Dynamic Multigrain Parallelization on the Cell Broadband Engine

Filip Blagojevic,
Dimitrios S. Nikolopoulos
Department of Computer Science
Virginia Tech

Alexandros Stamatakis
School of Computer &
Communication Sciences
Swiss Federal Institute of

Christos D. Antonopoulos
Department of Computer Science
College of William and Mary
McGlothlin-Street Hall

660 McBryde Hall Technology Williamsburg, VA 23187-8795
Blacksburg, VA 24061 Station 14, Ch-1015 Lausanne, cda@cs.wm.edu
Switzerland

{filip,dsn} @cs.vt.edu

ABSTRACT

This paper addresses the problem of orchestrating and githgd
parallelism at multiple levels of granularity on heterogeans mul-
ticore processors. We present policies and mechanismsléqtiae
exploitation and scheduling of multiple layers of paradiel on the
Cell Broadband Engine. Our policies combine event-drivaskt
scheduling with malleable loop-level parallelism, whistekposed
from the runtime system whenever task-level parallelisavés
cores idle. We present a runtime system for scheduling egjxins
with layered parallelism on Cell and investigate its paenuith
RAXML, a computational biology application which infersrde
phylogenetic trees, using the Maximum Likelihood (ML) nedh
Our experiments show that the Cell benefits significantlynfiay-
namic parallelization methods, that selectively explbi¢ tayers
of parallelism in the system, in response to workload cherés
tics. Our runtime environment outperforms naive paratkgion
and scheduling based on MPI and Linux by up to a factor of 2.6.
We are able to execute RAXML on one Cell four times faster than
on a dual-processor system with Hyperthreaded Xeon procgss
and 5-10% faster than on a single-processor system with la dua
core, quad-thread IBM Power5 processor.

1 INTRODUCTION

In the quest for delivering higher performance to sciengfipli-
cations, hardware designers began to move away from caonaht
scalar processor models and embraced architectures witiplau
processing cores. Although most commodity microprocesear
dors are already marketing multicore processors, theseepsors
are largely based on replication of simple scalar cores. otiinf
nately, these scalar designs exhibit well-known perforceaand
power limitations. These limitations, in conjunction wighsus-
tained requirement for higher performance, stimulatedrewed
interest in unconventional processor designs. The Celh@évand
Engine (BE) is a representative of these designs, whichdwestly
drawn considerable attention by industry and academiaceSin
was originally designed for the game box market, Cell hasdost
and a modest power budget. Nevertheless, the processdeitoab

Permission to make digital or hard copies of all or part o thork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thiis@and the full citation
on the first page. To copy otherwise, or republish, to postesmess or to redistribute
to lists, requires prior specific permission and/or a fee.

Alexandros.Stamatkis@epfl.ch

achieve unprecedented peak performance for some reathaprl
plications. IBM announced recently the use of Cell chips irear
Petaflop system with 16,000 Cells, due for delivery in 2008.

The potential of the Cell BE has been demonstrated convinc-
ingly in a number of studies [6, 19, 25]. Thanks to eight high-
frequency execution cores with pipelined SIMD capab#itiand
an aggressive data transfer architecture, Cell has a tiesdrpeak
performance of over 200 Gflops for single-precision FP dalcu
tions and a peak memory bandwidth of over 25 Gigabytes/ss@he
performance figures position Cell ahead of the competitipairest
the most powerful commodity microprocessors. Cell hasaalye
demonstrated impressive performance ratings in applicatand
computational kernels with highly vectorizable data patam,
such as signal processing, compression, encryption, dande
sparse numerical kernels [6, 9, 20].

This paper explores Cell from a different perspective, rigme
that of multigrain parallelization. The Cell BE is quite goe as a
processor, in that it can exploit orthogonal dimensionsasktand
data parallelism on a single chip. The processor is coetidlly an
SMT Power Processing Element (PPE), which usually serves as
scheduler for computations off-loaded to 8 SynergisticcBssing
Elements (SPEs). The SPEs are pipelined SIMD processors and
provide the bulk of the Cell's computational power.

A programmer is faced with a seemingly vast number of options
for parallelizing code on Cell. Functional and data decositmms
of the program can be implemented on both the PPE and the SPEs.
Typically, heavier load should be placed on the SPEs fordigh
performance. Functional decompositions can be achievexplity
ting tasks between the PPE and the SPEs and by off-loadikg tas
from the PPE to the SPEs at runtime. Data decompositions may
exploit the vector units of the SPESs, or be parallelized at lsv-
els, using loop-level parallelization across SPEs andovizettion
within SPEs. Functional and data decompositions can bie stat
dynamic, and they should be orchestrated to fully utilizéhtthe
eight SPEs and the PPE. Although the Cell vendors already pro
vide programming support for using some of the aforemeetion
parallelization options, actually combining and scheutyliayered
parallelism on Cell can be an arduous task for the programmer

To simplify programming and improve efficiency on Cell, we
present a set of dynamic scheduling policies and the agedcia
mechanisms. The purpose of these policies is to exploit tbpep
layers and degrees of parallelism from the application, riteo
to maximize efficiency of the Cell's computational cores. &e
plore the design and implementation of our scheduling pEsias-
ing RAXML [24]. RAXML is a computational biology code, which
computes large phylogenetic trees, using the Maximum Liiked
(ML) criterion. RAXML is extremely computationally inteive.
The code is embarrassingly parallel at the task-level atibés
intrinsic loop-level parallelism in each task. Therefoiejs a

good candidate for parallelization on Cell. For a real wdsld-
logical analysis, RAXML typically needs to execute 100 af0@
tree searches as well as bootstrapped tree searches. Eddsef
searches represents an independent task, with singleehkestps
that are both parallelizable and vectorizable.

This paper makes the following contributions:

e We present a runtime system and scheduling policies that ex
ploit polymorphic (task and loop-level) parallelism on Cel

Our runtime system is adaptive, in the sense that it chooses

the form and degree of parallelism to expose to the hardware
in response to workload characteristics. Since the rigbiogh

of form(s) and degree(s) of parallelism depends non-thvia
on workload characteristics and user input, our runtime sys
tem unloads an important burden from the programmer.

We show that dynamic multigrain parallelization is a neces-
sary optimization for sustaining maximum performance on
Cell, since no static parallelization scheme is able toehi
high SPE efficiency in all cases.

We present an event-driven multithreading execution exngin
which achieves higher efficiency on SPEs by oversubscribing
the PPE.

We present a feedback-guided scheduling policy for dynam-
ically triggering and throttling loop-level parallelisncss

SPEs on Cell. We show that work-sharing of divisible tasks
across SPEs should be used when the event-driven multi

the performance implications of multigrain parallelizatistrate-
gies on Cell, using a real-world parallel application frone tarea
of computational biology.

Eichenberger et. al [9] present several compiler techridae
geting automatic generation of highly optimized code foil.Ce
These techniques attempt to exploit two levels of parale)i
thread-level and SIMD-level, on the SPEs. The techniquesidie

" compiler assisted memory alignment, branch predictionSpar-

allelization, OpenMP thread-level parallelization, amampiler-

controlled software caching. The study of Eichenbergealetioes

' not present details on how multiple levels of parallelisra ex-
ploited and scheduled simultaneously by the compiler. Saliveg
layered and polymorphic parallelism is a central theme &f tia-
per. The compiler techniques presented in [9] are also cemgh-
tary to the work presented in this paper. They focus priranil ex-
tracting high performance out of each individual SPE, wasraur
work focuses on scheduling and orchestrating computatioosa
SPEs.

Although Cell has been a focal point in numerous articlejo-p
ular press, published research using Cell for real-worlcCH¥ppli-
cations beyond games is scarce. Hjelte [14] presents areimgpi-
tation of a smooth particle hydrodynamics simulation on Cdtis
simulation requires good interactive performance, sitd&s on
the critical path of real-time applications such as intévacsim-
ulation of human organ tissue, body fluids, and vehiculdfitta
Benthin et. al [3] present an implementation of ray-tracéigo-

- rithms on Cell, targeting also at high interactive perfonte.

threading engine of the PPE leaves more than half of the SPEs

idle. We observe benefits from loop-level parallelizatidn o

off-loaded tasks across SPEs. However, we also observe that3 RAXML-VI-HPC

loop-level parallelism should be exposed only in conjuorcti
with low-degree task-level parallelism. Its effect dinshés
as the degree of task-level parallelism in the application i
creases.

RAXML-VI-HPC (v2.1.3) (Randomized Axelerated Maximum
Likelihood version VI for High Performance Computing) [24]
a program for large-scale ML-based (Maximum Likelihood]j11
inference of phylogenetic (evolutionary) trees using iptétalign-

To put our study in a broader context, we present comparisons ments of DNA or AA (Amino Acid) sequences. The program is

of the Cell BE against IBM Power5, a leading multicore praoes

freely available as open source code at icwww.epfl.ch/"atakn

with SMT cores, and against a dual-processor SMP system with (software frame).

Hyperthreaded Xeon processors. Cell outperforms botligotas.
Taking into account cost and power efficiency, Cell exhibitsat
promise as the processor of choice for high-end systems lzeie c
lenging applications.

The rest of this paper is organized as follows: Section 2 pro-
vides a brief overview of related work on Cell. Section 3 dixs
RAXML. Section 4 outlines the architecture of the Cell BEcSe
tion 5 presents our runtime system and scheduling policies\g
with their experimental evaluation. Section 6 summarihegsaper.

2 RELATED WORK

We briefly summarize published research on Cell, which idetu
performance analysis of various aspects of the processoryati-
ous compiler/runtime support environments.

Kistler et. al [15] present results on the performance ofGké's
on-chip interconnection network. They show a series of gxpe
ments that estimate the DMA latencies and bandwidth of Gsithg
microbenchmarks. They also investigate the system behaniter
different patterns of communication between local stosgemain
memory. Williams et. al [26] present an analytical framekvtr
predict performance on Cell. In order to test their modetythse
several computational kernels, including dense matrixtiplida-
tion, sparse matrix vector multiplication, stencil corrgttigns, and
1D/2D FFTs. In addition, they propose micro-architectumaldi-
fications that can increase the performance of Cell whenabiper
on double-precision floating point elements. Our work coess

Phylogenetic trees are used to represent the evolutioristgm
of a set ofn organisms. An alignment with the DNA or AA se-
quences representing thoseorganisms (also called taxa) can be
used as input for the computation of phylogenetic trees. phya
logeny the organisms of the input data set are located atifike t
(leaves) of the tree whereas the inner nodes representegtim-
mon ancestors. The branches of the tree represent the tiie wh
was required for the mutation of one species into another ne
one. The inference of phylogenies with computational metho
has many important applications in medical and biologieakarch
(see [2] for a summary). An example for the evolutionary tée
the monkeys and the homo sapiens is provided in Figure 1.

Due to the rapid growth of sequence data over the last years,
it has become feasible to compute large trees which often- com
prise more than 1,000 organisms and sequence data fromakever
genes (so-called multi-gene alignments). This means figi-a
ments grow in the number of organisms as well as in sequence
length. The computation of the tree-of-life containingregenta-
tives of all living beings on earth is still one of tigeand challenges
in Bioinformatics.

The fundamental algorithmic problem computational phglog
faces consists in the immense amount of alternative tresdgjes
which grows exponentially with the number of organisms.g. for
n = 50 organisms there exist&@« 1078 alternative trees (number
of atoms in the universe: 10°9). In fact, it has only recently been
shown that the ML phylogeny problem is NP-hard [7]. In adufiti
ML-based inference of phylogenies is very memory- and fiaati
point-intensive such that the application of high perfoncecom-

2 original alignment as well as a large number (typically 10000)

RS & %
@5 g@g & e o §§ @ §’ L of bootstrap analyses have to be conducted (see [12] for am-ex
Milions of & & & & i & & \$§ ple of a real-world analysis with RAXML). Thus, if the datase
vears Ago < S ¢ f ¢ O 9 o< not extremely large, this represents the most reasonalpi®agh
7 * 7 , T to exploit HPC platforms from a user’s perspective.
5 “ v N— ’ . L Multiple Inferences on the original alignment are required in or-
10 v ¢ S L’ ’ der to determine the best-known (best-scoring) ML tree (s&e u
15 [S P . the term best-known because the problem is NP-hard). Thiis
- = z 4 tree which will then be visualized and published. In the cake
20 v ~ e RAXML, each independent tree search starts from a disttadiisg
25 ' AN . SN tree. This means, that the vast topological search spamversed
% N << ,’ from a different starting point every time and will yield finaees
- RN with different likelihood scores. For details on the RAxMéasch
35 S~ N algorithm and the generation of starting trees, the readesferred
40 Seg to [22].

Bootstrap Analyses are required to assign confidence values
ranging between 0.0 and 1.0 to the internal branches of tee be

45)

50 .' known ML tree. This allows to determine how well-supported-c
[]
1

tain parts of the tree are and is important for the biologimah-
; clusions drawn from it. Bootstrapping is essentially vamikar to
Common Ancestor multiple inferences. The only difference is that inferemeee con-

Figure 1. Phylogenetic tree representing the evolutionaryela- ducted on arandomly re-sampled alignment for every baaystin,

tionship between monkeys and the homo sapiens i.e._ a_certain amount of columns (typically 10—200_/0) is reig_med.
This is performed in order to assess the topological styhifi the

tree under slight alterations of the input data. For a tyigeaogi-
cal analysis, a minimum of 100 bootstrap runs is required.

All those individual tree searches be it bootstrap or midtip-
ferences are completely independent from each other anthoan
be exploited by a simple master-worker scheme.

55

puting techniques as well as the assessment of new CPUearchit
tures can contribute significantly to the reconstructiotaajer and
more accurate trees.

Nonetheless, over the last years there has been significant
progress in the field of heuristic ML search algorithms wiib te-
fﬁ;g%x%ig[?;32]UCh as IQPNNI[18], PHYML [13], GARLI [27] 4 THE CELL BROADBAND ENGINE

Some of the iargest published ML-based biological analyses Th_e main components of the Cell BE are a single _Power Pro-
date have been conducted with RAXML [12, 16, 17, 21]. The pro- C€SSINg element (PPE) and eight Synergistic Processingeis
gram is also part of the greengenes project [8] (greengiehesy) (SPEs) [10]. These elements are connected with an on-cleip El
as well as the CIPRES (CyberInfrastructure for Phylogen@f- ment Interconnect Bus (EIB). .
Search, www.phylo.org) project. To the best of the authom- The PPE is a 64-bit, dual-thread PowerPC processor, with Vec

tor/SIMD Multimedia extensions [1] and two levels of on4ghi
edge RAXML-VI-HPC has been used to compute trees on the two - .
largest data matrices analyzed under ML to date: a 25,06ta cache. The L1-land L1-D caches have a capacity of 32 KB, while

; ; . ; the L2 cache has a capacity of 512 KB. In this work we use a Cell
alignment of protobacteria (length: 1,463 nucleotides) a2,182- : .
taxon alignment of mammals (length: 51,089 nucleotides). blade with two Cell BEs running at 3.2 GHz, and 1GB of XDR

The current version of RAXML incorporates a significantly-im RAM (512 MB per p_rocessor). Th? PPESs run Linux Fedora Core 5.
proved rapid hill climbing search algorithm. A recent perfiance V€ use the Toolchain 4.0.2 compilers. .
study [24] on real world datasets with 1,000 sequences reveals The SPEs are the primary computing engines qf the Cell proces
that it is able to find better trees in less time and with lowenmory sor. Each SPE is a 128-bit processor with two major companent
consumption than other current ML programs (IQPNNI, PHYML, SYnergistic Processor Unit (SPU) and a Memory Flow Coreroll

GARLI). Moreover, RAXML-VI-HPC has been parallelized with ~ (MFC). All instructions are executed on the SPU. The SPU in-
MPI (Message Passing Interface), to enable embarrasgiagsi- cludes 128 registers, each 128 bits wide, and 256 KB of softwa

lel non-parametric bootstrapping and multiple inferermeslistinct controlled local storage. The SPU can fetch instructiort data
starting trees in order to search for the best-known ML tisee(only from its Iogal storage and can write data only to Its Icmar-_
Section 3.1 for details). In addition, it has been paraidi with age. The SPU implements a Cell-specific set of SIMD instonsti
OpenMP [23]. Like every ML-based program, RAXML exhibits a A." S|_ngle precision floating point operations on the. SPU“'.'?/

source of fine-grained loop-level parallelism in the likelod func- pipelined, and the SPU can issue one single-precisionriipabint
tions which consume over 90% of the overall computation time ©Peration per cycle. Double precision floating point opiers are

This source of parallelism scales particularly well on &ngemory- partially pipelined and two qloublel-precisionl floating poapera-
intensive multi-gene alignments due to increased cachaesfty. tions can be issued every six cycles. Double-precision Ffope

Finally, RAXML has also recently been ported to a GPU (Greghi ~ Mance is therefore significantly lower than single-prexisP per-
Proce)gsing Unit) [5]. y P (Grep formance. With all eight SPUs active and fully pipelined bigu

precision FP operation, the Cell BE is capable of a peak perfo
mance of 21.03 Gflops. In single-precision FP operation ek

3.1 The MPI Version of RAXML BE is capable of a peak performance of 230.4 Gflops [6].

The MPI version of RAXML exploits the embarrassing paral- The SPE can access RAM through direct memory access (DMA)
lelism that is inherent to every real-world phylogenetialysis. In requests. The DMA transfers are handled by the MFC. All pro-
order to conduct a “publishable” tree reconstruction aaiemhum- grams running on an SPE use the MFC to move data and instruc-

ber (typically 20—200) of distinct inferences (tree seas)on the tions between local storage and main memory. Data traesfdre-

tween local storage and main memory must be 128-bit alighibd.
size of each DMA transfer can be at most 16 KB. DMA-lists can
be used for transferring large amount of data (more than 15 KB
list can have up to 2,048 DMA requests, each for up to 16 KB. The
MFC supports only DMA transfer sizes that are 1,2,4,8 or ipld$

of 16 bytes long.

The EIB is an on-chip coherent bus that handles communitatio
between the PPE, SPE, main memory, and I/O devices. The EIB is
a 4-ring structure, and can transmit 96 bytes per cycle, foarad-
width of 204.8 Gigabytes/second. The EIB can support maga th
100 outstanding DMA requests.

5 SCHEDULING AND RUNTIME SUPPORT
FOR MULTIGRAIN PARALLELIZATION ON
CELL

In this section we present our scheduling policies and mti
support environment on Cell. We use RAXML to evaluate thé pol
cies and mechanisms. We first discuss briefly the optimiaatio
RAXML bootstraps for the Cell SPEs (Section 5.1). We discuss
our event-driven multithreading scheduler for task-lgasalleliza-
tion in Section 5.2. In Section 5.3, we discuss our adaptep |
scheduler and its implementation. Section 5.4 presenisigolnd
mechanisms to adaptively merge task-level and loop-leaehlp
lelism.

5.1 SPE Optimizations

A straightforward adaptation of the MPI version of RAXML on
Cell is to execute multiple MPI processes on the PPE and te hav
the major computational kernels of each process offloadeshto
SPE. Each MPI process executes one RAXML bootstrap at a time.
To identify the parts of RAXML that are suitable for SPE exému,
we profiled the code executed by an MPI process usingjthef
profiler. For all profiling and production run experimentegented
in this paper, we used the file 42C as input to RAXML. 425C
contains 42 organisms. Each organism is represented by a DNA
sequence of 1167 nucleotides.

On an IBM Power processor, 98.77% of the execution time of
RAXML is spent in the three main functions which compute the
likelihood: 76.8% of execution time is spentriawi ew(), 2.37%
of execution time is spent iaval uate(), and 19.6% of execu-
tion time is spent imakenewz() . These functions are the obvious
candidates for off-loading to SPEs. We off-load the funwias a
group, in a single code module loaded on each SPE. The adeanta
of having a single module is that it can be loaded to the |dcahge
of an SPE once and reused throughout the execution of thieappl
tion, unless a change in the degree or form of parallelisncigeel
on the SPEs is dictated by the runtime system.

A possible drawback with merging off-loaded functions iatth
the larger size of the code module reduces the space aeiabl
the SPE for the stack and heap segments. In the case of RAXML,
when all three functions are off-loaded, the total size &f thde
segment in the off-loaded file is 117KB. The remaining spac¢hée
local storage (139 KB) is sufficient for the stack and heapsegs,
since the working set of the SPE functions is small for réialis
problem sizes. In the general case, off-loading should b&aited
dynamically to achieve a good trade-off between code Ipycalata
locality and overall performance.

Naive off-loading has negative effect on performance for
RAXML. We measure the execution time of RAXML before and
after the three dominant functions are off-loaded, using thmead
on the PPE and one SPE. The execution time of RAXML before
off-loading any function to an SPE with the £ input is 38.23s.
The execution time after off-loading the three functionsré@ases

to 50.38s. There are several reasons which explain therpeaface
degradation caused by naive off-loading:

e The off-loaded code is working on double-precision floating
point numbers, and the double-precision FP operations are
neither vectorized, nor fully pipelined in the original @d

e Each mispredicted branch executed on an SPE incurs a 20
cycle penalty. In the off-loaded code, 45% of the execution
time is spent in condition checking, and the inherently cand
distribution of branch targets in the code makes the outcome

of the conditions hard to predict.

The DMA transfers between the local storage and the main
memory are not optimized.

The code uses expensive mathematical functions such as
[og() andexp() .

The communication between the PPE and the SPEs is not op-
timized.

We used this itemized list as a guideline for optimizing tiffe o
loaded code of RAXML on Cell. We implemented vectorization
of the ML calculation loops and vectorization of condititmawe
pipelined the vector operations, aggregated data tremsfied re-
placed the original mathematical functions with numeragaprox-
imations of the same functions from the Cell SDK library. The
specifics of these optimizations are beyond the scope ofpéhis
per. A detailed description is provided elsewhere [4]. Tke-e
cution time of the optimized SPE code of RAXML was reduced
from 50.38s to 28.82s, which corresponds to a speedup ofl/&2
single-threaded execution on the PPE. The optimizatioplydpto
1 to multiple inferences on the original alignment.

5.2 Scheduling Task-Level Parallelism

Mapping MPI code on Cell can be achieved by assigning one
MPI process to each thread of the PPE. Given that the PPE is a
dual-thread engine, MPI processes on the PPE can utilizetivo
of the eight SPEs via concurrent function off-loading. Wesider
two strategies to use the rest of the SPEs on Cell. The firstiis-m
level parallelization, and more specifically loop-levelrgieliza-
tion within the off-loaded functions and loop distributi@tross
SPEs. The second is a model for event-driven task-levell-para
lelism, in which the PPE scheduler oversubscribes the PRI wi
more than two MPI processes, to increase the availabilityasks
for SPEs.

We first examine the event-driven task parallelization nhode
since it provides an opportunity for coarse-grained paliattion.

We will refer to this model as EDTLP, for event-drivel task#l
parallelism, in the rest of the paper. In EDTLP, tasks cqmoesl to
off-loadable functions from MPI processes running coneuiily or

in a time-shared manner on the PPE. These tasks are served-by r
ning MPI processes using a fair sharing algorithm, such asdo
robin. The scheduler off-loads a task immediately upon estu
from an MPI process, and switches to another MPI processewhil
off-loading takes place. Switching upon off-loading pnetgeeMPI
processes from blocking the code while waiting for theiktat
complete on the SPEs.

EDTLP can be implemented using a user-level scheduler to in-
terleave off-loading across MPI processes. The schedukmiple
to implement and it can be integrated transparently in thgral
MPI code, provided that the tasks that need to be off-loaded a
annotated. EDTLP overcomes the problem of crippling untileru
lization of the cores, both PPEs and SPEs, when PPE threads do
not have tasks to off-load, or when PPE threads wait for cetigi
of already off-loaded tasks.

Multiplexing more than two MPI processes on the PPE intro-

duces system overhead due to context switching and due timp
costs following context-switching across address spasesh as
cache and TLB pollution. Furthermore, the granularity of tff-
loaded code is critical as to whether the multiplexing cast be
tolerated or not. The off-loaded code should be coarse éntug
mask the overhead of multiplexing. Our EDTLP scheduler uses
granularity control and voluntary context switches to a&ddrthese
issues.

Formally, the EDTLP scheduler executes a task graph compris
ing PPE tasks and SPE tasks. The scheduler follows a depmsden
driven execution model. If the scheduler locates a task tofhe
loaded in an MPI process, it searches for an idle SPE, andritis
one, it sends a signal to begin task execution. If no idle SPE i
found, the scheduler waits until an SPE becomes availalgteisge
denote the execution time of a task on an SRz, denote the time
needed to load the code of a task on the SPE tgr# denote the
time to send a signal from the PPE to an SPE to commence exe-
cution of an off-loaded task, or vice versa, to send a resatnf
an SPE back to the PPE. The scheduler selects to off-load task
that meet the conditiotype + tcode + 2comm < tppe, Wheretppe is
the execution time of the task on the PPE. Note that =0 if a
task is executed on an SPE more than once and for all exesution
of the task other than the first. Our runtime system preloat®a
tated SPE functions to amortize the code shipping cost. dbe c
remains on the SPEs, unless the runtime system decidesrigeha
its parallelization strategy and either trigger or thretibop-level
parallelism. This issue is discussed further in Section 5.4

Since the scheduler does not know the length of the taski®g;pr
it optimistically off-loads any user-designated task amdttles off-
loading for tasks that do not pass the granularity test. Tdément
this dynamic scheme, the code needs to maintain PPE and $PE ve
sions of off-loadable functions. This is an easy modifiaat&ince
PPE implementations of all off-loadable functions are ladé in
the original MPI version of the code. The modification comes a
the expense of an increased code footprint on the PPE. |ttiets
uler does not find tasks to off-load, it blocks until a new lofding
request originates from a PPE thread.

Figure 2 illustrates an example of the functionality of tHaTE.P
scheduler. The example uses PPE and SPE task sizes which ar
representative of RAXML functions. We show the executiotwaf
off-loaded tasks, with an approximately 1:3 length ratio. chse
(a), once a task is off-loaded by an MPI thread, the PPE sasgtch
context. At any time, two MPI threads can off-load tasks conc
rently, however multiplexing the MPI threads with EDTLP bles
the scheduler to use all 8 SPEs for a significant part of theseea
grained function, and at least 4 SPEs for a significant pathef
fine-grained function. In case (b), the scheduler runs gensily
one MPI thread on the PPE until all functions from that task ar
off-loaded. The implication is that 6 out of the 8 SPEs renidia
most of the time. In RAXML, the off-loaded tasks have dunasio
up to 96us. Their granularity is an order of magnitude finer than
the granularity of the Linux scheduler’s time quantum, whis a
multiple of 10 ms. Therefore, the OS scheduler is highly keili
to switch context upon function off-loading. The EDTLP sthler
resolves this problem, thus achieving higher SPE utilaratiThe
context switching overhead on the PPE is fi$per switch. This
overhead is low enough to tolerate up to 7 context switchagewh
one RAXML task is running.

We evaluate our EDTLP scheduler by comparing its perforraanc
to the performance achieved with the Linux 2.6.17 schedaet
without user-level scheduling support on our Cell blade.tHis
evaluation, we use the fully optimized version of RAXML, out
lined in Section 5.1. This version off-loads the three MLccal
lation functions to SPEs. From the total execution time a&f nan-
parametric bootstrap analysis of RAXML, 90% is spent to cotap

SPE

eoe
eee [
oo0 |
e0e |

(a)
Figure 2. Scheduler behavior for two off-loaded tasks, repe-
sentative of RAXML. Case (a) illustrates the behavior of our
EDTLP scheduler. Case (b) illustrates the behavior of the Linux
scheduler with the same workload. The numbers in the tasks
correspond to MPI processes. The shaded slots indicate cenxt
switches.

(b)

EDTLP | Linux
1 worker, 1 bootstrap | 28.46s | 28.42s
2 workers, 2 bootstraps 29.36s | 29.23s
3 workers, 3 bootstraps 32.54s | 56.95s
4 workers, 4 bootstraps 33.12s | 57.38s
5 workers, 5 bootstraps 37.27s | 85.88s
6 workers, 6 bootstraps 38.66s | 86.43s
7 workers, 7 bootstraps 41.87s | 114.92s
8 workers, 8 bootstraps 43.32s | 115.51s

Table 1. Performance comparison for RAXML with different
scheduling policies. The second column shows the execution
times with EDTLP. The third column shows execution times
with the Linux kernel scheduler. The input file is 42.SC.

e

on SPEs and 10% is spent to compute and schedule tasks on the
PPE. The average SPE computing time igt96The average PPE
computing time between consecutive offloads igd.1

Table 1 summarizes the results obtained from the experiment
The first column shows the number of workers used, and the amou
of work performed. RAXML is always executed in a massively pa
allel setting, with constant problem size (one bootstragy) MPI
process. The second column shows execution times of RAXML,
when the MPI processes on the PPEs are scheduled with theEDTL
scheduler. The third column shows execution times when tRé M
processes are scheduled by the Linux scheduler. |dea#iytotial
execution time should remain constant. The reasons whysthist
the case consists in the sub-optimal (90%) coverage oflpbcabe
executed on the SPEs, contention between MPI processésgshar
the SMT pipeline of the PPE, and SPE parallelization andtaync
nization overhead. The EDTLP scheduler keeps the exectitien
within a factor of 1.5 of the optimal and achieves about 2ute8
the performance of the Linux scheduler.

5.3 Scheduling Loop-Level Parallelism

The EDTLP model described in Section 5.2 is effective if the
PPE has enough coarse-grained functions to off-load to SREs
cases where the degree of available task parallelism isHassthe
number of SPEs, the runtime system can activate a second laye

of parallelism, by splitting an already off-loaded taskass mul-
tiple SPEs. We implemented runtime support for paralléiizaof
for-loops enclosed within off-loaded SPE functions. Weafialize
loops in off-loaded functions using work-sharing constswgimilar
to those found in OpenMP. In RAXML, all for-loops in the thiefé
loaded functions have no loop-carried dependencies, drhabogls
obtain speedup from parallelization, assuming that thexeaough
idle SPEs dedicated to their execution. The number of SPts ac
vated for work-sharing is user-controlled or system-colied, as
in OpenMP. We discuss dynamic system-level control of loap p
allelism further in Section 5.4.

As an example of loop-level parallelization, we use a loaprir
functioneval uat e(), shown in Figure 3.

for(i=..)

{

term= x1[i].a *
term+= x1[i].c *

* diagptable[i * 3];
* diagptable[i * 3 + 1];
* diagptable[i * 3 + 2];

x2[i].a
x2[i].c
term+= x1[i].g * x2[i].g
term+= x1[i].t * x2[i].t
term=log(term + (x2[i].exp) * log(mnlikelihood);

sum+= wptr[i] * term

}

Figure 3. A parallel loop in function eval uat e() of RAXML.

The basic work-sharing scheme we used is presented in Fgure
Before the loop is executed, a designated master SPE theadd a
signal to all SPE worker threads. After sending the sigmed rhain
thread executes its assigned portion of the loop. The magath
and all the workers fetch the chunk of data they need to egehetr
portions of the loop from the shared RAM. Global shared daid-m
ified during loop executions are committed to RAM. Data nelede
by the master SPE upon loop completion to make forward pssgre
are sent directly from the worker SPEs via SPE to SPE comraunic
tion, in order to avoid the latency of going through sharecinosgy.
SPE to SPE communication enables dependence-driven execut
of multiple parallel loops across SPEs.

In the example in Figure 3, the SPEs perform first a local re-
duction. The master SPE accumulates the local sum received f
worker SPEs in local storage and proceeds with executien edich
worker SPE signals completion of the loop.

5.3.1 SPE-SPE communication

The SPE threads participating in loop work-sharing comssru
are created once upon function off-loading. Communicagioong
SPEs patrticipating in work-sharing constructs is impletedmusing
DMA transfers and the communication structifass, shown in
Figure 5.

Master SPE
Worker SPE 1 Worker SF

#‘135(3’ 5§ﬁd5'5i9“3|~1‘!}’f‘?’ké L7777 master sends signal to worker n
For(... {

For(... For(... X

commit modified data
to main memor

commit modified ddta

commit modified d
to main memol I

to main memo

}

Figure 4. Parallelizing a loop across SPEs using a work-sharg
model.

wcrkerlsepdsresu1iié master el
e ____..--workern sends result to the master

struct Pass{

vol atile unsigned int vl_ad;
vol atile unsigned int v2_ad;
//...argunments for |oop body
vol atile unsigned int vn_ad;
volatile double res;
volatile int sig[2];

} __attribute_ ((aligned(128)));

Figure 5. The data structure Pass is used for communication
among SPEs. Thei_ad variables are used to pass the addresses
of input arguments for the loop body from one local storage to
another. The variablesi g is used as a notification signal that the
memory transfer for the shared data updated during the loop
has completed. The variable es is used to send results back to
the master SPE and as a dependence resolution mechanism.

cution to its local storage (functidret ch_dat a()). After finishing
the execution of its portion of the loop, a worker sets loctier es
parameter in the structuRass and sends the structuPass to the
master, usingend_t o_spe(). The master merges the result from
workers and commits it to main memory.

Immediately after callingsend_t o_spe(), the master partici-
pates in the execution of the loop. The master tends to haligha s
head start over the workers. The workers need to completralev
DMA requests before they can start executing the loop, ireord
to fetch the required data from the master’s local storagshared
memory. In fine-grained off-loaded functions such as thoseen-
tered in RAXML, load imbalance between the master and thé&wor
ers is noticeable. To achieve better load balancing, wéeehtster
to execute a slightly larger portion of the loop. A fully aotated
and adaptive implementation of this purposeful load unimitey is
obtained by timing idle periods in the SPEs across multipl®-

The Pass structure is private to each thread. The master SPE cations of the same loop. The collected times are used fandun

thread has an array &ass structures. Each member of this array
is used for communication with one SPE worker thread. Onee th
SPE threads are created, they exchange the local addrésbes o

iteration distribution in each invocation, in order to redudle time
on SPEs.
Table 2 shows the execution times of RAXML with one layer of

Pass structures. This address exchange is done through the PPEloop-level parallelism exploited in the off-loaded furts. We ex-
Whenever one thread needs to send a signal to a thread oreanoth ecute one bootstrap of RAXML, to isolate the impact of loeyel
SPE, itissues amf c_put () request and sets the destination address parallelism. The number of iterations in each parallelizp de-

to be the address of thiass structure of the recipient.

In Figure 6, we illustrate the loop from Figure 3, paralleliz
with work-sharing among SPE threads. Before executingdbp,|
the master thread sets the parameters oP#se structure for each
worker SPE and issues onéc_put () request per worker. This is
done insend_t o_spe(). Workeri uses the parameters of the re-

pends on the alignment length. For the8¢€ input file, the number
of iterations in each parallelized loop is 228.

The results in Table 2 suggest that using up to five SPEs for
loop parallelization achieves speedup over loop executising
one SPE. The maximum speedup is 1.58. Using five or more
SPE threads for loop parallelization decreases efficiembg rea-

ceivedPass structure and fetches the data needed for the loop exe- sons for the seemingly low speedup are the non-optimal egeer

1 worker, 1 bootsrtap, no LLP 28.71s
1 worker, 1 bootsrtap, 2 SPEs used for LILP20.83s
1 worker, 1 bootsrtap, 3 SPEs used for LILP19.37s
1 worker, 1 bootsrtap, 4 SPEs used for LILP18.28s
1 worker, 1 bootsrtap, 5 SPEs used for LILP18.10s
1 worker, 1 bootsrtap, 6 SPEs used for LILP20.52s
1 worker, 1 bootsrtap, 7 SPEs used for LILP18.27s
1 worker, 1 bootsrtap, 8 SPEs used for LILP24.4s
Table 2. Execution time of RAXML when loop-level parallelisn
(LLP) is used in one bootstrap, across SPEs. The input file is
42 SC.

of loop-level parallelism (less than 90% of the original sextial
code), the fine granularity of the loops, and the fact thatyran
the loops have global reductions, which constitute a hotti&.

To illustrate the need for selectively combining TLP and Lwe
conduct a set of experiments, in which we generate a varying-n
ber of bootstraps in RAXML, ranging from 1 to 128, and useistat
EDTLP and hybrid EDTLP-LLP parallelization schemes. When
LLP is used, each loop uses two or four SPEs, and the PPEs €an ex
ecute four or two concurrent bootstraps respectively, ugEDTLP.
This leads to a static multigrain scheme (EDTLP-LLP), wHedr®
is activated when four or less MPI processes are active oREte
When LLP is deactivated, we use EDTLP to off-load to all 8 SPEs
The combination of LLP and EDTLP in the static multigrain rebd
is not our final MGPS scheme, since it lacks dynamicity and as-
sumes prior knowledge of runtime program properties. Weuare
ing it solely for illustrative purposes.

Figure 7 shows the results with a varying number bootstraps.
x-axis shows the number of performed bootstraps, andytheis
shows the execution time in seconds. The EDTLP-LLP and EDTLP

Higher speedup from LLP in a single bootstrap can be obtained Schemes are compared.

with larger input data sets. Alignments that have a largenimer
of nucleotides per organism have more loop iterations twibige
across SPEs [23].

Master SPE:
struct Pass pass[Num SPE];

Worker SPE:
struct Pass pass;

for(i=0; i < Num_SPE; i++){
pass[i].sig[0] = 1;

whi | e(pass. si g[0] ==0);
fetch_data();

sen.d._i o_spe(i, &ass[i]); for (...)
} {

for (...) }

/* see Figure 3 */ tr->likeli = sum
} pass.res = sum
pass.sig[1l] = 1;
send_t o_nast er (&pass) ;

/* see Figure 3 */

tr->likeli = sum

for(i=0; i < NumSPE; i++){
while(pass[i].sig[1] == 0);
pass[i].sig[1] = 0;
tr->likeli += pass[i].res;

}

commit(tr->likeli);

Figure 6. Parallelization of the loop from function eval uat e()
of RAXML, shown in Figure 3. The left side shows the code
executed by the master SPE, while the right side shows the ced
executed by a worker SPENUm.SPE represents the number of
SPE worker threads.

5.4 Adaptive Scheduling of Task-Level and
Loop-Level Parallelism

No single parallelization technique gives the best peréoroe in
all possible situations on Cell, a result which is expectedmgthe
variable degree of parallelism available in different caments of
parallel workloads and the heterogeneity of the Cell aetitre.

We implemented a unified dynamic parallelization strategy,
which exploits multiple layers of parallelism, by mixingcamatch-
ing EDTLP with loop-level parallelization, under the casitof the
run-time system. We name this scheduling strategy multigrar-
allelism scheduling (MGPS). The goal of MGPS is to exploé th
best of two worlds (TLP and LLP), in response to workload ehar
acteristics. MGPS changes parallelization strategieseaadution
policies on the fly, while the program executes.

@

160

EDTLP-LLP with 2 SPEs per parallel loop -+~ _
140 + EDTLP-LLP with 4 SPEs per parallel loop - % -
EDTLP.~—
120 -]
R

100 - L P

60 L |

Execution time in seconds
%
3

W0l e e |
;

Number of bootsrtaps

(b)

1400

EDTLP-LLP with 2 SPEs per parallel loop - -+ - -
EDTLP-LLP with 4 SPEs per parallel loop = »* -
EDTLP —— 1|

1200
1000 |]
800 - - 1
600 |- * - i

400 - 1

Execution time in seconds
\
\
X

200 £ e 1

0 20 40 60 80 100 120 140
Number of bootsrtaps

Figure 7. Comparison between the static EDTLP-LLP and
EDTLP scheduling schemes. The input file is 45C. The num-
ber of ML trees created is (a) 1-16, (b) 1-128.

As expected, the hybrid model outperforms EDTLP when up to
4 bootstraps are executed, since only a combination of EDAARd?
LLP can use more than 4 SPEs simultaneously (see Section 5.2)
With 5 to 8 bootstraps, EDTLP activates 5 to 8 SPESs solelyafek-t
level parallelism, leaving room for loop-level parallefign at most
3 SPEs. This proves to be unnecessary, since the paralitee
time is determined by the length of the non-parallelizedladfded
tasks that remain on at least one SPE. In the range betweehl®an
bootstraps, combining EDTLP and LLP selectively, so thatfifst
8 bootstraps execute with EDTLP and the last 4 bootstrapsuéxe
with the hybrid scheme is the best option. Note that this sehe
is application-specific and requires an oracle to dictagertimtime
system when to use EDTLP or EDTLP combined with LLP. Note
also that the difference between EDTLP and the hybrid EDTLP-
LLP scheme is smaller with 9 to 12 total bootstraps, than witt
4 total bootstraps. In the former case LLP covers up to 11%9fo
bootstraps), to 33% (for 12 bootstraps) of the parallel cataton,

whereas in the latter case there are always enough SPEg shetha
entire parallel computation benefits from LLP.

ture to guide decisions between EDTLP and EDTLP-LLP. Fidure
shows the execution times of the MGPS, EDTLP-LLP and EDTLP

EDTLP becomes again the best choice with 13 to 16 bootstraps, schedulers with various RAXML workloads. Theaxis shows the

by the same argument that justifies its superior performavitte5
to 8 bootstraps. As the number of bootstraps increases,cite o
sional benefit from LLP diminishes, since execution timeamd
nated by task-level parallelism.

Our experimental observations point to the direction of a dy
namic and adaptive user-level scheduler to benefit fromigraln
parallelism on Cell. We implemented such a scheduler, MGRIS a
tested its performance with RAXML. MGPS extends the EDTLP
scheduler with an adaptive processor-saving policy. Theduler
is distributed, and it is attached to every MPI process inatheli-
cation. The scheduler is invoked upon requests for tasloaffing
(arrivals) and upon completion of off-loaded tasks (depasg). Ini-
tially, upon arrivals, the scheduler conservatively assigne SPE
to each off-loaded task, anticipating that the degree of EL§Uf-
ficient to use all SPEs. Upon a departure, the scheduler shbek
degree of task-level parallelism exposed by each MPI peofes
will call it U), i.e. how many discrete tasks were off-loaded to SPEs
while the departing task was executing, and how many SPEs wer
not used in the same period. This number reflects the hist@P&
utilization from TLP and is used to switch between the EDTIoR p
icy and the EDTLP-LLP policy. IfJ <4, andT is the number of
tasks waiting for off-loading, the scheduler activates lviikh L%j
SPEs assigned to the parallel loops of each task, if any. ¥ 4,
the scheduler retains the EDTLP policy, or deactivates [iflIR,P
was previously activated.

The scheduler is sensitive to the length of the history of ,TLP
maintained to calculate). As a heuristic, we maintain a history
of length equal to the number of SPEs. This gives the schedule
the opportunity of a hysteresis of up to 8 off-loaded taskgpiz
deciding whether to activate LLP. The MPI process that cetesl
the 8th, 16th, ..., task evaluatdsand signals all other processes to
release the idle SPEs, i.e. all SPEs that were not used dberigst
window of 8 off-loads. Depending on the valueldfthe scheduler
triggers or deactivates LLP. The implementation of the daker is
facilitated with a shared arena established between MRigsses,

number of bootstraps, while thyeaxis shows execution time.

(a)
160 T MGPS‘
140 EDTLP-LLP with 2 SPEs per parallel loop -~ |
EDTLP-LLP with 4 SPEs per par:\llel!j!f;\()p{ x -
P EDTLP —=&—
% 120 o
2 100 1
S
£ 80
2 60
E]
3
£ a0
20
0 .
0 2 4 6 8 10 12 14 16
Number of bootsrtaps

1400

MGPS —e—
EDTLP-LLP with 2 SPEs per parallel loop -- - -
EDTLP-LLP with 4 SPEs per parallel loop .-”% - |

P —e—

1000 - —

1200

800 - - f
600 -

400 -

Execution time in seconds

200 -

0 1 1
100 120

80

Number of bootsrtaps
Figure 8. Comparison between the MGPS, EDTLP and static
EDTLP-LLP schedulers. The input file is 42SC. The number
of ML trees created is (a) 1-16, (b)1-128. The curves of MGPS
and EDTLP overlap completely in (b).

L L L
0 20 40 60 140

We observe benefits from using MGPS for up to 28 bootstraps,
where LLP can be exploited by the scheduler in up to 4 conntirre
bootstraps. Beyond 28 bootstraps, MGPS converges to ECHdP,

to exchange signals and keep track of busy and idle SPEs at anyyoth are increasingly faster than the static multigrain EBILLP

scheduling point (arrivals and departures).

The switching between EDTLP and LLP is enabled by keeping
dual copies of each off-loaded function which includes astene
parallel loop. In the complete adaptive scheduling schesaeh
off-loaded function has two or three copies, one PPE copg, on
non parallelized SPE copy, and, if the function encapssijpégallel
loops, a parallelized SPE copy. Having multiple executabjgies
of functions increases the total size of the PPE and the SBE& co
However, multiple copies avoid the use of conditionals,clabare
particularly expensive on the SPEs.

A drawback of the scheduler is that it initially needs to moni
tor several off-loading requests from MPI processes, leafiaiking
a decision for increasing or throttling LLP. If the off-load re-
guests from different processes are spaced apart, therdoenay-
tended idle periods on SPEs, before adaptation takes plapeac-
tice, this problem appears rarely, first because applicatgpawn
parallelism early in the code and this parallelism can beatly
off-loaded to SPEs, and second because parallelism isafipic
spawned in bursts from all MPI processes. MGPS handlescappli
tions with static loop-level parallelism as well as apgiicas with
static hybrid parallelism, such as MP1/OpenMP applicatioTo
schedule applications that do not off-load enough tasksigger
adaptation, the scheduler uses timer interrupts.

scheme, as the number of bootstraps increases. The loelpkev
allel code in MGPS incurs additional overhead for loading piar-
allel loop code on idle SPEs, potentially replacing the imafjan
earlier off-loaded function on the SPEs and scheduling dog.|
Code replacements happen whenever the runtime system teeds
switch between a version with parallelized loops and a versf
the same function without parallelized loops, or vice ver$ais
overhead is not noticeable in overall execution time. Sohawo
our surprise, this overhead is lower than the overhead ofjusdbn-
ditionals to select between versions of each function Idadehe
same SPE code image. This is an after-effect of the slow lmandl
of branches on the SPEs.

5.5 Parallelizing Across Multiple Cells

Figure 9 shows the performance of the MGPS, EDTLP-LLP and
the EDTLP schedulers with RAXML on two Cell processors tleat r
side on a single blade. We use the same input file3€2 as in the
single-processor experiments. The results are quakdgtidentical
to the results obtained with one Cell processor. The EDTLP-L
model performs better with up to 8 bootstraps, since 8 auithi
SPEs are available across the two Cells for LLP. Beyond 8-boot
straps, task-level parallelism dominates and EDTLP perfobet-

We compare MGPS against the EDTLP scheduler and the staticter. MGPS outperforms both EDTLP-LLP and EDTLP.

hybrid (EDTLP-LLP) scheduler, which uses an oracle for the f

The reader may point out that since RAXML needs 100 to 1,000
bootstraps for real-world biological analysis, multigraaralleliza-

tion is obsolete. Our evaluation indicates that with moantth00
bootstraps, EDTLP is clearly the best option. The resultsanél-
lelization across two Cell processors provide a countgaaent.
For a fixed number of bootstraps, two Cells deliver almostéwi
the performance of one Cell. As the application is scaled td m
tiple Cell Processors in the same blade or across bladesingin
fewer bootstraps per Cell is better than clustering boapstin as
few Cells as possible. With 100 bootstraps, MGPS with mrdiig
(EDTLP-LLP) parallelism will outperform plain EDTLP if the
bootstraps are distributed between four or more dual-Gatids.
Taking into account future system scaling, the MGPS scheme i
justified in the range of interesting problem sizes for RAx/slihd
at modest system scales.

@
80 T T T T T =
MGPS ==+
EDTLP-LLP with 2 SPEs per parallePotp™- - - - -
70 1 EDTLP-LLP with 4 SPEs per parallel loop - = - 7
2 /EDTLP —=—
£ 60 |
8
£ 50
]
8
= 40
g
3
2 30
=
20
10 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Number of bootsrtaps

700 T T T

MGPS =———
EDTLP-LLP with 2 SPEs per parallel loop --p<- -
EDTLP-LLP with 4 SPEs per parallel loop. < % -

1P —=—

600

500 L7

X

400 -

300

200

Execution time in seconds

100

0 L L L L
40 60 80

Number of bootsrtaps
Figure 9. Comparison between MGPS, EDTLP and EDTLP-
LLP on two Cell processors. The input file is 42SC. The num-
ber of ML trees created is (a) 1-16, (b) 1-128. The curves of
MGPS and EDTLP overlap completely in (b).

L L
100 120 140

5.6 Comparison of Cell with Other Processors

As a last point in our evaluation, we compare the performarfice
the Cell implementation of RAXML and the MPI implementation
of RAXML on two real microprocessors with multicore and SMT
architecture:

¢ AnIntel Pentium 4 Xeon with Hyper-threading technology (2-
way SMT), running at 2GHz, with 8KB L1-D cache, 512KB
L2 cache, and 1MB L3 cache.

e A 64-bit Power5. The Power5 is a quad-thread, dual-core pro-
cessor with dual SMT cores running at 1.6 GHz, 32KB of L1-
D and L1-I cache, 1.92 MB of L2 cache, and 36 MB of L3
cache.
For all experiments, we use 42C as an input file. Figure 10
illustrates execution time versus the number of bootsrtajikile

conducting the experiments on IBM Power5, we use both cores,

and on each core we use both SMT execution contexts, i.eak tot

of four MPI processes runs on the Power5 processor. Since one

Intel Xeon processor has only two execution contexts, wetwee

Intel Xeon processors (lying on a 4-way SMP Dell PowerEdd#66
server), and on each processor we use both execution centéis
modification stirs the comparison in favor of the Xeon.

One Cell processor clearly outperforms the Intel Xeon byrgda
margin, even if two Xeons are used to run RAXML with the same
problem size. Cell performs slightly (5-10%) better thae tBM
Power5, once the problem size is scaled to 8 or more boosstrap
Although the margin of difference between Cell and Powertais
row, Cell has an edge over a general-purpose high-end moces
such as Power5, since it also achieves better cost-penfmenand
power-performance ratios.

@
180 T T T
Intel Xeon ——
160 [IBM Power5 - =
Cell with MGPS sch —
z 140 | 4
2
&
g 120 o
£ 4
g 10 o oxm -]
T 80 s
g —x=_
Z 60
2
o 40
20 -
0 .
0 2 4 6 8 10 12 14 16
Number of bootsrtaps

1400

" Intel Xeon
IBM Powers= » -

1200 Cell with MGPS schedudler —s—

1000 b
800 - b
600 - P b

400 - o= 1

Execution time in seconds
\

200 - = B

0

W s w1
Number of bootsrtaps

Figure 10. RAXML performance on different multithreaded

and multicore microprocessors: Intel Xeon, IBM Power5 and

Cell. The number of ML trees created is (a) 1-16, (b) 1-128.

. .
0 20 40 140

6 CONCLUSIONS

We investigated issues, policies and mechanisms pertatoin
scheduling multigrain parallelism on the Cell Broadbandjia.
We proposed an event-driven task scheduling policy for,Gailv-
ing for higher utilization via oversubscribing the PPE. Wavé
explored the conditions under which loop-level paraltaliwithin
off-loaded code can be used. We have also proposed a comprehe
sive scheduling policy for combining task-level and loepél par-
allelism autonomically within MPI code, in response to wodd
characteristics. Using a bio-informatics code with inimen@ulti-
grain parallelism as a case study, we have shown that oulessr
scheduling policies outperform the native OS scheduler ligca
tor of 2.6, and they are able to transparently exploit thegmpate
form and granularity of parallelism under widely varyingeextion
conditions. Although our results use a single applicatiasecstudy,
we believe they generalize to a broad range of applicatiosagic-
ularly those written in MP1 or in the hybrid MPI/OpenMP model
Our scheduler is responsive to small and large degreeslofdasl
and data-level parallelism, at both fine and coarse levetgarfu-
larity.

In future work, we intend to incorporate memory-relatedesia
into our SPE scheduling policies. RAXML simplified the megnor

management problem, since the major off-loaded functicnge h
small memory footprints and leave enough space for dateepsac
ing on the SPEs. At the same time, RAXML exhibits little shgri
of data between tasks loaded on SPEs. We intend to eliminhate t
assumption of fixed-size SPE code footprints during exilameof
scheduling policies in the future. We also plan to do moresstr
tests of our runtime system as more real-world applicatiodes
become available on Cell.

ACKNOWLEDGMENTS
This research is supported by the National Science Folordati

(Grants CCR-0346867 and ACI-0312980), the U.S. Department

of Energy (Grant DE-FG02-05ER2568), the Swiss Confedamati
Funding, the Barcelona Supercomputing Center, which gtaos
access to their Cell blades, and equipment funds from thie@ml
of Engineering at Virginia Tech.

7
(1]

(2]

(3]

(4]

(5]

[6] Thomas Chen, Ram Raghavan, Jason Dale, and Eiji Iwata.

(7]

REFERENCES

PowerPC Microprocessor Family: Vector/SIMD Multimedi
Extension Technology Programming Environments Manual.
http://www-306. ibm.com/chips/techlib.

D.A. Bader, B.M.E. Moret, and L. Vawter. Industrial appl
cations of high-performance computing for phylogeny recon
struction. InProc. of SPIE ITCom, volume 4528, pages 159—
168, 2001.

Carsten Benthin, Ingo Wald, Michael Scherbaum, and bleik
Friedrich. Ray Tracing on the CELL Processtechnical Re-
port, inTrace Realtime Ray Tracing GmbH, No inTrace-2006-
001 (submitted for publication), 2006.

Filip Blagojevic, Dimitrios S. Nikolopoulos, Alexands Sta-
matakis, and Christos D. Antonopoulos. Porting and Optimiz
ing Phylogenetic Tree Construction on the Cell Broadband
Engine. Technical report, Department of Computer Science,
Virginia Tech, August 2006.

M. Charalambous, P. Trancoso, and A. Stamatakis. Iréta
periences porting a bioinformatics application to a graphi
processor. Inn Proceedings of the 10th Panhellenic Confer-
ence on Informatics (PCI 2005), pages 415-425, 2005.

Cell broadband engine architecture and its first implementa
tion. IBM devel operWorks, Nov 2005.

Benny Chor and Tamir Tuller. Maximum likelihood of evo-
lutionary trees: hardness and approximati&noinformatics,
21(1):97-106, 2005.

[8] T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L.

Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. An-

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

dersen. Greengenes, a Chimera-Checked 16S rRNA Gene[25]

Database and Workbench Compatible with ARRpl. Envi-
ron. Microbiol., 72(7):5069-5072, 2006.

[9] A. E. Eichenberger et al. Optimizing Compiler for a Cetbp

[10]

[11]

cessor. Parallel Architectures and Compilation Techniques,
September 2005.

B. Flachs et al. The Microarchitecture of the Streamfig-
cessor for a CELL ProcessoRroceedings of the IEEE In-
ternational Solid-Sate Circuits Symposium, pages 184-185,
February 2005.

J. Felsenstein. Evolutionary trees from DNA sequendes
maximum likelihood approachlournal of Molecular Evolu-
tion, 17:368-376, 1981.

10

(26]

(27]

G. W. Grimm, S. S. Renner, A. Stamatakis, and V. Hemleben
A nuclear ribosomal dna phylogeny of acer inferred with max-
imum likelihood, splits graphs, and motif analyses of 606 se
quences. Evolutionary Bioinformatics Online, 2006. to be
published.

S. Guindon and O. Gascuel. A simple, fast, and accutgte a
rithm to estimate large phylogenies by maximum likelihood.
Yyst. Biol., 52(5):696—704, 2003.

Nils Hjelte. Smoothed Particle Hydrodynamics on thdl Ce
Brodband EngineMasters Thesis, June 2006.

Mike Kistler, Michael Perrone, and Fabrizio Petrini. elC
Multiprocessor Interconnection Network: Built for Speed.
IEEE Micro, 26(3), May-June 2006. Available from
http://hpc.pnl.gov/people/fabrizio/papers/ieeemicedl. pdf.

R. E. Ley, J. K. Harris, J. Wilcox, J. R. Spear, S. R. Mille
B. M. Bebout, J. A. Maresca, D. A. Bryant, M. L. Sogin, and
N. R. Pace. Unexpected diversity and complexity of the guer-
rero negro hypersaline microbial ma&ppl. Envir. Microbiol.,
72(5):3685 — 3695, May 2006.

R.E. Ley, F. Backhed, P. Turnbaugh, C.A. Lozupone, R.D.
Knight, and J.l. Gordon. Obesity alters gut microbial ecol-
ogy. Proceedings of the National Academy of Sciences of the
United Sates of America, 102(31):11070-11075, 2005.

Bui Quang Minh, Le Sy Vinh, Arndt von Haeseler, and
Heiko A. Schmidt. pIQPNNI: parallel reconstruction of
large maximum likelihood phylogenies. Bioinformatics,
21(19):3794-3796, 2005.

Barry Minor, Gordon Fossum, and Van
Terrain renderin engine (tre), http://www.
search.ibm.com/cell/whitepapers/tre.pdf. May 2005.

To.
re-

Fabricio Petrini, Gordon Fossum, Mike Kistler, and kel
Perrone. Multicore Suprises: Lesson Learned from Optimiz-
ing Sweep3D on the Cell Broadbend Engine.

C.E. Robertson, J.K. Harris, J.R.Spear, and N.R. FRioglo-
genetic diversity and ecology of environmental Archa@ar.-
rent Opinion in Microbiology, 8:638—642, 2005.

A. Stamatakis, T. Ludwig, and H. Meier. Raxml-iii: A fas
program for maximum likelihood-based inference of large
phylogenetic treesBioinformatics, 21(4):456—463, 2005.

A. Stamatakis, M. Ott, and T. Ludwig. Raxml-omp: An effi-
cient program for phylogenetic inference on smpsPtac. of
PaCTO05, pages 288—-302, 2005.

Alexandros Stamatakis. RAXML-VI-HPC: maximum
likelihood-based phylogenetic analyses with thousands of
taxa and mixed modeld$ioinformatics, page btl446, 2006.

Alias Systems. Alias cloth technology demonstrationthe
cell processor, http://www.research.ibm.com/cell/ wpd-
pers/aliascloth.pdf. 2005.

Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kam
Parry Husbands, and Katherine Yelick. The Potentinal of the
Cell Processor for Scientific Computind\CM International
Conference on Computing Frontiers, May 3-6 2006.

Derrick Zwickl. Genetic Algorithm Approaches for the Phylo-
genetic Analysis of Large Biologiical Sequence Datasets un-
der the Maximum Likelihood Criterion. PhD thesis, Univer-
sity of Texas at Austin, April 2006.

