time
needed to load the code of a task on the SPE, andtcomm denote the
time to send a signal from the PPE to an SPE to commence exe-
cution of an off-loaded task, or vice versa, to send a result from
an SPE back to the PPE. The scheduler selects to off-load tasks
that meet the conditiontspe + tcode + 2ṫcomm < tppe, wheretppe is
the execution time of the task on the PPE. Note thattcode = 0 if a
task is executed on an SPE more than once and for all executions
of the task other than the first. Our runtime system preloads anno-
tated SPE functions to amortize the code shipping cost. The code
remains on the SPEs, unless the runtime system decides to change
its parallelization strategy and either trigger or throttle loop-level
parallelism. This issue is discussed further in Section 5.4.

Since the scheduler does not know the length of the tasks a-priori,
it optimistically off-loads any user-designated task and throttles off-
loading for tasks that do not pass the granularity test. To implement
this dynamic scheme, the code needs to maintain PPE and SPE ver-
sions of off-loadable functions. This is an easy modification, since
PPE implementations of all off-loadable functions are available in
the original MPI version of the code. The modification comes at
the expense of an increased code footprint on the PPE. If the sched-
uler does not find tasks to off-load, it blocks until a new off-loading
request originates from a PPE thread.

Figure 2 illustrates an example of the functionality of the EDTLP
scheduler. The example uses PPE and SPE task sizes which are
representative of RAxML functions. We show the execution oftwo
off-loaded tasks, with an approximately 1:3 length ratio. In case
(a), once a task is off-loaded by an MPI thread, the PPE switches
context. At any time, two MPI threads can off-load tasks concur-
rently, however multiplexing the MPI threads with EDTLP enables
the scheduler to use all 8 SPEs for a significant part of the coarse-
grained function, and at least 4 SPEs for a significant part ofthe
fine-grained function. In case (b), the scheduler runs persistently
one MPI thread on the PPE until all functions from that task are
off-loaded. The implication is that 6 out of the 8 SPEs remainidle
most of the time. In RAxML, the off-loaded tasks have durations
up to 96µs. Their granularity is an order of magnitude finer than
the granularity of the Linux scheduler’s time quantum, which is a
multiple of 10 ms. Therefore, the OS scheduler is highly unlikely
to switch context upon function off-loading. The EDTLP scheduler
resolves this problem, thus achieving higher SPE utilization. The
context switching overhead on the PPE is 1.5µs per switch. This
overhead is low enough to tolerate up to 7 context switches while
one RAxML task is running.

We evaluate our EDTLP scheduler by comparing its performance
to the performance achieved with the Linux 2.6.17 schedulerand
without user-level scheduling support on our Cell blade. Inthis
evaluation, we use the fully optimized version of RAxML, out-
lined in Section 5.1. This version off-loads the three ML calcu-
lation functions to SPEs. From the total execution time of one non-
parametric bootstrap analysis of RAxML, 90% is spent to compute
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Figure 2. Scheduler behavior for two off-loaded tasks, repre-
sentative of RAxML. Case (a) illustrates the behavior of our
EDTLP scheduler. Case (b) illustrates the behavior of the Linux
scheduler with the same workload. The numbers in the tasks
correspond to MPI processes. The shaded slots indicate context
switches.

EDTLP Linux
1 worker, 1 bootstrap 28.46s 28.42s
2 workers, 2 bootstraps 29.36s 29.23s
3 workers, 3 bootstraps 32.54s 56.95s
4 workers, 4 bootstraps 33.12s 57.38s
5 workers, 5 bootstraps 37.27s 85.88s
6 workers, 6 bootstraps 38.66s 86.43s
7 workers, 7 bootstraps 41.87s 114.92s
8 workers, 8 bootstraps 43.32s 115.51s

Table 1. Performance comparison for RAxML with different
scheduling policies. The second column shows the execution
times with EDTLP. The third column shows execution times
with the Linux kernel scheduler. The input file is 42 SC.

on SPEs and 10% is spent to compute and schedule tasks on the
PPE. The average SPE computing time is 96µs. The average PPE
computing time between consecutive offloads is 11µs.

Table 1 summarizes the results obtained from the experiment.
The first column shows the number of workers used, and the amount
of work performed. RAxML is always executed in a massively par-
allel setting, with constant problem size (one bootstrap) per MPI
process. The second column shows execution times of RAxML,
when the MPI processes on the PPEs are scheduled with the EDTLP
scheduler. The third column shows execution times when the MPI
processes are scheduled by the Linux scheduler. Ideally, the total
execution time should remain constant. The reasons why thisis not
the case consists in the sub-optimal (90%) coverage of parallel code
executed on the SPEs, contention between MPI processes sharing
the SMT pipeline of the PPE, and SPE parallelization and synchro-
nization overhead. The EDTLP scheduler keeps the executiontime
within a factor of 1.5 of the optimal and achieves about 2.6 times
the performance of the Linux scheduler.

5.3 Scheduling Loop-Level Parallelism
The EDTLP model described in Section 5.2 is effective if the

PPE has enough coarse-grained functions to off-load to SPEs. In
cases where the degree of available task parallelism is lessthan the
number of SPEs, the runtime system can activate a second layer
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of parallelism, by splitting an already off-loaded task across mul-
tiple SPEs. We implemented runtime support for parallelization of
for-loops enclosed within off-loaded SPE functions. We parallelize
loops in off-loaded functions using work-sharing constructs similar
to those found in OpenMP. In RAxML, all for-loops in the threeoff-
loaded functions have no loop-carried dependencies, and all loops
obtain speedup from parallelization, assuming that there are enough
idle SPEs dedicated to their execution. The number of SPEs acti-
vated for work-sharing is user-controlled or system-controlled, as
in OpenMP. We discuss dynamic system-level control of loop par-
allelism further in Section 5.4.

As an example of loop-level parallelization, we use a loop from
functionevaluate(), shown in Figure 3.

for( i=... )
{

term = x1[i].a * x2[i].a;
term += x1[i].c * x2[i].c * diagptable[i * 3];
term += x1[i].g * x2[i].g * diagptable[i * 3 + 1];
term += x1[i].t * x2[i].t * diagptable[i * 3 + 2];

term = log(term) + (x2[i].exp) * log(minlikelihood);

sum += wptr[i] * term;
}

Figure 3. A parallel loop in function evaluate() of RAxML.

The basic work-sharing scheme we used is presented in Figure4.
Before the loop is executed, a designated master SPE thread sends a
signal to all SPE worker threads. After sending the signal, the main
thread executes its assigned portion of the loop. The main thread
and all the workers fetch the chunk of data they need to execute their
portions of the loop from the shared RAM. Global shared data mod-
ified during loop executions are committed to RAM. Data needed
by the master SPE upon loop completion to make forward progress,
are sent directly from the worker SPEs via SPE to SPE communica-
tion, in order to avoid the latency of going through shared memory.
SPE to SPE communication enables dependence-driven execution
of multiple parallel loops across SPEs.

In the example in Figure 3, the SPEs perform first a local re-
duction. The master SPE accumulates the local sum received from
worker SPEs in local storage and proceeds with execution after each
worker SPE signals completion of the loop.

5.3.1 SPE-SPE communication
The SPE threads participating in loop work-sharing constructs

are created once upon function off-loading. Communicationamong
SPEs participating in work-sharing constructs is implemented using
DMA transfers and the communication structurePass, shown in
Figure 5.

The Pass structure is private to each thread. The master SPE
thread has an array ofPass structures. Each member of this array
is used for communication with one SPE worker thread. Once the
SPE threads are created, they exchange the local addresses of their
Pass structures. This address exchange is done through the PPE.
Whenever one thread needs to send a signal to a thread on another
SPE, it issues anmfc put() request and sets the destination address
to be the address of thePass structure of the recipient.

In Figure 6, we illustrate the loop from Figure 3, parallelized
with work-sharing among SPE threads. Before executing the loop,
the master thread sets the parameters of thePass structure for each
worker SPE and issues onemfc put() request per worker. This is
done insend to spe(). Worker i uses the parameters of the re-
ceivedPass structure and fetches the data needed for the loop exe-

    

                to main memory
                commit modified data 

Worker SPE 1                                          Worker SPE n

For( ... ){

. . .

}

For( ... ){

. . .

}

                to main memory
                commit modified data 

. . . . . .

                commit modified data 
                to main memory

For( ... ){

. . .

}

. . .

Master SPE

worker 1 sends result to the master
worker n sends result to the master

master sends signal to worker 1 master sends signal to worker n

.    .    .

Figure 4. Parallelizing a loop across SPEs using a work-sharing
model.

struct Pass{

volatile unsigned int v1_ad;
volatile unsigned int v2_ad;
//...arguments for loop body
volatile unsigned int vn_ad;
volatile double res;
volatile int sig[2];

} __attribute__((aligned(128)));

Figure 5. The data structure Pass is used for communication
among SPEs. Thevi ad variables are used to pass the addresses
of input arguments for the loop body from one local storage to
another. The variablesig is used as a notification signal that the
memory transfer for the shared data updated during the loop
has completed. The variableres is used to send results back to
the master SPE and as a dependence resolution mechanism.

cution to its local storage (functionfetch data()). After finishing
the execution of its portion of the loop, a worker sets locally theres
parameter in the structurePass and sends the structurePass to the
master, usingsend to spe(). The master merges the result from
workers and commits it to main memory.

Immediately after callingsend to spe(), the master partici-
pates in the execution of the loop. The master tends to have a slight
head start over the workers. The workers need to complete several
DMA requests before they can start executing the loop, in order
to fetch the required data from the master’s local storage orshared
memory. In fine-grained off-loaded functions such as those encoun-
tered in RAxML, load imbalance between the master and the work-
ers is noticeable. To achieve better load balancing, we set the master
to execute a slightly larger portion of the loop. A fully automated
and adaptive implementation of this purposeful load unbalancing is
obtained by timing idle periods in the SPEs across multiple invo-
cations of the same loop. The collected times are used for tuning
iteration distribution in each invocation, in order to reduce idle time
on SPEs.

Table 2 shows the execution times of RAxML with one layer of
loop-level parallelism exploited in the off-loaded functions. We ex-
ecute one bootstrap of RAxML, to isolate the impact of loop-level
parallelism. The number of iterations in each parallelizedloop de-
pends on the alignment length. For the 42SC input file, the number
of iterations in each parallelized loop is 228.

The results in Table 2 suggest that using up to five SPEs for
loop parallelization achieves speedup over loop executionusing
one SPE. The maximum speedup is 1.58. Using five or more
SPE threads for loop parallelization decreases efficiency.The rea-
sons for the seemingly low speedup are the non-optimal coverage
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1 worker, 1 bootsrtap, no LLP 28.71s
1 worker, 1 bootsrtap, 2 SPEs used for LLP20.83s
1 worker, 1 bootsrtap, 3 SPEs used for LLP19.37s
1 worker, 1 bootsrtap, 4 SPEs used for LLP18.28s
1 worker, 1 bootsrtap, 5 SPEs used for LLP18.10s
1 worker, 1 bootsrtap, 6 SPEs used for LLP20.52s
1 worker, 1 bootsrtap, 7 SPEs used for LLP18.27s
1 worker, 1 bootsrtap, 8 SPEs used for LLP24.4s

Table 2. Execution time of RAxML when loop-level parallelism
(LLP) is used in one bootstrap, across SPEs. The input file is
42 SC.

of loop-level parallelism (less than 90% of the original sequential
code), the fine granularity of the loops, and the fact that many of
the loops have global reductions, which constitute a bottleneck.
Higher speedup from LLP in a single bootstrap can be obtained
with larger input data sets. Alignments that have a larger number
of nucleotides per organism have more loop iterations to distribute
across SPEs [23].

Master SPE:
struct Pass pass[Num_SPE];

for(i=0; i < Num_SPE; i++){
pass[i].sig[0] = 1;

...
send_to_spe(i,&pass[i]);

}

for ( ... )
{

/* see Figure 3 */
}

tr->likeli = sum;

for(i=0; i < Num_SPE; i++){
while(pass[i].sig[1] == 0);
pass[i].sig[1] = 0;
tr->likeli += pass[i].res;

}

commit(tr->likeli);

Worker SPE:
struct Pass pass;

while(pass.sig[0]==0);
fetch_data();

for ( ... )
{

/* see Figure 3 */
}

tr->likeli = sum;
pass.res = sum;
pass.sig[1] = 1;
send_to_master(&pass);

Figure 6. Parallelization of the loop from function evaluate()
of RAxML, shown in Figure 3. The left side shows the code
executed by the master SPE, while the right side shows the code
executed by a worker SPE.Num SPE represents the number of
SPE worker threads.

5.4 Adaptive Scheduling of Task-Level and
Loop-Level Parallelism

No single parallelization technique gives the best performance in
all possible situations on Cell, a result which is expected given the
variable degree of parallelism available in different components of
parallel workloads and the heterogeneity of the Cell architecture.

We implemented a unified dynamic parallelization strategy,
which exploits multiple layers of parallelism, by mixing and match-
ing EDTLP with loop-level parallelization, under the control of the
run-time system. We name this scheduling strategy multigrain par-
allelism scheduling (MGPS). The goal of MGPS is to exploit the
best of two worlds (TLP and LLP), in response to workload char-
acteristics. MGPS changes parallelization strategies andexecution
policies on the fly, while the program executes.

To illustrate the need for selectively combining TLP and LLP, we
conduct a set of experiments, in which we generate a varying num-
ber of bootstraps in RAxML, ranging from 1 to 128, and use static
EDTLP and hybrid EDTLP-LLP parallelization schemes. When
LLP is used, each loop uses two or four SPEs, and the PPEs can ex-
ecute four or two concurrent bootstraps respectively, using EDTLP.
This leads to a static multigrain scheme (EDTLP-LLP), whereLLP
is activated when four or less MPI processes are active on thePPE.
When LLP is deactivated, we use EDTLP to off-load to all 8 SPEs.
The combination of LLP and EDTLP in the static multigrain model
is not our final MGPS scheme, since it lacks dynamicity and as-
sumes prior knowledge of runtime program properties. We areus-
ing it solely for illustrative purposes.

Figure 7 shows the results with a varying number bootstraps.The
x-axis shows the number of performed bootstraps, and they-axis
shows the execution time in seconds. The EDTLP-LLP and EDTLP
schemes are compared.
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Figure 7. Comparison between the static EDTLP-LLP and
EDTLP scheduling schemes. The input file is 42SC. The num-
ber of ML trees created is (a) 1–16, (b) 1–128.

As expected, the hybrid model outperforms EDTLP when up to
4 bootstraps are executed, since only a combination of EDTLPand
LLP can use more than 4 SPEs simultaneously (see Section 5.2).
With 5 to 8 bootstraps, EDTLP activates 5 to 8 SPEs solely for task-
level parallelism, leaving room for loop-level parallelism on at most
3 SPEs. This proves to be unnecessary, since the parallel execution
time is determined by the length of the non-parallelized off-loaded
tasks that remain on at least one SPE. In the range between 9 and 12
bootstraps, combining EDTLP and LLP selectively, so that the first
8 bootstraps execute with EDTLP and the last 4 bootstraps execute
with the hybrid scheme is the best option. Note that this scheme
is application-specific and requires an oracle to dictate the runtime
system when to use EDTLP or EDTLP combined with LLP. Note
also that the difference between EDTLP and the hybrid EDTLP-
LLP scheme is smaller with 9 to 12 total bootstraps, than with1 to
4 total bootstraps. In the former case LLP covers up to 11% (for 9
bootstraps), to 33% (for 12 bootstraps) of the parallel computation,
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whereas in the latter case there are always enough SPEs so that the
entire parallel computation benefits from LLP.

EDTLP becomes again the best choice with 13 to 16 bootstraps,
by the same argument that justifies its superior performancewith 5
to 8 bootstraps. As the number of bootstraps increases, the occa-
sional benefit from LLP diminishes, since execution time is domi-
nated by task-level parallelism.

Our experimental observations point to the direction of a dy-
namic and adaptive user-level scheduler to benefit from multigrain
parallelism on Cell. We implemented such a scheduler, MGPS and
tested its performance with RAxML. MGPS extends the EDTLP
scheduler with an adaptive processor-saving policy. The scheduler
is distributed, and it is attached to every MPI process in theappli-
cation. The scheduler is invoked upon requests for task off-loading
(arrivals) and upon completion of off-loaded tasks (departures). Ini-
tially, upon arrivals, the scheduler conservatively assigns one SPE
to each off-loaded task, anticipating that the degree of TLPis suf-
ficient to use all SPEs. Upon a departure, the scheduler checks the
degree of task-level parallelism exposed by each MPI process (we
will call it U), i.e. how many discrete tasks were off-loaded to SPEs
while the departing task was executing, and how many SPEs were
not used in the same period. This number reflects the history of SPE
utilization from TLP and is used to switch between the EDTLP pol-
icy and the EDTLP-LLP policy. IfU ≤ 4, andT is the number of
tasks waiting for off-loading, the scheduler activates LLPwith ⌊ 8

T ⌋
SPEs assigned to the parallel loops of each task, if any. IfU > 4,
the scheduler retains the EDTLP policy, or deactivates LLP,if LLP
was previously activated.

The scheduler is sensitive to the length of the history of TLP,
maintained to calculateU . As a heuristic, we maintain a history
of length equal to the number of SPEs. This gives the scheduler
the opportunity of a hysteresis of up to 8 off-loaded tasks, before
deciding whether to activate LLP. The MPI process that completes
the 8th, 16th, . . . , task evaluatesU and signals all other processes to
release the idle SPEs, i.e. all SPEs that were not used duringthe last
window of 8 off-loads. Depending on the value ofU , the scheduler
triggers or deactivates LLP. The implementation of the scheduler is
facilitated with a shared arena established between MPI processes,
to exchange signals and keep track of busy and idle SPEs at any
scheduling point (arrivals and departures).

The switching between EDTLP and LLP is enabled by keeping
dual copies of each off-loaded function which includes at least one
parallel loop. In the complete adaptive scheduling scheme,each
off-loaded function has two or three copies, one PPE copy, one
non parallelized SPE copy, and, if the function encapsulates parallel
loops, a parallelized SPE copy. Having multiple executablecopies
of functions increases the total size of the PPE and the SPE code.
However, multiple copies avoid the use of conditionals, which are
particularly expensive on the SPEs.

A drawback of the scheduler is that it initially needs to moni-
tor several off-loading requests from MPI processes, before making
a decision for increasing or throttling LLP. If the off-loading re-
quests from different processes are spaced apart, there maybe ex-
tended idle periods on SPEs, before adaptation takes place.In prac-
tice, this problem appears rarely, first because applications spawn
parallelism early in the code and this parallelism can be directly
off-loaded to SPEs, and second because parallelism is typically
spawned in bursts from all MPI processes. MGPS handles applica-
tions with static loop-level parallelism as well as applications with
static hybrid parallelism, such as MPI/OpenMP applications. To
schedule applications that do not off-load enough tasks to trigger
adaptation, the scheduler uses timer interrupts.

We compare MGPS against the EDTLP scheduler and the static
hybrid (EDTLP-LLP) scheduler, which uses an oracle for the fu-

ture to guide decisions between EDTLP and EDTLP-LLP. Figure8
shows the execution times of the MGPS, EDTLP-LLP and EDTLP
schedulers with various RAxML workloads. Thex-axis shows the
number of bootstraps, while they-axis shows execution time.
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Figure 8. Comparison between the MGPS, EDTLP and static
EDTLP-LLP schedulers. The input file is 42 SC. The number
of ML trees created is (a) 1–16, (b)1–128. The curves of MGPS
and EDTLP overlap completely in (b).

We observe benefits from using MGPS for up to 28 bootstraps,
where LLP can be exploited by the scheduler in up to 4 concurrent
bootstraps. Beyond 28 bootstraps, MGPS converges to EDTLP,and
both are increasingly faster than the static multigrain EDTLP-LLP
scheme, as the number of bootstraps increases. The loop-level par-
allel code in MGPS incurs additional overhead for loading the par-
allel loop code on idle SPEs, potentially replacing the image of an
earlier off-loaded function on the SPEs and scheduling the loop.
Code replacements happen whenever the runtime system needsto
switch between a version with parallelized loops and a version of
the same function without parallelized loops, or vice versa. This
overhead is not noticeable in overall execution time. Somewhat to
our surprise, this overhead is lower than the overhead of using con-
ditionals to select between versions of each function loaded in the
same SPE code image. This is an after-effect of the slow handling
of branches on the SPEs.

5.5 Parallelizing Across Multiple Cells
Figure 9 shows the performance of the MGPS, EDTLP-LLP and

the EDTLP schedulers with RAxML on two Cell processors that re-
side on a single blade. We use the same input file (42SC) as in the
single-processor experiments. The results are qualitatively identical
to the results obtained with one Cell processor. The EDTLP-LLP
model performs better with up to 8 bootstraps, since 8 additional
SPEs are available across the two Cells for LLP. Beyond 8 boot-
straps, task-level parallelism dominates and EDTLP performs bet-
ter. MGPS outperforms both EDTLP-LLP and EDTLP.

The reader may point out that since RAxML needs 100 to 1,000
bootstraps for real-world biological analysis, multigrain paralleliza-
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tion is obsolete. Our evaluation indicates that with more than 100
bootstraps, EDTLP is clearly the best option. The results ofparal-
lelization across two Cell processors provide a counter-argument.
For a fixed number of bootstraps, two Cells deliver almost twice
the performance of one Cell. As the application is scaled to mul-
tiple Cell Processors in the same blade or across blades, running
fewer bootstraps per Cell is better than clustering bootstraps in as
few Cells as possible. With 100 bootstraps, MGPS with multigrain
(EDTLP-LLP) parallelism will outperform plain EDTLP if the
bootstraps are distributed between four or more dual-Cell blades.
Taking into account future system scaling, the MGPS scheme is
justified in the range of interesting problem sizes for RAxMLand
at modest system scales.
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Figure 9. Comparison between MGPS, EDTLP and EDTLP-
LLP on two Cell processors. The input file is 42SC. The num-
ber of ML trees created is (a) 1–16, (b) 1–128. The curves of
MGPS and EDTLP overlap completely in (b).

5.6 Comparison of Cell with Other Processors
As a last point in our evaluation, we compare the performanceof

the Cell implementation of RAxML and the MPI implementation
of RAxML on two real microprocessors with multicore and SMT
architecture:

• An Intel Pentium 4 Xeon with Hyper-threading technology (2-
way SMT), running at 2GHz, with 8KB L1-D cache, 512KB
L2 cache, and 1MB L3 cache.

• A 64-bit Power5. The Power5 is a quad-thread, dual-core pro-
cessor with dual SMT cores running at 1.6 GHz, 32KB of L1-
D and L1-I cache, 1.92 MB of L2 cache, and 36 MB of L3
cache.

For all experiments, we use 42SC as an input file. Figure 10
illustrates execution time versus the number of bootsrtaps. While
conducting the experiments on IBM Power5, we use both cores,
and on each core we use both SMT execution contexts, i.e. a total
of four MPI processes runs on the Power5 processor. Since one
Intel Xeon processor has only two execution contexts, we usetwo

Intel Xeon processors (lying on a 4-way SMP Dell PowerEdge 6650
server), and on each processor we use both execution contexts. This
modification stirs the comparison in favor of the Xeon.

One Cell processor clearly outperforms the Intel Xeon by a large
margin, even if two Xeons are used to run RAxML with the same
problem size. Cell performs slightly (5–10%) better than the IBM
Power5, once the problem size is scaled to 8 or more bootstraps.
Although the margin of difference between Cell and Power5 isnar-
row, Cell has an edge over a general-purpose high-end processor
such as Power5, since it also achieves better cost-performance and
power-performance ratios.
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Figure 10. RAxML performance on different multithreaded
and multicore microprocessors: Intel Xeon, IBM Power5 and
Cell. The number of ML trees created is (a) 1–16, (b) 1–128.

6 CONCLUSIONS
We investigated issues, policies and mechanisms pertaining to

scheduling multigrain parallelism on the Cell Broadband Engine.
We proposed an event-driven task scheduling policy for Cell, striv-
ing for higher utilization via oversubscribing the PPE. We have
explored the conditions under which loop-level parallelism within
off-loaded code can be used. We have also proposed a comprehen-
sive scheduling policy for combining task-level and loop-level par-
allelism autonomically within MPI code, in response to workload
characteristics. Using a bio-informatics code with inherent multi-
grain parallelism as a case study, we have shown that our user-level
scheduling policies outperform the native OS scheduler by afac-
tor of 2.6, and they are able to transparently exploit the appropriate
form and granularity of parallelism under widely varying execution
conditions. Although our results use a single application case study,
we believe they generalize to a broad range of applications,partic-
ularly those written in MPI or in the hybrid MPI/OpenMP model.
Our scheduler is responsive to small and large degrees of task-level
and data-level parallelism, at both fine and coarse levels ofgranu-
larity.

In future work, we intend to incorporate memory-related criteria
into our SPE scheduling policies. RAxML simplified the memory
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management problem, since the major off-loaded functions have
small memory footprints and leave enough space for data process-
ing on the SPEs. At the same time, RAxML exhibits little sharing
of data between tasks loaded on SPEs. We intend to eliminate the
assumption of fixed-size SPE code footprints during exploration of
scheduling policies in the future. We also plan to do more stress
tests of our runtime system as more real-world application codes
become available on Cell.
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