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ABSTRACT
This paper describes a hybrid method that seeks to combine the

efficiency of a quasi-Newton method capable of locating stable and
unstable equilibrium configurations with a robust homotopy method that
is capable of tracking equilibrium paths with turning points while
exploiting symmetry and sparsity of the Jacobian matrices. MNumerical

results are presented for a shallow arch problem.

INTRODUCTION

Currently a great deal of interest within the structura] mechanics
community centers around being able to predict response of strucfures
susceptible to 1imit and bifurcation point instabiiities1“4. The
present investigation seeks to evolve robust and efficient techniques
for such a.response prediction. One such technique is a hybrid method

stemming from an appropriate combination of a quési-Newton method and a

homotopy method. Unlike the previously known techniques of references

[1]-[4], the present hybrid method not only "breezes" past limit points

but can also locate such points to an extremely high degree of

‘. accuracy. Previous techniques experience a. great deal of difficulty in




the vicinity of 1imit points by virtue of the fact that the tangent
stiffness matrix of the structure is singular at such points.

In a recent paper5 Kamat, Watson and Vehkayya provide an evaluation
of the globally convergent quasi-Newton method and the homotopy method®
with regard to their suitability for so1v1hg nonlinear problems of
structural analysis posed as equivalent energy minimization problems.
The globally convergent quasi-Newton method, although quite efficient,
has its obvious limitations in the vicinity of limit and bifurcation
points and along unloading branches, especially when used in the context
of energy minimization. The homotopy-methode, on the other hand,
although quite suitable for nearly all types of nonlinear problems,
suffers from relative inefficiency and inability to exploit sparsity and
symmetry of .the Jacobian matrix of the nonlinear equations of
equilibrium. The hybrid scheme proposed here overcomes the undesirable
features of both these techniques, besides being more reliable and
efficient.

At the outset the energy minimization approach is abandoned, and in
its place an extension of the globally convergent quasi-Newton method
utilizing the double dogleg strategy7 for solving the system of
nonlinear equilibrium equations directly is considered. The most
significant pay-off from this alternate approach is its suitability for .
Tocating equilibrium configurations along unloading branches; The
process experiences no difficulty in utilizing nonpositive definite
Jacobian matrices - a characteristic of unloading branches.

The homotopy method of reference [6], in the interest of stability

and accuracy, utilized Householder reflections to obtain the kernel of a

'nx(n+}) matrix, thereby failing to exploit sparsity and symmetry of the -
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Jacobian matrices of the nonlinear equilibrium equations. The approach
taken here is to use a preconditioned conjugate gradient algorithm

instead, thereby providing a smooth transition in the vicinity of limit
points from the quasi-Newton method that exploits sparsity and symmetry

to the modified homotopy method that alsc exploits the same properties.

QUASI-NEWTON METHOD FOR NONLINEAR EQUATIONS

Assume the nonlinear equilibrium equations to be
Fi(xl,..o,xn) = 0; i = ],2..”- (1)
The double dogleg strategy described in detail in the appendix is

applied to minimize

F(x) = 5 FEOF() . (2)

Essentially, the strategy seeks the minimum of a quadratic model ﬁc of f
subject to the constraint

Ix . - X s 8. » (3)
where Gc is the radius of the sphere, centered at the current point Xes
within which the quadratic model can be trusted. Unlike backtracking
which uses a one dimensional quadratic or cubic model in the Newton
direction, the double dogleg strategy uses an n-dimensional quadratic
model to choose a new direction and the shorter steplengths consistent
with Eq. (3). Note that the steepest descent direction for (2) at the
point x. is given by §cp = “Qt(éc)f(ic)s where J(x.) is the Jacobian
matrix of F(x) at x..

Next consider the quadratic model ic given by

+ s)M.(x, +5) . (4)

- _ 1t
Relsg + 5) = 3 Mt

' ‘where
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Mo(x +5) = F(x.) + d(x)s - (5)

Note that SN = -J7'(x )F(x_) s the Newton direction for (4) and it is
indeed a descent direction for this quadratic model since it goes to the
minimum of (4). Since (2) and (4) have thé same linear terms, a gquasi-
Newton method for the nonlinear equations (1) can be obtained by
applying the double dogleg strategy to the positive definite quadratic
model (4). It should be noted that the Hessian gﬁ(;c)gjgc) of the
quadratic model (4) is not the same as the Hessian of f. However, the
former js guaranteed to be positive definite as long as g(gc) is
nonsingular. It is herein that 1ies the effectiveness of this method
for locating all equilibrium configurations except critical points,
whether they be stable or not. It is of course possible that a local
minimizer of f may not be a solution of (1), in which case it is
necessary to restart nearer to a root of F(x).

Next the details of the homotopy method of reference [6], modified
to account for symmetry and sparsity using a preconditioned conjugate

gradient algorithm, are presented.

HOMOTOPY METHOD USING A PRECONDITIONED CONJUGATE GRADIENT SCHEME

In this method assume the equilibrium equations have the form
E(x,2) = 0 (6)
where x,F are n-vectors and 1 is a scalar. Assuming there are no
bifurcation points, the zero set of F{x,r) is a smooth.curve vy which does not
intersect itself, and along which DF(x,1) = [Qxf(ﬁ,x), Q*E(E’X)]
has rank n, At a limit point ng(i,x) is singular, but the entire

Jacobian matrix DF(x,A)sti11 has rank n. It is this fact which is

 exp1oited by homotopy methods.



Let the smooth equilibrium curve y be parameterized by arc length
5, SO X = X(s), A = A(s) on vy and
E(x(s), a(s)) = O (7)
identically as a function of s. Then observe that (x(s), a(s)) is the
trajectory of the initial value problem

dr/ds

d dx/ds
3 E(x(s), a(s)) = [D,E(x(s), (s)), D,E(x(s}, a(s))] ( = 0, (8)a

x(0) = %9, A(0) =3y (8)b
where Xy 10 is some initial point on y. Since the Jacobian matrix has
rank n, the derivative (dx/ds, dr/ds) is uniquely determined, and the
inital value problem can be solved for x{s), 1{s). No Newton-type
iterations are performed, and the method is not just continuation or a
standard initial value technique because now both the displacements x
and the load parameter 1 are dependent variables.

Note that the derivative (dx/ds, dr/ds) is specifiad only
impiicitly, and special techniques are required to solve the inital
value problem. For more details on the homotopy algorithm, see
references [6], [8], [9].

The algorithm requires computing the kernel of the nx(n+1) matrix
DF, which has rank n. This can be easily and efficiently done for small
dense matrices, but the large sparse Jacobian matrix of structural
mechanics presents special difficulties. The approach taken here is to
solve DFy = 0 using a preconditioned conjugate gradient algorithm. This
conjugate gradient algorithm will now be described.

Let (X,%) be a point on the equilibrium curve y, and y the unit

1..t&ngent_vector to y at (X,1) in the direction of increasing arc length




s. Let E% = max ]Ei[' Then the matrix
i

DF(xs2)
A= , (9)

e
where g, 1s a vector with 1 in the kth component and zeros elsewhere, is
invertible at (x,x) and in a neighborhood of (X,x) by contfnuity. Thus
the kernel of DF can be found by solving the linear system of equations
| A =Ygy = b (10)
Given any nonsymmetric, nonsingular matrix A, the system of linear
equations Ay = b can be solved by considering the linear system
A’z = b.
Since the coefficient matrix for this system is both symmetric and
positive definite, the system can be solved by a conjugate gradient

algorithm. Once a solution vector z is obtained, the vector y from the
t

original system can be computed as y = A*z. An implementation of the
conjugate gradient algorithm in which y is computed directly, without
reference to z, any approximations of z, or ﬂﬂt, was originally proposed
by Hesteneslo, and is commonly known as Craig's method!l. tach iterate
gi minimizes the Euclidean error norm ly - 1iﬁ over the transiated
KryldQ space

¥° + span {r°, A0, (aaH)A°, ..., (aah)-1r0},

where L b -gﬂx?. Below <u,v> denotes the inner product gtg.

Craig's Method:
. Choose y”;
Compute r©® = b - A y%;

"*TffdemﬁUte EQ = AbrO;



For i = 0 step 1 until convergence do

BEGIN

a = ?Eia£1>/5EisEi>
x'iﬁ-l _ li + ﬂiEi

£i+1 =‘£1 _ uiﬁﬂi

g = <‘E'i+1,£1'~:-1>/<£i’r‘i
Ei+1 = £F£i+1 . 3121
END

Let Q be any nonsinguTlar matrix. The solution to the system Ay = b can
bé calculated by solving the system

By- @'y =-0-g (11)
The use of such a matrix is known as preconditioning. Since the goal of
using preconditioning is to decrease the computational effort needed to
solve the original system, Q should be some approximation to A. Then
gf;ﬂ woild be close to the identity matrix, and the iterative method
described above would converge more rapidly when applied to (11) than
when applied to (10). In the following algorithm B and g are never
explicitly formed. The algorithm given above can be obtained by

substituting the identity matrix for g.

Craig's method using a preconditioner:
Choose y°, Q.
Compute r@ = b - Ay°.

Compute F° -1.0

i

Compute p° = At 'Ff?.

For i = 0 step 1 until convergence do
BEGIN.

i

ey = <L/l pls




Yyt ey
i+1 -::i - a g __E
8. = <F1+1 1+1>/<£ or

Ri+1 _ Afgfti1+l

END

I=st
u

Fls

i
+ 85D

For this algorithm, a minimum of 5(n+l) storage locations is required
(in addition to that for A). The vectors Y, 'y and p all require their
own locations; @ r can share with Ap; g'lﬁg can share with Atg “t:. The
computational cost per iteration of this algorithm is:

1) two preconditioning solves (Q'ly_ and g"t!);

2) two matrix-vector products (Av and .B_t_\g);

3) 5(n+l) multiplications (the inner products

<p,p> and <f,r>, ap, Bp, and ag'l_&g).

The coefficient matrix A in the Tinear system of equations (10),
whose solution y yields the kernel of DF(X,x), has a very special
structure which can be exploited if {10) is attacked indirectiy as
follows. HNote that the leading nxn submatrix of A is D,F, which is

symmetric and sparse, but possibly indefinite. Write

=M+l (12)
where
DF(%,3) ¢
M=
— _C_:_t d »
L = uet u = Q‘XEQS’U C €
= —n+l * - : y




The choice of gE as the Tast row of A to make A invertible is somewhat
arbitrary, and in fact any vector (gt,d) outside a set of measure zero
(a hyperplane) could have been chosen. Thus for almost all vectors c
the first n columns of M are independent, and similarly almost all
(n+1)-vectors are independent of the first n columns of M, Therefore
for almost all vectors (eb,d) both A and M are invertible. Assume that
(gt,d) is so chosen.

Using the Sherman-Morrison formula (L is rank one), the solution y
to the original system Ay = b can be obtained from

m-Lyet

ue
Y= [I - _i“_g"""+l Jﬂ'lhs (13)
(M ue 4 +1

which requires the solution of two 1inear systems with the sparse,
symmetric, invertible matrix M. It is the systems Mz = u and Mz = b to
which Craig's preconditioned conjugate gradient algorithm is actually
applied.

The only remaining detail is the choice of the preconditioning
matrix Q. Q is taken as the modified Cholesky decomposition of M, as
described by Gill and Murrayl3. If M is positive definite and well
conditioned, § = M. Otherwise, Q is a well conditioned positive
definite approximation to M. The Gill-Murray factorization algorithm
can exploit the symmétry and sparse skyline structure of M, and this
entire scheme, Eqs. (10-13), is built around using the symmetry and

sparse skyline structure of the Jacobian matrix D.F.

DESCRIPTION OF THE HYBRID METHOD

The hybrid &1gorithm begins as a quasi-Newton (QN) algorithm util-

izing the double dog1eg strategy7 with an assumed or specified size of




the load or time step. If lack of sufficient progress by the QN
algorithm is defected, say if the function f = 1/2 ETE does not decrase
by 200% in 5 iterations, the size of the load step is reduced by a
factor of 5 and the QN algorithm is tried again. If it still fails to
make sufficient progress, then this is taken to be an indication that
the Jacobian matrices are badly conditioned because of the vicinity of
critical points (bifurcation or 1imit points). The QN algorithm is
abandoned at such a point and the modified homotopy method is
initiated. The homotopy method structured to exploit the sparsity of
the Jacobian matrix is initiated and continued beyond the critical
point, where the quasi-Newton method can be reinitiated. Recall that
the quasi-Newton method used here is one which requires only that the
Jacobian matrix be nonsingular and well conditioned, not necessarily
positive definite.

The criterion for switching from the homotopy algorithm back to the
QN aigorithm is that at least 10 steps of the ODE algorithm applied to
(8) have been taken (this prevents chattering back and forth between the
homotopy and QN algorithms), and

fda/ds| = .5/4/n+1. (14)

This latter condition effectively guarantees that the first n columns of
the Jacoian matrix Df are sufficiently independent, so the QN algorithm,
when restarted, should be successful. Note that the homotopy aigorithm
is predicated on rank OF = n, which is not true at bifurcation points;
and thus the homotopy algorithm has no theoretical basis near
bifurcation points. In practice, however, the ODE algorithm tends to

step past bifurcation points and continue on the primary branch (with a



lToss in accuracy, though). Rank DF = n at 1imit points, and they can be

calculated very accurately by the homotopy method with no difficulty.

VALIDATION OF THE HYBRID METHOD

The method just described is validated on the rather simple problem
of the snap-through response of a shallow arch, shown in Figure 1. The
co-rotational formulation'? is used for the kinematic description of the
frame element modeling the arch. For response prediction the quasi-
Newton method is initiated with a constant load step of 400 1b. The
eighth load step indicated that the QN algorithm was not making
satisfactory progress in spite of cutting down the load step by a factor
of 5. This was taken to be an indication.of the existence of a critical
point in the vicinity. The homotopy method was therefore initiated from
the end of the seventh step using the displacement vector X7 and the
tangent vector (v,-1) at the end of the seventh step. The vector v is
obtained by the solution of the equations

[d(x;)]y = {P.}. (15)
The decomposition of J required for the above solution was available
from the quasi-Newton solution at the end of the seventh load step. 2
was interpreted as the parameter on the loading distribution at the end
of the seventh load step.and was accordingly set to unity. The homotopy
method was carried past the point where

121 > 0.5//mT, (16)

di/ds is obtained from the unit tangent vectors (dx/ds, dia/ds) which

the homotopy method calculates. To ensure a good conditioning of the
Jacobian matrix it is necessary to integrate Eqs. (8) well past the
critical point. Using the displacement vector, the Jacobian matrix and

‘the sign of di/ds at the end of such an integration point the quasi-




Newton method is reinitiated. The sign of dA/ds tells us whether the
load parameter is to be increased or decreased on subsequent steps. The
QN method is continued on the unstable branch of the response curve
until it fails to make satisfactory progress in spite of a reduction of
the load step. The homotopy method is then initiated until condition
(16) is again satisfied at which point the QN method is reinitiated.

The success of the hybrid method on problems much more complicated
than the cne shown in Figure 1 remains to be demonstrated. However, no
'difficu1ties are anticipated other than the necessity of refining
criteria for the detection of transition points between the quasi-Newton

and homotopy methods.
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APPENDIX

Quadratic Model

Newton's method for unconstrained minimization essentially approxi-
mates the multivariate function F:R" » R about a point X. by a gquadratic

model of the type

- - t 1t
me(x,) = m(x. +8) = f(x.) +S0f(x ) +5SHS , (A1)

where § = (x, - x.) and He is an approximation to the Hessian of f which
is coerced to be positive definite if not already so.

To render Newton's method globally convergent; sufficiently large
decreases in f values must be achieved for the step lengths taken. This
can be expected to be satisfied if the following definition of
acceptability of an iterate x, is adopted:

flx,) = flx,) + cxlf(z(_(‘.)t(;s+ - X.) (A-2)
with a = 1072,

There is a certain region within which the quadratic model m. can
be trusted to adequately approximate the function f. Let Gc denote the
radius of such a trust region around the current point Xee If the trust
region is large enough, that is if

o218, (A-3)
where § §g n2 is the distance to the Newton point from the current point
Xc» then the Newton step is tdken since the Newton point is the global
minimizer of Me. In other words

-1 ;
'§C = - ﬂc ,__f(.)_(.c) . (A"'S)
N

=X <+

X, =X+ 3 - | (A-6)




However, if the trust region radius 8. is less than the magnitude
of the Newton step, then the direction § is the optimum solution of the
constrained problem

Minimize m.(x. + S), (A-7)
such that 1 S 1 = Gc . (A-8)
from the theory of constrained optimization, the necessary and suffi-
cient conditioﬁs for an optimbm are given by
= S(n) = ~(H + uD) 7B () w > 0 (A-9)
such that 1| S(u) 1 =
or  $=5(0) =5 u=0 (A-10)
such that § S(0) I < §a -

Thus the‘curve_§(u) shown in Figure 2 is a curve that runs smoothly from

the Newton step when p = 0 to
S = - L ar(x) (A-11)

when 1 gets large. In other words, the solution to Eqs. (A-7) and (A-8)
when Gc is very small is a step length 8o approximately in the steepest
descent direction. An exact solution of Eqs. (A-7) and {A-8) to

determine a direction § requires what is known as the model trust region
approach utilizing methods requiring approximately 0(n3) operations. ;
The double dogleg strategy provides an approximate solution of Egs. (A-
7) and (A-8) which is not much inferior to the exact solution but at a
substantially reduced computational effort - approximately O(nz)

operations after §E nas been calculated.

Double Dogleg Strategy

The double dog1eg (see Fig. 2) is an approximation to the S(u)

: ﬂcurve that must. have two of its properties: namely that the distance




from the current point X. increases monotonically and the value of the
quadratic model function also decreases monotonically along the double
dogleg. The elbows of the double dogleg are chosen to guarantee these
properties. The first elbow of the double dogleg is chosen to be the

Cauchy point of the quadratic model. Thus

Xep = X * .S_cp’ (A-12)
where
§.cp = "". A lf(ﬁc) L] (A“]3)
i Ef(éc) u2
A o= (A~14)

3f (zsc)tﬂczf (x.) '

A point 5& is then chosen along the Newton direction such that the two

desired properties of the double dogleg are satisfied. The point 5@ is

chosen as (following reference [7])
N

Xy = X+ “§c (A-15)
where
n = 0.8y + 0.2, (A-16)
v being a quantity determined from the relation
N N
Il §cp < vl §c b< §c I (A-17)
and given by
I of(x) 14
v = t t ;-! - (A-]a)
(2 (%) HIF (X DN(EF(x ) HD 9F ()
The point 5& is the second elbow of the double dogleg.
The next iterate x, is then given by a point between Xep
and gﬁ.such that | x, - X 0= 5. That is,
5f =Xt §cp * e(;& - —cp)’ (A-19)
where o is chosen such that
L §Cp + e(gﬁ - ﬁcp) h=6.. (A-20)




For x, to be an acceptable point it has to satisfy Eq. (A-2). If (A-2)
is not satisfied the trust region radius must be reduced. The new trust
region radius is determined by a quadratic backtracking strategy

utilizing f(x.), f(x,) and the directional derivative

Cwf(x )Y (x - x ) to fit a parabola, and then taking the new trust

region radius as the minimum of this parabola. The new trust region
radius is given by
' t
(%) (x,-x,)
c t *
208 (x)-Fx ) -f(x ) " (x,-x)]

If x, passes the acceptability test (A-2), then a check is made to

§ 1= - § (A-21)

c

determine how well the quadratic approximation is modeling the function
f and whether a larger step from X, using the current quadratic model

should be attempted. The trust region radius is repeatedly doubled and
new points x, computed until either the acceptability test (A-2) fails

or m. no Tonger models f well. When finally an acceptable X, has been

c
found, the quadratic model must be redefined utilizing H, or an approxi-

mation to it. The new trust region radius is determined as follows:

if |af| 2 0.75 |af » set 8 = 25 ;

predI

if |af| < 0.1 Jaf » set 8, = §_/2;

predI
else set 8, = 5c;
where
of = Fx) - Fx) . 8 g = W) - Fx).
This completes the discussion of the double degleg strategy. . Interested

readers should consult reference [7] for additional details.
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