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Abstract

The task of providing an optimal analysis of the state of the atmosphere

requires the development of dynamic data-driven systems that efficiently

integrate the observational data and the models. Data assimilation (DA) is

the process of adjusting the states or parameters of a model in such a way

that its outcome (prediction) is close, in some distance metric, to observed

(real) states. It is widely accepted that a key ingredient of successful data

assimilation is a realistic estimation of the background error distribution.

This paper introduces a new method for estimating the background errors

which are modeled using autoregressive processes. The proposed approach

is computationally inexpensive and captures the error correlations along the

flow lines.



1 Introduction

Our ability to anticipate and manage changes in atmospheric pollutant concentrations

relies on an accurate representation of the chemical state of the atmosphere. As our

fundamental understanding of atmospheric chemistry advances, novel data assimilation

tools are needed to integrate observational data and models together to provide the best,

physically consistent estimate of the evolving chemical state of the atmosphere.

The close integration of observational data is recognized as essential in weather and

climate analysis and forecast activities, and this is accomplished by a mature experience

and infrastructure inmeteorological data assimilation [Daley, 1991; Kalnay, 2002; Courtier

et al., 1998; Rabier et al., 2000]. Data assimilation is vital for meteorological forecasting

and has started to be applied in chemical transport modeling [Elbern et al., 1997; Fisher

and Lary, 1995; Van Loon et al., 2000; Menut et al., 2000].

In this paper we focus on data assimilation applied to atmospheric chemical transport

models (CTMs). CTMs are designed to describe the fate and transport of atmospheric

chemical constituents associated with the gas and aerosol phases. CTMs have become

an essential element in atmospheric chemistry studies, including important applications

such as providing science-based input into best alternatives for reducing pollution levels

in urban environments. They can be used in designing cost-effective emission control

strategies for improved air quality, for the interpretation of observational data such as

those obtained during intensive field campaigns, air-quality forecasting, and assessments

into how we have altered the chemistry of the global environment.

The distinguishing feature of CTMs is the presence of nonlinear and stiff chemical

interactions occurring at characteristic time scales that are typically much shorter than the

transport time scales. CTMs propagate the model state forward in time from the “initial”

state c(tB) to the “final” state c(tF) (1). Perturbations (small errors) evolve according to the

tangent linear model (2), and adjoint variables according to the adjoint model (3):

c(tF) =MtB→tF
(
c(tB)

)
(1)

δc(tF) = MtB→tF δc(t
B) (2)

λ(tB) = M∗
tF→tB λ(t

F) . (3)

HereM,M, andM∗ denote the solution operators of the CTM, the tangent linear, and the
adjoint models, respectively. The error covariance matrix evolves from B (at tB) to P (at

tF) according to

P =MtB→tF BM
∗
tF→tB +Q , (4)
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where Q is the covariance of the model errors.

The background, or initial state of an atmospheric model, is not known exactly, and

can be correctly represented only in a probabilistic framework that accounts for the un-

certainty.

We can represent the background state cB as the sum of an average (most likely) state

c̄B plus an error (uncertainty) field δcB,

cB = c̄B + δcB . (5)

The error field is considered to be unbiased and with the background covariance B,

〈
δcB

〉
= 0 ,

〈
δcB

(
δcB

)T〉
= B . (6)

In ensemble forecasting, one of the major challenges is the specification of the initial

ensemble. For a correct ensemble distribution, each member is drawn from the same pdf

that produced the true system state, and is impossible to distinguish between ensemble

members and truth. Hansen [Hansen, 2002] argues that the initial ensemble should

sample the (local) system attractor. Molteni et al. [1996] and Barkmeijer et al. [1998, 1999]

use the leading singular vectors (with respect to the energy norm) of the linear propagator

to identify the directions in phase space associated with maximum perturbation growth

during the early parts of the forecast period. Toth and Kalnay [1997] determine the

directions of maximum error growth by “breeding” the perturbation vectors, i.e. letting

the perturbations grow through the system evolution andperiodic rescaling. Distance and

flow information can also be used in ensemble initialization [Buehner, 2004; Zupanski,

2005].

The aim of this paper is to construct models of B which account for the spatial cor-

relations of errors in atmospheric models in a “sensible” way, mimic the decay of the

correlation with distance, and are computationally inexpensive and easy to implement.

We focus on CTM applications and investigate the effectiveness of this new method on

a CTM variational data assimilation problem. Constantinescu et al. [2006c] have already

applied the approach described in this paper to an ensemble data assimilation problem.

The contributions of this work include: (1) the introduction of a new method to generate

autoregressive (AR) models for the background errors, (2) the application of these models

to variational and ensemble data assimilation, and (3) the study of the effects of using the

autoregressive models to solve a real chemical data assimilation problem.

The paper is organized as follows. Section 2 introduces the chemical transport models

and discusses the correlation of errors. Section 3 develops the autoregressive error model

approach and Section 4 describes the practical implementation. Section 5 illustrates the
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use of the new background error model in a real, large scale data assimilation test, and

Section 6 summarizes the results of this research.

2 Chemical Transport Models and State Errors

Chemical transport models solve the mass-balance equations for concentrations of trace

species in order to determine the fate of pollutants in the atmosphere [Carmichael et al.,

2003, 2006; Liao et al., 2005].

Let cs be the mole-fraction concentration of chemical species s,Qs be the rate of surface

emissions,Es be the rate of elevated emissions, and fs be the rate of chemical transformation

for this species. Further, u is the wind field vector, K the turbulent diffusivity tensor, ρ is

the air density, and V
dep
s is the deposition velocity. The boundaries Γ

{in,out,ground} represent

the inflow, outflow, and ground boundaries, respectively. The evolution of cs is described

by the following equations

∂cs
∂t
= −u∇cs +

1

ρ
∇(ρK∇cs) +

1

ρ
fs(ρc) + Es, t

0 ≤ t ≤ tB, 1 ≤ s ≤ Nspec

cs(t
0, x) = c0s (x),

cs(t, x) = c
in
s (t, x) for x ∈ Γin (7)

K
∂cs
∂n
= 0 for x ∈ Γout

K
∂cs
∂n
= V

dep
s cs −Qs for x ∈ Γground

We refer to the equations (7) as the forward model.

A perturbation δc0 of the initial conditions will result in perturbations δc(t) of the

concentration field at later times. The evolution of these perturbations is governed by the

equations:

∂δcs
∂t
= −u∇δcs +

1

ρ
∇(ρK∇δcs) + Fs,∗(ρc)δc + φs , t0 ≤ t ≤ tB , 1 ≤ s ≤ Nspec

δcs(t
0, x) = δc0s (x),

δcs(t, x) = δc
in
s (t, x) for x ∈ Γin (8)

K
∂δcs
∂n
= 0 for x ∈ Γout

K
∂δcs
∂n
= V

dep
s δcs − δQs for x ∈ Γground

Equations (8) are referred to as the tangent linear model associated with the forward model
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(7). Here F = ∂ f/∂c denotes the Jacobian of the chemical rate function f , and Fs,∗ is its s-th

row. The stochastic forcing function φs describes the model errors.

Our approach to modeling the background errors is as follows. We consider a simula-

tion that starts at t0 (a distant time in the past) and ends at the background time tB. During

this interval errors (or uncertainties) in the conditions at time t0 are evolved according to

the TLM equations, and correlations between different components of the model error are

established.

To better understand the relationship between the tangent linear model (8) which

governs the evolution of perturbations and autoregressive models, we first discuss the

one-dimensional advection diffusion equation, then the box chemical model.

2.1 Correlation of Errors

We now consider the correlation function between errors in two species, at two different

locations, at the same time instant:

Rs,q(t, x, y) =
〈
δcs(t, x), δcq(t, y)

〉
. (9)

Here 〈·〉 denotes the ensemble average.
For simplicity, we consider the one-dimensional advection-diffusion-reaction of a sin-

gle species c in an infinite spatial domain. Assume that u, ρ,K are constant in space and

time, and that the chemical reaction is a simple decay equation, f (ρc) = −Lc. The evolution
of the concentration perturbation in time is governed by

∂δc

∂t
= −u∂δc

∂x
+ K
∂2δc

∂x2
− Lδc, t0 ≤ t ≤ tB (10)

t0 = 0 , δc(0, x) = δc0(x) .

The general solution of the equation (10) is derived in Appendix A and has the form

δc(t, x) =
e−Lt√
π

1

2
√
Kt

∫

R

e
−
(
x−z−ut
2
√
Kt

)2
δc0(z) dz (11)

Random initial perturbations Consider now that the initial perturbations δc0 are a ran-

dom process in space. Correlations develop due to the TLMdynamics, and the covariance

function at time t > 0 as

R(t, x, y) =
〈
δc(t, x) , δc(t, y)

〉

=
e−2Lt

4πKt

∫

R

∫

R

e
−
(
x−z−ut
2
√
Kt

)2
−
(
y−w−ut
2
√
Kt

)2 〈
δc0(z), δc0(w)

〉
dz dw
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For the particular case where the initial random process has uniform variance and is

totally uncorrelated 〈
δc0(z), δc0(w)

〉
= σ2 δz−w

the covariance function is

R(t, x, y) = σ2
e−2Lt

4πKt

∫

R

e
−
(
x−z−ut
2
√
Kt

)2
−
(
y−z−ut
2
√
Kt

)2
dz

= σ2
e−2Lt√
π

e
−
(
x−y√
8Kt

)2

√
8Kt

For given x and y (with x , y) the covariance R(t, x, y) as a function of time has amaximum

value at

tmax =
τ

8




√
1 + 4

(x − y
D

)2
− 1




where τ is the chemical lifetime of the species defined as the inverse of the destruction

rate

τ =
1

L

and D is the “characteristic length”

D =

√
K

L
=
√
Kτ .

The maximum value of the covariance of the solution at two locations x , y is

R(tmax, x, y) =
σ2√
πD

e−
1
2

√
4( x−yD )

2
+1

√√
4
(
x−y
D

)2
+ 1 − 1

≈ σ2√
2πD

e−
|x−y|
D

√
|x−y|
D

for |x − y| ≫ D

It is clear that the errors in initial conditions, when evolved through the tangent linear

convection-diffusion-reaction equation, develop spatial correlations. The characteristic

distance D =
√
K/L =

√
Kτ is in fact the spatial correlation distance. It increases with

increased diffusion strength and decreaseswith increased chemical destruction rate. Thus

the developed spatial correlation distance is smaller for fast lived species and larger for

long-lived species.

Note that in this simple example the spatial correlation at t > 0 between the solu-

tion at points x and y depends on the distance between the points x − y, the diffusion
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coefficient K and the reaction rate L, but does not depend on the wind velocity u. How-

ever, it should be clear from the above derivation that if the initial condition is correlated

(〈δc0(z), δc0(w)〉 , 0 for some z , w), or if it is decorrelated but the variance is space de-
pendent (〈δc0(z), δc0(w)〉 = σ2(z) δz−w) then the correlation R(t, x, y), t > 0, will depend on u
as well.

Random forcing Consider now the simplemodel (10) started from a deterministic initial

condition (δc0 = 0) but excited by an additive white noise process ζ(t)

∂δc

∂t
= −u∂δc

∂x
+ K
∂2δc

∂x2
− Lδc + ζ, 0 ≤ t ≤ tB (12)

δc(0, x) = 0 ,
〈
ζ
〉
= 0 ,

〈
ζ(t1, x1) ζ(t2, x2)

〉
= σ2 δt1−t2 δx1−x2 .

Thederivationpresented inAppendixB reveals that the covariance functionof the solution

after long integration times t→∞ tends to the stationary value

R(t = ∞, x, y) = τ σ
2

√
2D
e
−
∣∣∣x − y

∣∣∣
D

The spatial correlation distance in the stationary regime is D =
√
K/L =

√
Kτ.

The conclusion of this analysis is that the random perturbations in both the initial

conditions and in the forcing, lead, through the dynamics of the tangent linear model,

to random perturbations in the solution. The solution perturbations are correlated in

space with a characteristic correlation distance D =
√
K/L. The correlation distance is

influenced directly by the chemical reactions, with errors in fast lived species having a

shorter correlation distance than long lived species, which is a sensible conclusion.

3 Autoregressive Models of Background Errors

3.1 One-dimensional Advection-Diffusion Equation

Consider the advection and diffusion of a single species c:

∂c

∂t
= −u∂c

∂x
+
1

ρ

∂

∂x

(
ρK
∂c

∂x

)
, t0 ≤ t ≤ tB (13)

c(t0, x) = c0(x) , c(t, x) = cin(t, x) for x ∈ Γin , K∂c
∂x
= 0 for x ∈ Γout

We consider that the model started in the remote past from an uncertain initial condition

c0 + δc0, and is evolving with known (deterministic) boundary conditions (δcin = 0).
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The model state perturbations evolve in time according to the tangent linear model

∂δc

∂t
= −u∂δc

∂x
+
1

ρ

∂

∂x

(
ρK
∂δc

∂x

)
+ φ , t0 ≤ t ≤ tB (14)

δc(t0, x) = 0 , δc(t, x) = 0 for x ∈ Γin , K∂δc
∂x
= 0 for x ∈ Γout .

The system evolves subject to an external stochastic forcing function φ which represents

the model errors. We want to estimate the cumulative effect of these perturbations at time

tB.

Consider a discretization of (14). The spatial discretization uses the first order upwind

formula for advection and central finite differences for diffusion. A single implicit Euler

step is taken from t0 to tB. The implicit Euler method is unconditionally stable. Moreover,

this discretization is monotonic for any value of the step size.

The discrete tangent linear model reads

δcBj = δc
0
j −
u+
j
∆t

∆x

(
δcBj − δcBj−1

)
−
u−
j
∆t

∆x

(
δcBj+1 − δcBj

)
(15)

+ ∆t

(
ρ j+1K j+1 + ρ jK j

)
δcB
j+1
− 4ρ jK j δcBj +

(
ρ jK j + ρ j−1K j−1

)
δcB
j−1

2ρ j∆x2
+ ∆tφ j

δc0 = 0 , δc j = 0 for x j ∈ Γin , K j
∂δc

∂x
= 0 for x j ∈ Γout .

Equation (14) has the form of an autoregressive model

α j−1 δc
B
j−1 + α j δc

B
j + α j+1 δc

B
j+1 = ξ j

where the random variable ξ j = δc
0
j
+ ∆tφ j is the noise added to the process. The values

of the autoregressive coefficients are given by the discretization:

α j−1 = −
∆t

2∆x2ρ j

(
K j−1ρ j−1 + ρ j(K j + 2∆xu

+
j )
)
,

α j = 1 −
∆t

∆x2

(
∆x(u−j − u+j ) − 2K j

)
,

α j+1 = −
∆t

2∆x2ρ j

(
K j+1ρ j+1 + ρ j(K j − 2∆xu−j )

)
.

Ageneral spatial discretizationwith a stencil of 2p+1 points and solved in time by implicit

Euler leads to the following AR model:

p∑

k=−p
α j+p δc

B
j+p = ξ j (16)

7



Monotonicity Consider the case where the initial perturbation is bounded, δcmin ≤ δc0 ≤
δcmax, and the external forcing is null, φ = 0. The monotonicity of the implicit Euler

scheme coupled with the first order upwind advection and central diffusion implies that

δcmin ≤ δcB ≤ δcmax. Therefore the magnitude of the initial perturbations is not increased,
but correlations are developed.

ARMAModels It is clear that theARmodel (16) of the background error canbe extended

to an ARMAmodel (albeit at the expense of losing the direct relationship with the model

(13)):

p∑

k=−p
α j+p δc

B
j+p =

p∑

k=−p
β j+p ξ j+p . (17)

3.2 Box Model Chemistry

We now consider the following singular perturbation model for the chemical system:

d

dt



cslow

cfast


 =



f (cslow, cfast)

ε−1 g (cslow, cfast)


 ,



cslow(t

0)

cfast(t
0)


 =



c0
slow

c0
fast


 . (18)

As a technical condition in the chemical system (18) we have the sub-Jacobian ∂g/∂cfast

nonsingular, which implies that the limit DAE is of index-1 [Hairer et al., 1993].

The model (18) distinguishes between the fast and the slow species. The separation

of scales is given by the parameter ε since cslow evolves on O(1) characteristic times while
cfast evolves on O(ε) time scales. The smaller ε, the faster the evolution of cfast, and in the
limit ε→ 0 we have that

g (cslow, cfast) = 0 .

This condition formally expresses the quasi-equilibrium of the system outside the initial

transient. Since ∂g/∂cfast is nonsingular, the quasi-equilibrium relation allows to express

the fast species as a function of the slow ones.

Small errors in the initial conditions propagate according to the tangent linear model

d

dt



δcslow

δcfast


 =




∂ f

∂cslow

∂ f

∂cfast

ε−1
∂g

∂cslow
ε−1

∂g

∂cfast






δcslow

δcfast


 ,



δcslow(t

0)

δcfast(t0)


 =



δc0
slow

δc0
fast


 . (19)
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The quasi-equilibrium condition for the perturbations outside the initial transient is ob-

tained by taking the limit ε→ 0

∂g

cslow
δcslow +

∂g

cfast
δcfast = 0 ⇒ δcfast = −

(
∂g

cfast

)−1
∂g

cslow
δcslow . (20)

This shows that due to quasi-equilibrium the errors in the fast components and slow

components are strongly correlated (the errors in the fast components are determined by

the errors in the slow ones).

One backward Euler step applied to (19) leads to the discrete model




I − ∆t ∂ f
∂cslow

−∆t ∂ f
∂cfast

−∆t ε−1 ∂g
∂cslow

I − ∆t ε−1 ∂g
∂cfast



·


δcB
slow

δcB
fast


 =



δc0
slow

δc0
fast


 , (21)

which again is an autoregressivemodel for the errors. Taking the limit ε→ 0 in (21) leads to
equation (20) for the fast and slow components of δcB. Consequently, the autoregressive

model (21) captures the error correlations introduced by quasi-equilibrium in the stiff

chemical system evolution.

4 Three-dimensional Multi-component ARModels

We now discuss the construction of three-dimensional autoregressive models for back-

ground errors. Consider a spatial domain D discretized using a structured grid of
(NX,NY,NZ) gridpoints. We will denote by (i, j, k) the space gridpoint index. If NS is

the total number of different chemical species, then the dimension of the model state

vector is N = NX ×NY ×NZ ×NS.
The background state cB is represented as the sum of the average state c

B
plus an error

(uncertainty) field δcB. The error field has zero mean and background covariance B (5, 6).

Our basic assumption is that the background state errors form a multilateral autore-

gressive (AR) process [Hasselmann, 1976] of the form

δcBi, j,k + α
(±1)
i, j,k
δcBi±1, j,k + β

(±1)
i, j,k
δcBi, j±1,k + γ

(±1)
i, j,k
δcBi, j,k±1 = σi, j,k ξi, j,k . (22)

The model (22) captures bilateral correlations among neighboring grid points in the x,

y and z directions (with the coefficients α, β, and γ respectively). Constant correlation

coefficients α, β, γ imply fixed spatial directional correlations, whereas space-dependent

coefficients allow to capture flow dependent correlations. The last term represents the
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additional uncertainty at each grid point, with ξ ∈ N(0, 1) normal random variables and
σ the local error variance. The motivation behind multilateral AR models is the fact that

(22) – with proper coefficients – can be regarded as a finite difference approximation of

the tangent linear model of the advection-diffusion-reaction equation.

The AR process (22) can be represented compactly as

A δcB = Σ ξ , Σ = diag(σi, j,k) , ξ ∈ N(0, 1) . (23)

The N ×N background error covariance matrix is

B =
〈
δcB

(
δcB

)T 〉
=

〈
A−1 Σ ξ

(
A−1 Σ ξ

)T 〉
= A−1

〈
Σ ξ ξTΣ

〉
A−T = A−1 Σ2 A−T , (24)

and the corresponding correlation matrix is

C = diag(B)−1/2Bdiag(B)−1/2 .

4.1 ARModels in Data Assimilation

Wenowdiscuss the application of the ARbackground covariance errormodel to ensemble

Kalman filter [Houtekamer and Mitchell, 2001; Houtekamer et al., 2005; Constantinescu

et al., 2006c,b] and to 4D-Var [Elbern and Schmidt, 1999, 2001; Elbern et al., 1999; Fisher

and Lary, 1995; Menut et al., 2000; Chai et al., 2006a,b; Constantinescu et al., 2006a] data

assimilation applications. A good review of the latest techniques in atmospheric chemical

data assimilation can be found in [Carmichael et al., 2006]. It is well known that a

representative background covariance matrix is essential for both techniques in order to

achieve a good fit of the results.

In chemical atmospheric modeling data assimilation problems, the covariance matrix

is usually approximated using the NMCmethod [Parrish and Derber, 1992]. In the NMC

method, the differences between several forecasts verifying at the same time are used

to approximate the background error Chai et al. [2006b]. The AR approach proves less

expensive and more effective than the NMC approach.

4.1.1 Ensemble Data Assimilation: EnKF

In the ensemble Kalman filter data assimilation, the error is evolved in time through an

ensemble of model runs. An important problem is the generation of the initial ensem-

ble. Each member is formed by adding a different perturbation δcB to the initial “best

guess” (background) state. The ensemble of perturbations should correctly sample the

probability distribution of background errors. Building the initial ensemble based on the
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distance and flow dependence has been discussed in [Riishojgaard, 1998; Buehner, 2004;

Zupanski, 2005]. In their formulation, the background representation relied on a certain

mathematical model and/or a set of empirical assumptions. Here we introduce an ana-

lytic approach to this problem that can be adapted to a large class of models reducing the

empirical assumptions to a minimum, if any.

Using the AR model (23), the background perturbation that defines the m-th member

of the ensemble is obtained as

δcB[m] = A
−1 Σ ξ[m] ,

where ξ[m] ∈ (N(0, 1))N is a vector of realizations of N independent normal random
variables of mean 0 and standard deviation 1. The perturbation is generated by scaling

the normal variables with the proper standard deviations, then solving a linear system

with the AR coefficient matrix A.

The abovedescribedapproachwas successfullyusedbyConstantinescuet al. [2006c,a,b]

to initialize EnKF data assimilation experiments applied to a reactive transport problem.

4.1.2 Variational Data Assimilation: 4D-Var

In the 4D-Var data assimilation the best state estimate is obtained as the minimizer of the

following cost function:

J = 1
2

(
c − cB

)T
B−1

(
c − cB

)
+
1

2

n∑

i=0

(obsi −Hici)T R−1i (obsi −Hici) (25)

Using the AR representation of the background covariance (24), we have

B−1 = AT Σ−2 A .

The 4D-Var cost function can be computed as

z = Σ−1 A
(
c − cB

)
,

J = 1
2
zT z +

1

2

n∑

i=0

(obsi −Hici)T R−1i (obsi −Hici) .

The ARmodel is particularly advantageous in the 4D-Var context where the evaluation of

the background term in the cost function only requires one matrix-vector multiplication

by the AR coefficient matrix A, and one component-wise scaling (multiplication by the

diagonal matrix Σ−1).

In the numerical results section of this paper we show a comparison between data

assimilation experiments applied to the same reactive flow problem using different types

of background covariances: diagonal, NMC, and AR.
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4.2 Implementation Aspects

Our approach is to construct the ARmodel (22) using the coefficients A of a discretization

of the advection–diffusion–reaction operator. A computationally efficient approach is to

obtain A via operator splitting of the chemistry and transport, followed by dimensional

splitting of the three-dimensional advection-diffusion equation.

The dimension of the background covariance matrix is N × N with N ∼ 106 − 108
for realistic chemical transport models. Operator and dimensional splitting allow the

representation ofA andB asproducts of small, sparsematrices, thus reducingdramatically

the costs associatedwithmatrix-vectormultiplications and linear system solutions, aswell

as the total storage requirements.

Specifically, let us consider a three dimensional atmospheric model solved by splitting

the horizontal transport from the vertical transport and the chemistry. The concentration

of species s in gridpoint (i, j, k) at tn is denoted ci, j,k,s. The vector of concentrations of species

s in a horizontal plane is denoted by c1:NX,1:NY,k,s, and in a column by ci, j,1:NZ,s. The vector

of concentrations of all species in the gridpoint is denoted by ci, j,k,1:NS . The vector of all

concentrations is c = c1:NX,1:NY,1:NZ,1:NS
Usingmonotonic spacediscretizations and thebackwardEuler time integrationmethod,

the solution of the horizontal transport over a time step ∆t is obtained as

Hk,s(∆t) δc
n+1
1:NX,1:NY,k,s

= δcn1:NX,1:NY,k,s , ∀ k, s , (26)

and the solution of the vertical transport as

Vi, j,s(∆t) δc
n+1
i, j,1:NZ,s

= δi, j,1:NZ,sc
n , ∀ i, j, s . (27)

Over the entire domain we will write formally the horizontal discretization operator as
(
I(1≤k≤NZ)×(1≤s≤NS) ⊗Hk,s(∆t)

)
δcn+1 = δcn ,

and the vertical discretization operator as
(
I(1≤i≤NX)×(1≤ j≤NY)×(1≤s≤NS) ⊗Vi, j,s(∆t)

)
δcn+1 = δcn .

where the Kronecker product operator ⊗, denotes the fact that the operation is repeated
for each species, horizontal slice, or column.

Similarly, the solution is changed during one timestep due to chemical processes.

In absence of transport processes (which are accounted for separately), the chemical

interactions at each grid point are independent of other gridpoints, and are represented

by a system of ODE

c′i, j,k = f
(
t, ci, j,k

)
, ∀ i, j, k .

12



Errors are propagated through the tangent linear chemical model, which is also an inde-

pendent set of ODE at each grid point

δc′i, j,k,1:NS = F
(
t, ci, j,k,1:NS

)
δci, j,k,1:NS , F(t, c) =

∂ f (t, c)

∂c
, ∀ i, j, k .

This error equation at each grid point is discretized in time by the backward Euler method

to obtain

Ci, j,k(∆t) δc
n+1
i, j,k,1:NS

(
I − ∆t F(tn, cni, j,k,1:NS)

)
δcn+1i, j,k,1:NS = δc

n
i, j,k ,

or, over the entire domain

(
I(1≤i≤NX )×(1≤ j≤NY)×(1≤k≤NZ ) ⊗ Ci, j,k(∆t)

)
δcn+1 = δcn . (28)

The autoregressive model obtained through operator splitting is of the form:

A =
(
I(1≤i≤NX)×(1≤ j≤NY)×(1≤k≤NZ ) ⊗ Ci, j,k(∆t)

)
(29)

·
(
I(1≤i≤NX)×(1≤ j≤NY)×(1≤s≤NS) ⊗ Vi, j,s(∆t)

)

·
(
I(1≤k≤NZ)×(1≤s≤NS) ⊗Hk,s(∆t)

)

A symmetric operator split version is also possible.

With dimensional splitting, the storage of A requires NXNY(NZ × NZ) for the vertical
operator, andNZ(NXNY×NXNY) for the horizontal operator, yielding a reduction in storage
of NXNY+NZ

NXNYNZ
times compared to the full storage of A. Furthermore, each of the operators are

sparse matrices to a certain degree. Inverting A can be computed by inverting V(·) and
H(·, ·) independently.

4.3 Chemical Lifetime and Correlation Distances

In CTMs, different species can have widely different “chemical lifespans”. Short-lived

species (e.g., OH) take part in fast chemical reactions and their abundance varies quickly

with time. Our theoretical analysis in Section 2.1 has shown that the spatial correlation

distance is limited by the characteristic lifetime of the chemical species. Specifically, for

the chemical species swith a chemical lifetime τs an integration of lengthO(τs) is necessary
for the spatial correlations to develop; but longer integration times will lead to spurious

spatial correlations to develop. Our practical experience has revealed that fast species like

NO2 need correlation lengths smaller than O3, while slow species like HCHO need longer

correlation lengths. The reason for choosing variable correlation lengths for different

species has been explained analytically in the previous sections. Another sensible reason

13



is that fast reacting species vanish in relative short amounts of time, and thus they cannot

give correlations past a certain “destruction” or damping time. Slower reaction species

persist a longer amount of time, hence the correlation distance needs to be longer in time.

For a correct representation of the spatial correlations being limited by the chemical

lifetimes, we take the following approach. For each chemical species s the transport part

of the autoregressive model (29) is constructed by applying ms consecutive implicit Euler

steps with step size∆t such thatms∆t ≈ τs, the chemical lifetime of species s. Similarly, pi, j,k
chemical steps are applied to allow chemical correlations in grid (i, j, k) to fully develop

during the time interval ni, j,k∆t.

The AR coefficient matrix reads

A =
(
I(1≤i≤NX)×(1≤ j≤NY )×(1≤k≤NZ) ⊗ C

ni, j,k

i, j,k
(∆t)

)
(30)

·
(
I(1≤i≤NX)×(1≤ j≤NY )×(1≤s≤NS) ⊗ Vmsi, j,s(∆t)

)

·
(
I(1≤k≤NZ)×(1≤s≤NS) ⊗Hmsk,s(∆t)

)

In our experiments, the resulting background covariance matrix turns out to be well

conditioned, easy to compute, and with acceptable storage requirements.

4.4 Construction of Spatial Operators

The individual spatial operators Vi, j,s(∆t) and Hk,s(∆t) depend on the meteorological data:

Vi, j,s = Vi, j,s
(
wni, j,1:NZ ,Kv

n
i, j,1:NZ

,∆t
)

and

Hk,s = Hk,s
(
un1:NX ,1:NY,k,Kh

n
1:NX,1:NY,k

,∆t
)
,

where un, vn,wn the latitudinal, longitudinal, and vertical components of the wind field,

and Khn and Kvn are the horizontal and vertical turbulent diffusion coefficients respec-

tively. In the regular finite difference approach, the operators are constructed using the

meteorological field values at the current time tn. In order to capture correlation patterns

developed over a longer time interval, the transport AR operators are constructed from

time averaged meteorological data. The averaging interval can be for example 12 hours

before the background time, tB:

Vi, j,s = Vi, j,s



1

N

N∑

n=1

wni, j,1:NZ ,
1

N

N∑

n=1

Kvni, j,1:NZ ,∆t




and

Hk,s = Hk,s



1

N

N∑

n=1

un1:NX ,1:NY,k,
1

N

N∑

n=1

Khn1:NX,1:NY,k,∆t


 .
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5 Numerical Results

In this section we show some preliminary numerical results of our AR model of the error

covariance in the context of 4D-Var data assimilation. We construct an error covariance

matrix for a data assimilation atmospheric chemical and transport application, and we

test it against other ways of modeling the background error, namely diagonal (D) and

NMC. NMC is a popular technique used in these type of applications, while D is a simple

and accessible approach to modeling the background errors that does not consider error

cross correlations among the solution components yielding a diagonal backgroundmatrix.

The investigation is carried out in a variational data assimilation framework using 4D-Var.

Constantinescu et al. [2006c] employed theARmodel described in thiswork to initialize an

ensemble data assimilation experiment applied to a problem similar to the one described

in this paper.

5.1 The Test Problem

Variational data assimilation experiments are carried out on a real-life scenario of air

pollution in North–Eastern United States in July 2004 as shown in Fig. 1 (the dash-dotted

line delimits the computational domain). We analyze the convergence of the optimization

algorithm and the fit of the assimilation results in the presence of different background

error models.

5.1.1 The Model

Thenumerical tests use the state-of-the-art regional atmospheric chemical transportmodel

STEM [Carmichael et al., 2003]. The chemical reaction and transport equation (7) is solved

using an operator splitting approach. STEM uses linear finite difference discretization of

the transport terms. The advection terms are solved using a third order 1D upwind finite

difference formula [Sandu et al., 2005]. The diffusion terms are discretized using second

order central differences. The order of whole scheme is quadratic for the interior points.

Atmospheric chemical kinetics result in stiff ODE equations that use a stable numerical

integration that preserve linear invariants. The gasphasemechanism is SAPRC-99 [Carter,

2000] which accounts for 93 chemical species (88 variable and 5 constant), and involves in

235 chemical reactions. The chemistry time integration is done by Rosenbrock 2 numerical

integrator [Sandu et al., 2003], and is implemented using the kinetic preprocessor (KPP)

[Damian et al., 2002].

The computational domain covers 1500× 1320× 20Kmwith a horizontal resolution of
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(a) Ground stations and R. Brown location (b) Ozonesondes and P3 airplane path

Figure 1: Computational domain and (a) AIRNow ground measuring stations in support

of the ICARTT campaign (340 in total) and Ronald H. Brown (R.B.) vessel location, and

(b) two ozonesondes (S1, S2) and the flight path of a P3 airplane.

60× 60 Km and a variable vertical resolution (resulting in a 3-dimensional computational
grid of 25 × 22 × 21 points). The initial concentrations, meteorological fields, boundary
values, and emission rates correspond to ICARTT (International Consortium for Atmo-

spheric Research on Transport and Transformation) [ICARTT] conditions starting at 12

GMT of July 20th, 2004.

5.1.2 Analysis Setting

Nowwe briefly describe the analysis setting of the 4D-Var data assimilation experiments.

The simulations are started at 8 EDT July 20th. We consider a 12-hour assimilation

window that starts at 8 EDT July 20th and ends at 20 EDT July 20th during which model

predictions are fitted with the observations in order to decrease the cost function (25).

The “best guess” of the state of the atmosphere is obtained from a longer simulation

over the entire US performed in support of the ICARTT experiment [Tang et al., 2006].

This best guess is used to initialize the deterministic (non-assimilated) solution shown in

the results section. The best guess evolved to 8 EDT July 20th represents the background

state in 4D-Var.

Theobservations comprise of ground-level (AIRNow[EPA, 2004]), airplane (P3 [NOAA,

2004a] andothers), andozonesondeO3measurements takenduring the ICARTTcampaign

in summer 2004 [ICARTT]. Figure 1.a shows the location of the ground stations (340 in

total) that measured ozone concentrations. Not all the stations provide observations each

hour (the number of hourly observations varies between 160 and 326 during the assim-

ilation window). A detailed description of the ICARTT fields and data can be found in
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[Chai et al., 2006b; Tang et al., 2006].

An independent set of measurements are used to validate the data assimilation results

using different background models. These measurements are collected by aNOAA vessel

called Ronald H. Brown [NOAA, 2004b]. The location of the Ronald H. Brown ship is

shown in Fig. 1.b.

4D-Var adjusts the initial concentrations of the ozone at each grid point at the begin-

ning of the assimilation window (8 EDT July 20th). The optimization algorithm used to

minimize the cost function is L-BFGS-B [Byrd et al., 1995]. The optimization process is

manually stopped after a certain number of iterations which depends on the decrease of

the cost function in the particular data assimilation scenarios under consideration. More

information about the optimization setup can be found in [Chai et al., 2006b].

The AR model was constructed using the averaged 12 hour wind fields prior to the

assimilation window: 20 EDT July 19th - 8 EDT July 20th. The inverse of the Bmatrix for

the NMCmodel used in our numerical experiments was obtained using a truncated SVD

[Gwak and Masada, 2004]. This approach inverts only the contributions corresponding

to the largest singular values, and thus circumvents the errors coming from inverting the

NMC matrix which can be ill conditioned and reduces the cost function computational

effort. The NMC model used in this paper for the numerical experiments is described in

[Chai et al., 2006b].

The performance of each data assimilation experiment is measured both by RMS and

R2 correlation factor between observations and model predictions. The RMS and R2

correlation factor of two series X and Y of length n are

RMS(X,Y) =

√√
1

n

n∑

i=1

(X − Y)2

R2(X,Y) =

(
n
∑n
i=1Xi Yi −

∑n
i=1 Xi

∑n
i=1 Yi

)2
(
n
∑n
i=1 X

2
i
− (∑n

i=1 Xi
)2) (
n
∑n
i=1 Y

2
i
− (∑n

i=1 Yi
)2) .

5.2 ARModels Capture Flow Dependent Correlations

To illustrate the correlations generated by autoregressive models we consider the wind

fields over North–Eastern United States (see Fig. 1.a), on July 20th, 2004, corresponding

to the ICARTT field campaign. An autoregressive model (22) of background errors is

constructed using flow dependent coefficients. Top views of the spatial correlations of the

resulting uncertainty fields are shown in Figure (2) for several grid points located on the
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(a) Ground level correlations (b) Top level correlations

Figure 2: Horizontal background error correlations captured by the ARmodel: (a) ground

and (b) top levels. Shown are five points (marked with white “x” symbols) using the

ICARTT wind fields on July 20th, 2001.

ground layer (a) and on the top layer (b). The correlations match the shape andmagnitude

of the wind field. Note that the wind speed near the ground is smaller than at the top

and this is reflected by the correlations. Moreover, from the numerical point of view, the

covariance matrix is well conditioned: cond(B)=640.

5.3 Comparison Between AR, Diagonal, and NMC Background Error

Results

In this section we analyze the data assimilation results using the variational framework

(4D-Var) described in previous sections. Here we consider the analysis scenario described

in sec. 5.1.

Figure 3 shows the optimization parameters when using different background oper-

ators: D, NMC, and AR. The total cost represents the cost functional described by (25).

The first term in (25) is referred to as the “background”, while the second term is called

“misfit”. The background contribution in (25) constrains the optimization solution from

“departing” from the best guess solution according to the background error model. The

misfit acts in the opposite direction by trying to fit the solutionwith the observations. Each

iteration in Fig. 3 represents at least one forward and one adjoint model time integration

which is the most costly part of the data assimilation procedure.

Based on the results shown in Fig. 3, we conclude that when using the D background

model, the optimization solution quickly converges to a solution which does not fit very
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Figure 3: Evolution of the (a) total cost function, (b) projected gradient, and the contribu-

tions of the (c) background and (d) misfit parts of the cost function when using the D (50

iterations), NMC (100 iterations), and AR (25 iterations) background operators.

well with the observations, while both AR and NMC converge to solutions that better

fit the observations. However, the cost function using the AR operator converges to a

solution in 25 iterations, which is much faster than when using the NMC operator (which

is typically four times slower than the AR convergence); moreover, the AR solution has

a slightly better fit. The use of a diagonal background (D) model clearly impairs the

optimization process by misrepresenting (ignoring) the correlations among background

error components.

Figure 4 shows scatter plots of observations against model predictions during the anal-

ysis window of the unoptimized solution and the optimized solution using the D, NMC,

and AR background operators. Below each figure we show the RMS and R2 measures
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(a) Best Guess (RMS=24.46; R2=0.15) (b) D (RMS=14.03; R2=0.55)
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(c) NMC (RMS=11.92; R2=0.68) (d) AR (RMS=11.05; R2=0.72)

Figure 4: Scatter plots of all observations vs. model predictions used during the analysis

window for the best guess and the optimized initial conditions using D, NMC, and AR

background operators. For each scenario we show the RMS and R2 measures.

for the corresponding time window and scenario. In our experimental setting, both RMS

and R2 measures show the best fit for the optimized solution using the AR background

(RMS=11.05; R2=0.72). The results using the NMC model (RMS=11.92; R2=0.68), quali-

tatively, are very close to the ones using AR; however, as described above, the number

of iterations required by the NMC is significantly greater than for the AR model. The

solution using the D model (RMS=14.03; R2=0.55) shows an improvement when com-

pared against the unoptimized solution (RMS=24.46; R2=0.15); however, the convergence

is limited to an unfit solution (the total cost is about 2.7e+04, while AR and NMC amount

to about 1.e+04). A summary of all the results used in the assimilation process is shown

in Table 1. Here we show the combined and ground (AIRNow), airplane measurements,
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Scenario All AIRNow Airplane Ozonesonde

(3596) (2075) (1486) (35)

RMS R2 RMS R2 RMS R2 RMS R2

Best guess 24.46 0.15 26.30 0.04 21.73 0.08 20.02 0.09

Diagonal 14.03 0.55 13.98 0.43 14.16 0.40 10.92 0.89

NMC 11.92 0.68 10.90 0.62 13.32 0.50 5.51 0.95

AR 11.05 0.72 9.65 0.70 12.84 0.53 4.60 0.96

Table 1: RMS [ppb] and R2 fit measures of the best guess and optimized solution using D,

NMC and AR background operators. We show the RMS and R2 for all, AIRNow, airplane,

and ozonesonde observations used during the assimilation process (in parenthesis we show

their corresponding number).

and ozonesonde results in separate columns.

The evolution of the ozone concentration measured by the P3 airplane (see Fig. 1.b)

and predicted by the model using the the best guess, and the optimized solution using the

three types of background error models under investigation is shown in Figures 5. Here

we note that the solutions that use AR and NMC fit equally well the measurements.

In Figure 6 we show the evolution of the ozone concentration measured by the Ronald

H. Brown vessel (see Fig. 1.a) and predicted by the model using the unoptimized solution

and the optimized (D, NMC, and AR) solutions. These measurements come from an

independent source and are not used during the assimilation process. Here we consider

the analysis and a 66 hour forecast window. The results are summarized in Table 2. These

results support the conclusions presented above: 1) AR solution is closest to the observa-

tions (during analysis), 2) NMC also shows a good fit, while D falls behind. The overall

validation results (see tab. 2) show a nearly equally good fit of the optimized solutions

using AR and NMC background models. We note that during our experiments we

also considered an AR model constructed with wind fields that corresponded to another

period of time. The results, not shown in this study, were unsatisfactory, reinforcing the

idea that the background errors depend on the particular flow and time.

6 Conclusions and Future Work

Data assimilation is the process to integrate observations and models in order to obtain

simulation results that closermatch reality. The information fromobservations canbeused

to adjust the initial conditions and other model parameters like emissions and boundary
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Figure 5: Time series of the observed ozone concentration, best guess, and optimized

solution using D, NMC, and AR background operators for the P3 flight campaign.

conditions. It is widely accepted that the quality of the assimilation results depends on

how well the errors in the initial conditions (the “background errors”) are represented.

The background errors are typically not well known and they need to be modeled. In this

paper we construct autoregressive models of the background errors and apply them in

the context of chemical transport models. The proposed approach is general and can be

used in other applications, e.g., numerical weather prediction models.

In this paperwediscuss the construction of background errormodels usingmultilateral

autoregressive (AR)processes. TheAR coefficients are givenbyamonotonic discretization

of the tangent linear model; thus they capture the error correlations resulting from the

error propagation through the model. The resulting AR models are computationally

inexpensive and represent well the error correlations along the flow lines. Correlations

between errors in different chemical species (arising due to stiff chemical interactions) are

also captured by the AR model. The AR model can be extended to an ARMAmodel.

The full background covariance matrix requires an O(n2) storage where n ∼ 107 is the
number of state and parameter variables. In the discussed AR framework an operator

splitting approach (applied to the tangent linear model) allows easy computation of

the product of the covariance matrix (or its inverse) times a vector. This removes the
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Figure 6: Time series of the observed ozone concentration, best guess, and optimized

solution using D, NMC, and AR background operators for the Ronald H. Brown platform

validation measurements during the analysis (8-20 EDT) and forecast windows (20-72

EDT).

need to store the entire covariance matrix and greatly reduces the computational costs.

Moreover, the resulting background covariance matrix is full rank and well conditioned.

Sparse matrix representations of individual operators further reduce the storage and the

computational costs. In contrast, the NMCmethod requires several long integrations with

the full model and is computationally expensive. The resulting covariance matrices are

typically ill conditioned.

ARmodels can be applied in both variational and ensemble data assimilation settings.

In this paper we consider the variational approach, where the autoregressive model is

used to compute the background term of the cost function. In ensemble data assimilation,

AR models can be used to generate the initial ensemble. The inversion of the inverse

covariance matrix is obtained easily via operator splitting. This method has already been

applied successfully in an EnKF data assimilation study using real data [Constantinescu

et al., 2006c].

Several data assimilation experiments have been carried out with the STEM chemical

transport model using observed data from a simulation of air pollution in Eastern U.S. A
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Scenario Analysis Forecast

(71) (306)

RMS R2 RMS R2

Best guess 19.77 0.72 23.42 0.49

Diagonal 11.41 0.68 15.98 0.59

NMC 12.22 0.59 12.80 0.68

AR 10.64 0.66 13.29 0.66

Table 2: RMS [ppb] and R2 fit measures of the best guess and optimized solution using

D, NMC and AR background operators for the independent validation results, Ronald

H. Brown, that are not used during the assimilation process. We show the analysis, and

forecastmeasures separately (in parenthesis we show their corresponding number).

comparison of data assimilation results has been carried out using the AR model of the

background errors, a model obtained through the NMC approach and a diagonal model.

In our setting, the ARmodel results are superior to the othermethods tested (measured by

the RMS and the R2 fit indicators). Of particular importance is the fact that the AR model

is significantly better than the diagonal model. The optimization using the AR model

takes considerably fewer iterations than the one using the NMC model. The results of

the diagonal model are inferior when compared with AR or NMC. An independent set

of observations was used for validation. The optimized solution using the AR and NMC

models were shown to improve the analysis and the forecast.

We note that the results we present in this paper using the AR and NMC background

models can be further improved. The NMC background operator was obtained using

some simplifications [Chai et al., 2006b] from the original NMC method [Parrish and

Derber, 1992],while in theARapproachweusedonly thedecorrelationdistances provided

by the chemistry, and thus further tuning is possible. Furthermore, a combination of

AR and NMC background contributions can be explored (e.g., the use the decorrelation

distance provided by the NMC when fine tuning the AR model).

Future work will consider the use of the AR background models in an operational

setting. This is possible since AR needs averages of known meteorological data (from the

period preceding the initial time). Such ARmodels can be constructed using current data

for the next assimilation window.
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A SolutionofLinear,One-DimensionalConvection-Diffusion-

Reaction Equation

For simplicity we consider the one-dimensional advection-diffusion-reaction of a single

species c in an infinite spatial domain. Assume that u, ρ,K are constant in space and time,

and that the chemical reaction is a simple decay equation, f (ρc) = −Lc. The evolution of
the concentration perturbation in time is governed by

∂δc

∂t
= −u∂δc

∂x
+ K
∂2δc

∂x2
− Lδc, t0 ≤ t ≤ tB ,

t0 = 0 , δc(0, x) = δc0(x) .

The Fourier transform (in space) of the solution in (10) is

δ̂c(t, ω) = F
(
δc(t, x)

)
=
1√
2π

∫

R

e−iωx δc(t, x) dx .

For a Dirac delta space distribution

F
(
δx−z) =

1√
2π
e−iωz .

Taking the Fourier transform of (10) leads to

dδ̂c

d
=

(
−iωu − Kω2 − L

)
δ̂c , δ̂c(0, ω) = δ̂c

0
(ω)

δ̂c(t, ω) = e

(
−iωu−Kω2−L

)
t
δ̂c
0
(ω)

δc(t, x) = F −1
(
δ̂c(t, ω)

)
=
e−Lt√
2π

∫

R

eiω(x−ut) e−Kω
2t δ̂c

0
(ω) dω .

If the initial condition is a Dirac delta function δc(0, x) = δx−z then the solution at later

times t > 0 is

cz(t, x) =
e−Lt√
2π

∫

R

eiω(x−ut) e−Kω
2t e
−iωz
√
2π
dω

=
e−Lt√
2π

1√
2π

∫

R

eiω(x−z−ut) e−Kω
2t dω

=
e−Lt√
2π
F −1

(
e−Kω

2t
)∣∣∣∣
x−z−ut

=
e−Lt√
π

e
−
(
x−z−ut
2
√
Kt

)2

2
√
Kt
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By the principle of superposition the solution corresponding to a general initial condition

δc(0, z) = δc0(z) is obtained by summing up elementary solutions that correspond to delta

initial conditions:

δc(t, x) =

∫

R

δcz(t, x) δc
0(z) dz

=
e−Lt√
π

1

2
√
Kt

∫

R

e
−
(
x−z−ut
2
√
Kt

)2
δc0(z) dz

B SolutionofLinear,One-dimensionalConvection–Diffusion–

Reaction Equation with Random Forcing

Consider now the simplemodel (10) started from a deterministic initial condition (δc0 = 0)

but excited by an additive white noise ζ

∂δc

∂t
= −u∂δc

∂x
+ K
∂2δc

∂x2
− Lδc + ζ, 0 ≤ t ≤ tB

δc(0, x) = 0 ,
〈
ζ
〉
= 0 ,

〈
ζ(t1, x1) ζ(t2, x2)

〉
= σ2 δt1−t2 δx1−x2 .

The solution can be obtained via Duhamel’s principle from the solution (11) of the

non-forced (homogeneous) equation (12) as

δc(t, x) =

∫ t

0

e−L(t−θ)

2
√
πK(t − θ)

∫

R

e
−
(
x−z−u(t−θ)
2
√
K(t−θ)

)2

ζ(θ, z) dz dθ
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The covariance function

R(t, x, y) =

∫ t

0

∫ t

0

e−L(2t−θ−µ)

4πK
√
(t − θ)(t − µ)

∫

R

∫

R

e
−
(
x−z−u(t−θ)
2
√
K(t−θ)

)2
−
(
y−w−u(t−µ)
2
√
K(t−µ)

)2 〈
ζ(θ, z), ζ(µ,w)

〉
dz dw dθ dµ

= σ2
∫ t

0

∫ t

0

e−L(2t−θ−µ)

4πK
√
(t − θ)(t − µ)

∫

R

∫

R

e
−
(
x−z−u(t−θ)
2
√
K(t−θ)

)2
−
(
y−w−u(t−µ)
2
√
K(t−µ)

)2

δθ−µ δz−w dz dw dθ dµ

= σ2
∫ t

0

∫ t

0

e−L(2t−θ−µ)

4πK
√
(t − θ)(t − µ)



∫

R

∫

R

e
−
(
x−z−u(t−θ)
2
√
K(t−θ)

)2
−
(
y−w−u(t−µ)
2
√
K(t−µ)

)2

δz−w dz dw


 δθ−µ dθ dµ

= σ2
∫ t

0

∫ t

0

e−L(2t−θ−µ)

4πK
√
(t − θ)(t − µ)



∫

R

e
−
(
x−z−u(t−θ)
2
√
K(t−θ)

)2
−
(
y−z−u(t−µ)
2
√
K(t−µ)

)2

dz


 δθ−µ dθ dµ

= σ2
∫ t

0

∫ t

0

e−L(2t−θ−µ)

4πK
√
(t − θ)(t − µ)




√
4πK(t − θ)(t − µ)
2t − θ − µ e−

(x−y−u(µ−θ))2
4K(2t−θ−µ)


 δθ−µ dθ dµ

=
σ2√
4πK

∫ t

0

∫ t

0

e−L(2t−θ−µ)√
2t − θ − µ

e−
(x−y−u(µ−θ))2
4K(2t−θ−µ) δθ−µ dθ dµ

=
σ2√
π

∫ t

0

e−2L(t−θ)
e
−
(

x−y√
8K(t−θ)

)2

√
8K(t − θ)

dθ

In the limit t→∞we obtain that

R(∞, x, y) = σ
2

√
π

∫ ∞

0

e−2Lθ
e
−
(
x−y√
8Kθ

)2

√
8Kθ

dθ

=
σ2√
2KL

e
− |x−y|√
K/L

=
τ σ2√
2D
e−
|x−y|
D
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where

τ =
1

L
and D

√
K/L .
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