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Abstract. The Chow-Yorke algorithm is a homotopy method that has been proved globally convergent for Brouwer
fixed point problems, certain classes of zero finding and nonlinear programming problems, and two-point boundary
value approximations based on shooting and finite differences. The method is nnmerically stable and has been
successfully applied to a wide range of practical engineering problems. Here the Chow-Yorke algorithm is proved
globally convergent for a class of spline collocation approximations to nonlinear two-point boundary value problems.
Several numerical implementations of the algorithm are briefly described, and computational results are presented for
a fairly difficult fluid dynamics boundary value problem,
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1. Introduction. The foundation of the Chow-Yorke algorithm was laid in 1976, and since that
time both the theory and the scope of its practical applicability have been greatly extended. This
homotopy algorithm is accurately described as a globally convergent probability one algorithm. It
13 truly globally convergent in the semse that it will converge to a solution of the problem from an
arbitrarystarting point. The phrase “probability one” refers to the rigorous theoretical results which
guarantee convergence for almost all choices of some parameter, i.e., with probability one.

Homotopy methods (both continuous [1] and simplicial [9,23]) were once believed to be hope-
lessly inefficient, and dismissed by some as inherently inferior to quasi-Newton algorithms. Another
prevalent point of view was that homotopy algorithms were just continuation, and nothing new.
These beliefs have been somewhat dispelled by a series of problems, successfully solved by homo-
topy methods, on which continuation and quasi-Newton methods either totally failed or experienced
great difficuity [39]. Current implementations of these globally convergent probability one homotopy
algorithms are reasonably efficient, and their robustness, stability, and accuracy have never been in
doubt. A reasonable attitude toward homotopy methods is that they are a method of last resort,
but a very powerful and realistic method of last resort.

There are three distinct, but interrelated, aspects of homotopy methods: 1) construction of
the right homotopy map, 2) theoretical proof of global convergence for this homotopy map, and 3)
tracking the zero curve of this homotopy map. The first aspect is currently still an art, although
this is much better understood now due to the accumulation of computaticnal experience [27-
33]. Although much remains to be done, significant progress has been made on the second aspect.
Global convergence has been proved for Brouwer fixed point problems([35], certain classes of zero
finding[36] and nonlinear programming (both unconstrained and constrained} problems{33], and
two-point boundary value approximations based on shooting[37] and finite differences[38]. Recently
Morgan [20.21] obtained some elegant results for polynomial systems, and the present work considers
spline collocation. Various curve tracking algorithms have been around for a long time {e.g., [5],
[13-18], [22]), but there is an important distinction between general curve tracking algorithms and

t Applied Mathematics Division 2646, Sandia National Laboratories, Albaquerque, NM 87185. Current address:

Department of Computer Science, Virginia Polytechnic Institnte & State University, Blacksburg, VA 24061,
I Applied Mathematics Division 2646, Sandia National Laboratories, Albuquerque, NM 87185.
This work was supported by Department of Energy Contract DE-AC04-76DP00789 and NSF Grant MCS 8207217,

1




homotopy curve tracking algorithms. The object of the former is the zero curve stself, whereas the
object of the latter is a point at A = 1. This difference was emphasized in (35, [34], and [38], and
the normal flow tracking algorithm (proposed by Georg [11]) described here is more in the spirit of
homotopy methods than a general tracker.

Section 2 outlines the theoretical foundation of globally convergent probability one homotopy
methods, and proves some convergence theorems for spline collocation approximations to nonlinear
two-point boundary value problems. Section 3 discusses several algorithms for tracking the homotopy
curves, as well as some pertinent details of the software package HOMPACK used to obtain the
numerical results. Section 4 considers a nontrivial two-point boundary value problem from fluid
dynamics, presents numerical results from several different approaches to the problem, and illustrates
graphically the dependence of the solution on the problem parameters.

2. Theory. Consider the two-point boundary value problem

(1) y'(z) = flz.y(2),¥'(z)), 0<z<1,

where y(z) is an fi-dimensional vector function and f(z,u4,v) is an A-dimensional C? vector function.
More general boundary conditions will be considered later. For the interval [0, 1] choose the mesh
points ' _

0=Io<$1<22<"'<$n<Zn+1-—‘—1.

where
Ty =6, Tpii = Zn + 6, D<dxi,

and the spacing could be determined by some adaptive scheme, if necessary. For a positive even
integer £ > 2 {the spline order) choose the knot sequence

T= (9"07---r301$k/2|$k/2+1:-~~:Zn-k/2:zn—k/2+l:jn+lu---1in-}-l)
Nm—, m— N ————

k times k times

where Z,41 = Zn41 + 6 (choosing the last knot just to the right of z,.; is necessary when using
right continuous B-splines, because if Zn+1 = Zn4y all the B-splines would be zero at Tn+1). Let
Bi(z) = Bix,.(z) denote the ith B-spline of order k defined on the knot sequence r given above.
There are n + 2 such B-splines, and so the dimension of the spline space with basis {B;} is n + 2.

Substituting the approximations

n+2

(3) Um(z) 8 Am(2) = D amiBi(z), m=1,... 5,
=1

into the equations (1-2) yields the nonlinear system of equations

(4) Am(z{)) =0,
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(5) —An(z;) + flz;. Alz;), A'(z)) = 0, 7=1....n,

(6) Am(Znt1) =0; m=1..n.

[ 4 .
LetY = (au, G2y s Ol nd2, @21,y B2 nd 2,y QAL - . .,a.-,,,.H_g) . Then the system of equations
(4-6) has the form

(N F(Y)=MY+N(Y)=0,
where _
M 0o ... 0
0 M ... 0
M = . . . ,
0 0 M
Bl(zo) 0 0 \
~BY(z1) -Bf(z:1) -Bi(z)) .

—BY(z2) —BY(z2) —~BY(z.)

L
If

=Bl (zn—1) "B::+1(3n-1 ) ‘B::+2($n-1 )

* —B::(-"?n) 'B;:.H(zn) —B::+2($n) J
\ Br(znt1) Busi{znt1)  Bpgo(Zns:)
A-'(Y) = (Os fl(zl! ‘4(31)9 ‘4’(31))1 ey fl(zn: A(Zn), A'(zn))y O!
0, fi’(zla A(zl)! Al(zl))- teey f2(zn! A(zn)v A'(zn))' 0,

-0, fﬁ(zix A(Z;),A'(ID]_)), fen ,f,-,(z,.,A(:c,.},A’(zn)),O).

Thus the two-point boundary value problem (1-2) is approximated by the nonlinear system of
equations (7), which has dimension
p=rin+2).

A homotopy method is used to solve (7).

Because of the concavity of B-splines near their center of support, it is possible to choose the
mesh points z; such that the matrix M has positive diagonal elements and nonpositive off-diagonal
elements. Henceforth it will be tacitly assumed that the mesh points have been so chosen. Because

of the B-spline property
42

ZB;(:)=1, 20 < & < Zp41,

=1
the matrix M is also row diagonally dominant. Furthermore, M is invertible. (Observe that removing
the first row and column from M leaves an irreducible row diagonally dominant submatrix, which
is invertible [8]. Hence det M # 0.) An invertible. row diagonally dominant matrix with positive
diagonal elements is a P-matrix (all its principal minors are positive) [10]. Therefore M and M
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are P-matrices. Actually, the stronger statement that M is a K-matrix (P-matrix with nonpositive
off-diagonal elements[10]) can be made, but this fact will not be needed here.

The following four lemmas from {37),[37},(36],[38] respectively will be useful.

Lemma 1. Let g: E¥ — E? be a C? map, ¢ € EP, and define p, : i0,1) x EP — EP by

pal{A y) = Ag(y) + (1 = A)(y — a).

Then for almost all a € EP there is a zero curve ~ of p, emanating from {0, a) along which the
Jacobian matrix Dp, (A, y) has full rank.

Lemma 2. If the zero curve v in Lemma 1 is bounded, it has an accumulation point (1, 7), where
9(7) = 0. Furthermore, if Dy(7) is nonsingular, then ~ has finite arc length.

Lemma 3. Let F : EP — E® be a C? map such that for some r > 0, z F{z) > 0 whenever |z|| = r.
Then F has a zero in {z € E” | z]| < r}, and for almost all ¢ € EP, {a|| < r, there is a zero curve
~ of

palA, 2} = AF(z) + (1 - M)(z - a),

along which the Jacobian matrix Dp,(A, z) has full rank, emanating from (0,a) and reaching a zero
- Zof F at A = 1. Furthermore, v has finite arc length if DF(Z) is nonsingular.

Lemma 3 is a special case of the following more general lemma.
Lemma 4. Let F : E? — EP be a C? map such that for some r > 0 and F > 0. F(z) and z —a do
not point in opposite directions for zj| =r, [laj| < 7. Then F has a zero in {z € E? Pzl < r}, and
for almost all a € EP, |la]| < 7, there is a zero curve v of

pa(A 2) = AF(z) + (1 - A){z ~ a),

along which the Jacobian matrix Dp, (A, z) has full rank, emanating from (0, a¢) and reaching a zero
Z of F at A = 1. Furthermore, 7 has finite arc length if DF(z) is nonsingular,

Theorem 1. Let N(Y) in (7) be a C? mapping, and suppose there exist constants € and v such
that

o sun IVl _ ”
) ﬂ!r[[m—-i ¥l @ 0sv<l

For W € EP, define pw : [0,1) x EP — EP by
pw (A Y)=AF(Y)+ (1 -A)(Y - W).

Then for almost all W € EP there exists a zero curve 4 of pw, along which the Jacobian matrix
Dpw (A, Y) has full rank, emanating from (0, W) and reaching a zero ¥ of F (at A = 1}. Furthermore,
if DF (Y) is nonsingular, then ~ has finite arc length.
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Proof. As observed above, the matrix M in (7) s a P-matrix. One of the useful properties of P-
matrices is the sign-reversal property {10]: for any Y # 0 there is an index j such that Y; (MY); > 0.
A simple compactness argument shows that

(9) Y;(MY); =T >0.

min = max
[Yll.=115i<p
Choose ¢ > 0. Using (9} and ¥ = {[Y || _ (Y/[[Y||,) yields

max(Y —W);(MY + N(Y)); 2T Y15 = 1Y lle (C + IV I,

=Wl 1Ml ¥ lleg = Wl (C+ )Y >0

for |W||, bounded and {|Y ||  sufficiently large. Therefore for any f > 0 there exists r > 0 such that
Y —Wand F(Y}= MY + N(Y) do not point in opposite directions for [|¥ ||, = r and |W]_ <*.
The result now follows directly from Lemma 4. Q.E.D

Corollary 1. Let N{Y) in (7) be a C? mapping and T' > 0 defined by (9). If

imonp 1)

=0 <7,
1Wio—oe 1Yl

then the conclusion of Theorem 1 holds.

Corollary 2. If f(z,y,y') in (1) is C? and bounded, then the conclusion of Theorem 1 holds.

Corollary 8. Let f(z,y,y') in (1) be a C* mapping, and suppose there exist constants # and v such
that

limoup max &L g, o
ol —eo 03251 Iyl
wel
Then the conclusion of Theorem 1 holds.
Proof. Let
n-4-2
e = Z Y{k—l)(n+2)+i31'(z)! k= 1, v .,fl, 0 £z S 1.
=1

Because the B-splines Bi(z) are a partition of unity {8], lyx| < ||V}, for each k and thus |[y]|_ <
|Y{l. . The B-splines are also well-conditioned in the sense that there exists a constant D such that
(8]

1¥lleo < P lylloe -

Thus, given ¢ > 0,
[z, . )]0
1Y
for [[Y{|, sufficiently large (note that V|l large implies ||y||_ large). Now from the definitions of
y and N(Y), it follows that

Spte

WL,
s, SHT



for [|Y||, large enough, which is precisely the condition {8) in Theorem 1 {for some constant C < p).
Q.E.D.

3. Algorithm. The general idea of the algorithm is apparent from Theorem 1: just follow the
z€ro curve 4 emanating from {0, W) until a zero Y of F(Y) is reached (at A = 1). Of course it is
nontrivial to develop a viable numerical algorithm based on that idea, but at least conceptually, the
algorithm for solving the nonlinear system of equations (7) is clear and simple. The homotopy map
is

(10) pw(AY)=AFY)+(1-A)Y - W),

which has the same form as a standard continuation or embedding mapping. However, there are two
cructal differences. In standard continuation, the embedding parameter A increases monotonically
from O to 1 as the trivial problem Y ~ W = 0 is continuously deformed to the problem F(Y) =190,
The present homotopy method permits A to both increase and decrease along vy with no adverse
effect; that is, turning points present no special difficulty. The second important difference is that
there are never any “singular points” which afflict standard continuation methods. The way in which
the zero curve 4 of pw is followed and the full rank of Dpw along 4 guarantee this. Observe that
Lemma 1 guarantees that ~ cannot just “stop” at an interior point of [0,1) x EP.

The zero curve v of the homotopy map pw(A.Y) in (10} can be tracked by many different
techniques; refer to the excellent survey (1] and recent work by Rheinboldt and Burkhardt{22] and
Mejia[16]. The numerical results presented later were obtained with the software package HOM-
PACK, currently under development at Sandia National Laboratories, General Motors Research
Laboratories, and Virginia Polytechnic Institute and State University. HOMPACK is a snite of
codes for tracking zero curves of probability one homotopy maps, and provides both high level and
tow level subroutines for three different approaches to tracking +. The three algorithmic approaches
provided by HOMPACK are: 1) an ODE-based algorithm based on that in [34], with several refine-
ments; 2) a predictor-corrector algorithm whose corrector follows the flow normal to the Davidenko
How (a “normal flow” algorithm); 3) a version of Rheinboldt’s linear predictor, quasi-Newton cor-
rector algorithm {22] (an “augmented Jacobian” method). HOMPACK also provides qualitatively
different algorithms for dense and sparse Jacobian matrices, but sparsity will not be discussed here.

First the ODE-based algorithm will be discussed. Assuming that F(Y)is C? and W is such that
Theorem 1 holds, the zero curve v is C*! and can be parametrized by arc length s. Thus A = A(s),
Y = Y(s) along 4, and

(11) pw(r(s),Y(s)) =0

identically in 5. Therefore

(12) o (A().¥ (5)) = Dow (Ms), ¥(s)) [ 41\ =0,

dY
ds




) (= %),

If we take

(14) Moy =0, Y(0)=Ww,

the zero curve v is the trajectory of the initial value problem (12-14). When A(3) = 1, the corre-
sponding Y (3) is a zero of F(Y). Thus all the sophisticated ODE techniques currently available can
be brought to bear on the problem of tracking ~ (26], [35].

ODE software requires (dA/ds, dY /ds) explicitly, and {12), (13) only implicitly define the deriva-
tive {dA/ds,dY [ds). This can be calculated by finding the kernel of the p % {p+ 1) Jacobian matrix

Dpw (A(2), Y (3)),

which has full rank by Theorem 1. It is here that a substantial amount of computation is incurred,
and it is imperative that the number of derivative evaluations be kept small. Once the kernel
has been calculated. the derivative (d)/ds, dY/ds) is uniquely determined by (13) and continuity.
Complete details for solving the initial value problem (12-14) and obtaining Y (3) are in {34] and
[35).

Remember that tracking ¥ was merely a means to an end, namely a zero ¥ of F(Y'). Since 5
itself is of no interest (usually), one should not waste computational effort following it too closely.
However, since v is the ounly sure way to Y, losing < can be disastrous. The tradeoff between
computational efficiency and reliability is very delicate, and a fool-proof strategy appears difficult to
achieve. This is the reason HOMPACK provides several algorithms; no single algorithm is superior
overall, and each of the three beats the other two (sometimes by an order of magnitude) on particular
problems.

The normal flow algorithm has three phases: prediction, correction, and step size estimation.
(10) and (11) are the relevant equations here. For the prediction phase, assume that several points
P = (A(5,),Y(s;)), P = {A(s2), Y (s2)) on v with corresponding tangent vectors (dA/da{sy),
dY/ds(s1)), (dA/ds(s2), dY /ds(s2)) have been found, and & is an estimate of the optimal step {in
arc length) to take along v . The prediction of the next point on ¥ is

(15) 2 = p(sy + h),
where p(s) is the Hermite cubic interpolating {A(8),Y{s)) at 81 and s5. Precisely,

plar) = (AMs1), Y (s1)),  p'(81) = (d4/ds(a1),dY /ds(a1)),
pls2) = (A(s2). Y {s2)), p'(s2) = (dA/ds(s2),dY [ds(s2)),

and each comporent of p(s) is a polynomial in # of degree less than or equal to 3.

Starting at the predicted point Z(9, the corrector iteration is
t
(16) Zn+) = za) _ [Dpw(z("’)] ow(2™),  n=01,...
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where [jD,;;rw(Z{"))]t is the Moore-Penrose pseudoinverse of the p x (p + 1) Jacobian matrix Dpy .
Small perturbations of W produce small changes in the trajectory v, and the family of trajectories v
for varying W is known as the “Davidenko fow”. Geometrically, the iterates given by (16) return to
the zero curve along the flow normal to the Davidenko flow, hence the name “normal flow algorithm”™.

A corrector step AZ is the unique minimum norm solution of the equation
(17) [Dow ]AZ = —pw.

Fortunately AZ can be calculated at the same time as the kernel of [Dpw], and with just a little more
work. Normally for dense problems the kernel of [Dpw] is found by computing a QR factorization
of [Dpw], and then using back substitution. By applying this QR factorization to —pw and using
back substitution again, a particular solution v to (17} can be found. Let u # 0 be any vector in the
kernel of [Dpw] Then the minimum norm solution of {17) is
(18) AZ =v - E)-fﬁu.

. ufy
Since the kernel of [D pw] 18 needed anyway for the tangent vectors, solving (17) only requires another
O(p*) operations beyond those for the kernel. The number of iterations required for convergence
of (16) should be kept small (say < 4) since QR factorizations of [Dpw] are expensive. The
alternative of using [Dpw (Z (G))] for several iterations, which results in linear convergence, is rarely
cost effective.

When the iteration (16) converges, the final iterate Z{"+1) is accepted as the next point on
7 . and the tangent vector to the integral curve through Z{™ is used for the tangent—this saves a
Jacobian matrix evaluation and factorization at Z{"+1 . The step size estimation described npext
attempts to balance progress along v with the effort expended on the jteration (16).

Define a contraction factor

|20 - 709
1) = [z —zo|’
a residual factor
- oo I (20)]

~ ow (2O)]

a distance factor (Z° = limp—q Z{™)

_la-
(21) D= m-ﬂ-,.

and ideal values L, R, D for these three. Let A be the current step size (the distance from Z* to the
previous point found on 7 }, and A the “optimal” step size for the next step. The goal is to achieve

b
/4
mi s
b4
ST,
&
)%

(22)




for some q. This leads to the choice
(23) h = (min{L/L, R/R,D/D})" "4,

a worst case choice. To prevent chattering and unreasonable values, constants b, (minimum al-
lowed step size), hmax {maximum allowed step size), Bmia (contraction factor}, and Byax (expansion
factor) are chosen, and 4 is taken as

(24) A = min {max{hmin, Buinh, h}, Baaxh, h,m} .

There are eight parameters in this process: L, R, D, Amin, Amaxs Bmin, Branx, g. HOMPACK
permits the user to specify nondefault values for any of these. The choice of % from (24) can be
refined further. If (16) converged in one iteration, then k should certainly not be smaller than 4,
hence set

(25) h := max{h,k}
if {16) only required one iteration.

To prevent divergence from the iteration (16), if (16) has not converged after K iterations, A is
halved and a new prediction is computed. Every time A is halved the old value hoig is saved. Thus
if {16) has failed to converge in K iterations sometime during this step, the new A should not be
greater than the value A4 known to produce failure. Hence in this case

(26) A= min{hgld,fz}.

Fimnally, if (16) required the maximum X iterations, the step size should not increase, so in this
cage set

{(27) h := min{h, h}.
The logic in (25-27) is rarely invoked, but it does have a stabilizing effect on the algorithm.

Rheinboldt’s augmented Jacobian algorithm together with step size strategies has been de-
scribed very well elsewhere [22], and will not be repeated here.

4. Numerical results. Consider the nonlinear two-point boundary value problem [24]

(28) P = g () 1= G 4 a
(29) ¢ =246 (- 1)8'G + 5(G ~ 1)
(30) $(0) = $'(0) = G(0) =
{31) ¥'(o0) =0, Gfoo)=1

where n and s are fixed constants, For the purposes of comparison and discussion, this difficult
problem will be solved (or attempted) by several different methods. All the computations were dope
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with FORTRAN 77 (using the optimizing compilers) on a VAX 11/780 and an Elxsi 6400, and CPU
times are reported in seconds.

SIMPLE SHOOTING

Let ¢(r; v}, G{r;v) be the solution to the initial value problem (28-29) with initial conditions
{30) and

- (58)

Then the original two-point boundary value problem (28-31) is equivalent to the nonlinear system

of equations

(33) Flv) = (Gﬁ(f})”_] 1) _ 0

for L = co (in practice L is taken to be some sufficiently large finite number). The standard
homotopy map for solving equation (33} is

(34) AR() + (1= A){v—a).

The difficulty with the homotopy map (34) is that for most values of v the vector I;’(v] is huge, and
computations with (34) frequently produce overflow. For example, with n =3.0,3=10, a =0, and
L = 6.25 (not large enough), a solution to (33) can be obtained. However, for L = 6.5 (still not
large enough), the calculation of F{v) in (34) produces overflow on the VAX 11/780.

Another natural homotopy map to try is

v

(35) (G?”/\'SLJ"_) A) + (1= M) - a),

which enforces the boundary condition G(L;v) = 1 gradually and also increases the interval length
gradually. Forn = 3.0, 8 =0, a = 0, and L = 9.0, the homotopy map (35) also causes overflow on
the VAX 11/780.

MULTIPLE SHOOTING

Simple shooting with bad estimates of the initial conditions is obviously susceptible to numeri-
cal difficulties, and the idea of multiple shooting is to decrease the size of the integration intervals,
thereby keeping the shooting trajectories bounded. The tradeoff is that the dimension of the non-
linear problem to be solved increases.

Divide the interval [0, L] into m equal subintervals, and let
e =kL/m, k=1,...,m.
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The vector of unknowns in (32) is generalized to

(36) v= (1,0"(0), G'(O)'¢(TI)1 %6'(71)7 ¢"(T1), G(ﬂ)! G’(Tl),
¢(T2)* ¢,(r3)! ‘b"(TZ)! G(TQ)a G,(T‘L’),

W1, ¥ (Fmi), ¥ (Fme1), G{Timm1), G (T )

which has dimension 5m — 3. The concept of multiple shooting is to shoot over each subinterval
separately, and then match the sohutions at the boundary points 7y, ..., 1, as well as matching
the boundary conditions at r,, = . Let

(37) ‘U[k‘g] = (b‘k,vg.}.l,...,vt)
be a vector formed from the components of v. Let

(38) P(rivpea, ). Gl v )

be the solution of equations (28-29) with initial conditions tigg) at 7= ¢ {for & = 1, ! = 2, the
initial conditions {30) are also used). Then the original two-point boundary value problem (28-31)
is equivalent to the nonlinear system of equations

(39) F(v) = (9(r
(r1
¥{re; 0[3,7],f1) — Vs, *JJ'(Tz; U3 1) 1) ~ ve, W'(Tz; LER 1) — v0,

Gr2; 0,2, 1) ~ vir. G'(maivpz ), m) = via,

vi1,2),0) ~ vz, (71, 011,9), 0) — v, $"(r1;911.2),0) — vs,
!

bi1,2): 0) = ve, G'(risvpy 25, 0) — w7,

1
*

Q

P(Tm—1;Y8m—12,5m~8]s Tm—2) = Vsm=7, ' (Fm—1; V[sm—12,5m8)s Tm=2) = ¥Sm—g.
¢"(Tm—1; ViSm —12.5m —8], Tm_g) — V5m~5, G(Tm—l; vISm—lZ,Sm--B[: Tm-2) — Vsm—4,
G'(Tm—l; U[5m—-12,5m—-8] ’ Tm—‘l) = VY5m -3, 1!)’(?,“; v[5m—7,5m—3] y Tm-—l),

G(rm; v[5m-—7,5m—3]1 Tm-l) - 1) = 0.
The homotopy map used for solving equation (39) is

(40} AF(v) + (1= A)(v — a).

Multiple shooting can be made to work for the problem (28-31), but it turns out that the
starting point must be rather close to the solution. The solutions ¥(r), G(r) grow rapidly on the
subintervals, and even though the subintervals are small. poor estimates of the iritial conditions in
Just a few subintervals result in machine floating-point overflow and failure of the whole scheme. The
shortcoming is not in the homotopy map (40) but in simply evaluating F(v) in (39). For example,
withn=-1§=20L=12, v=20 (a very easy case for the spline collocation method discussed
next, according to Figure 3), multiple shooting failed to reach the solution in 4 hours of CPU time
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on a VAX 11/780 for both m = 6 and m = 12, and produced overflow for m = 4, Spline collocation
for the same data (using n = 50} converged easily and required 43.5 min.

CUBIC SPLINE COLLOCATION

For the interval [0, L] take the mesh points
zo=0,31=5,$k=£;¢_.1+h, k=2,...,n, Tngr=2p +0 =L

with 0 < § <« A. Let Bi(z) denote the ith B-spline of order 4 defined on the knot sequence Ig. zg,
Zoy 20, T2, %3, - .oy Tn~2s Ta—1, Tntls Zntls Tnt+l, Znt1, Where z Tntl = Zpy1 + 6, § € A This
B-spline basis {B } has dimension n + 2. Substituting the approximations

n4-2

(41) Yie) s Alz) = ¥ a:Bilz)

=1
nt2

(42) ¢'(z) ~ B(z) = Y _ f:B,

=1
n+2

(43) ) C(z) Z 7B

into equations (28-31) yields the nonlinear system of equations

(44) Alzo)
A'(z;) '{ i), i=1....n
A'2Zn+1) = B(Zn+1)
B{zs) =0
n -

II

B"(z,) = 3A(z,-)B'(:c_,-) -nB(z;)* + 1~ C{z;)? + 8B(z;), 7=1,...,n
B(zn.H) =0
C(Ig) =
C"(zj) = — 3A($j)0'(zj) = {n-1)B(z;)C(z;) + #(C(z;) - 1), j=1,....n

C(:Bn.*.j) =1].

Let Y = (a;,...,a,,.,.g,ﬁl, e ,Bn+2,71,...,7n+2)'. Then the system (44) has the form

(45) F{Y)=MY + N(Y) =0,
where
ML 0
M= o M3 g ,
0 0 M3
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oy Bi(zo) 0 0 0 0 >
—-Bf(z1) -B3(z1) ~B3(z1) - B{(z1) 0
0 —-B3{z3) ~B3(z2) ~BY{z2) 0
e 0 0 —By{zs) —B{(z3) —B{(z3)
0 —B:::;l(zﬂ-l) ~Ba(zn-1) =B (Zn-1) 0
0 -Ba_1(zn) ~BJ{z.) - ::-4—1(%) -—B,’;_,_z(z,,)
L 0 72B)_1(Znt1) 02Bp(Zns1) 2B 1(Ta+1) 2Bl a(Zn41) ]

M2 = A3

[y 31(2‘.0) 0 0 0 0 ]
=B (z1) =-Bf(zy) ~BY(z1) —BY{(z1) 0
0 ~Bi(z2) — By (z2) —B{(z2) 0
0 0 —By{z3) —B{(z3) ~Bg(z3)
0 =By _(Za-1} —Bp(zn-1) —B.1(2n-1) 0
0 -B_i(za) -B,(2.) =By i1(za) =B a(zn)
L 0 03Bn-1{2Za+1) F3Bu{znat+1) 93Bnii1(Znti1) 03Bnia(Zat1)

Ty, 02, 03 > 0,

N(Y) = (01 B,(:E],},B'(:Cg), s B’(Zn), _U2B(zn+l)s

-3
R

2
-3

A{z1)B'(21) = nB(21)? +1 = Cl24)? + 3B(z1),...,

f

5 Alzp)B'(z2) —nB(za)* + 1= C{z,)* + 3B(z,),0,

012 A(21)C 1) = (1 = 1B(21)C{zs) + o(Clar) = 1), .,

72 A(2a)C"(2n) = (1 = 1)B(2)C(2n) + 8(C{2n) = 1), —73).

-

Because of the B-spline property

n+2
Z Bi(z) =1, Zo < I < Tnt,
i==1

and the concavity of cubic B-splines at the center of their support, the matrices A1) A3} and
M®©) are row diagonally dominant with positive diagonal elements {for § small}. By scaling the first
and last rows of the M17) by the oy, each M{/) can be made positive definite. (Note that the more
obvious spacing 2z = kh, k= 0,1,...,n + 1, produces a matrix M} which is not row diagonally
dominant and not positive definite after row scaling.) Because of the B-splines’ local support, M
i3 a banded matrix. However, because of the nonlinear coupling between A, B, and C in {44), the
Jacobian matrix of N(Y') has the form

B B B
DN(Y)={8 8 B8},
3 8 B8
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where the B's are (different} banded matrices. The diagonal B blocks, as well as the entire matrix
DN(Y ), may be indefinite or singular. Furthermore, the matrix M + DN{Y) may be indefinite or
singular. These facts make it difficult to exploit the sparsity of DN(Y), and suggest that a higher
order spline approximation resulting in a smaller, denser matrix DN(Y') may be preferable.

Consider then the same mesh points zo,...,Z,+; mentioned earlier, and let B; be the ith
B-spline of order 6 (a quintic) defined on the knot sequence

Zos 20, 20y L0, T9, 0, T3, T4, ..y In=31Tn—2s Tn+1: Tn+1r Tntl: Tndl; Zntls Tnt 1.

As before, this B-spline vector space has dimension n+ 2. Using the approximations {41-43) results
in the same nonlinear system of equations (44) for the spline coefficients as before, although of
course A, B, and C are now quintic splines instead of cubic splines. The matrix M in (45} is now
row diagonally dominant with positive diagonal elements, but cannot necessarily be made positive
definite by scaling the rows corresponding to the boundary conditions. However, M is a P-matrix
(all principal minors are positive), and such matrices behave essentially like positive definite matrices
as far as homotopy methods are concerned [36].

For the problem (28-31) L must be large (from 10 to 200) and most of the action in the solution
#(z), G(z) occurs for small z. Hence an unequally spaced mesh is appropriate, and the following
mesh was used (this uneven mesh does not qualitatively change M):

zg=0,zkxe“°"1m"-l+6, k=1,...,0, Zpnp1 =2, +35,

where Az =In{L + 1~ 2§)/(n — 1} and § = 1076,

Figure 1 shows the solution A(z) = #(z) for different values of the interval length L. The
solution A{z) ~ (z) appears to level off around L = 11, and this value for L has been reported
in the literature [24]. However, the solution for L = 14 suggests that this L is not large enough, or
else there is nonuniqueness of solutions. Figure 2 shows the effect of n on the solution A(z) ~ ¥(z),
which clearly is converging as n increases. Figure 3 shows the effect of the parameter s on the
solution A{z) » ¢(z). Note that the problem becomes more difficult as # — 0, and the solution is
very sensitive to s for & < 1. Figure 5 is the analog of Figure 3 for G(z). It is evident that L » 12
is going to be necessary for s < 1.

Figure 4 shows the dependence of the solution A(z) ~ ¢(z) on the parameter n. The problem
becomes more difficult as n increases from —1 toward 0, and is extremely difficult for n near 0 with
a small s = .05. Note the sensitivity of the solution A(z} » ¥(z) with respect to 5 for n > —1.0.
Figure 6, showing G(z), corresponds to Figure 4. For these cases L = 20 appears to be adequate.

Figure 7 shows a problem inherent in most nonlinear discretizations of nonlinear problems-
multiple solutions. Both of these solutions were obtained with the homotopy method (from different
starting points), and are qualitatively very different. The degenerate case n = s = 0 is very
interesting, but was not pursued any further in this work.

-Figure 8 shows the solution A(z) m ¢¥(z) for n = 0.261 and s = .05, an extremely diffcult
case. The solutions A(z) are extremely sensitive to n for n > 0. For example, with s = .05,
n =70, L = 200, and starting at the solution for the case n = 0.225, the arc length to the solution
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for n = 0.250 was greater than 37, and the homotopy algorithm required 111 Jacobian matrix
evaluations. The solution was obtained with a relative error of 10™?, and the zero curve was tracked
with a local error criterion of 1077,
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LIST OF FIGURE CAPTIONS

Figure 1. Solution A(z) ~ ¢(z) for L = 6 (solid line), L = 9 (dashed), L = 12 (short dashed),
L = 14 (dotted), with n = 25, p = ~.1, s = .2.

Figure 2. Solution A(z} =~ ¥(z) for n = 15 (solid line), n = 20 {long dashed), n = 25 (short dashed},
n =50 (dotted), with L =12, p = —~.1, s = .2.

Figure 3. Solution A(z) ~ ¥(z) for s = .05 (solid), s = .2 {long dashed), s = 1.0 (short dashed),
8 = 2.0 (dotted), with 9 = ~.1, n=50, L = 12.

Figure 4. Solution A(z) ~ $(z) for n = ~2.0 (solid), 7 = —1.0 (long dashed), n = —.1 (short
dashed), with a = .05, n = 50, L = 20.

Figure 5. Solution C(z) ~ G(z) for & = .05 (solid), s = .2 (long dashed), s = 1.0 (short dashed),
8 = 2.0 {dotted), with n = —.1, n = 50, L = 12.

Figure 6. Solution C(z) & G(z) for n = -2.0 (solid}, # = ~1.0 (long dashed), # = —.1 {short
dashed), with ¢ = .05, n = 50, L = 20.

Figure 7. Two different solutions A(z) ~ (z) for n = s = 0.0, n=15, L = 16.

Figure 8. Solution A(z) ~ $(z) for n = 0.261,2 = .05, n = 70, L = 200.
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