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for almost every x. By (2.18), it follows that for almost every x,
$(rm(-0,2)) does not change sign (except for a set of measure 0) on {o: t1 <
o < ®}., Then by Proposition 2.1, #(y) does not change sign for

0=r limm(-o,x) {y <{r m(-tl,x);

og->w®

since 9m(t,x)/dt exists and is continuons (see (2.3)), the exceptional set
still has measure zero. From (2.4), we cénclude that 6(y) is of one sign (or
zero) almost everywhere om [0 < y { ®}. For (2.8') to hold, the sign must be
positive, so (2.7') holds, If ﬁl and ¢, are solutions of (2.16), (2.8'), then
? = ¢1—¢2 satisfies (2,16); by the argument above, ¢ does not change sign
(a.e.). Since both 61 and 4, satisfy (2.8'), we must have 81=6, (a.e.}. This
proves Theorem 1. | '

Next we examine some more specific models,

3. The case of expomential growth. Suppose M(t,z) = zek® (t,z > 0) with ¥ ) o,
so that m(t,z) = zeX' (-t,x > 0).

Then (2.14) becomes
(3.1) 5(x) = ¢ [T ¢7E0 F(rze”E%) f(g)do.

THEOREﬁ 2. Problem (3.1), (2.7), (2.8), (2.9), (2.10) has no solution,

Therefore, there does not exist a stable, time-independent size
distribution & for probabilistic models of the cell eycle if cells grow
exponentiaily. We conjecture that the time—dependent distribution flattens and
approaches a trivial solution &(x) = constant of (3.1); that is, as the culture
ages, some cells get arbitrarily small and others get arbitrarily large (see
Table 1). The only way to avoid this conclusion is to include feedback from

cell size to division time in the model. This idea is pursued in [15].
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Proof of Theorem 2. We use Mellin transforms., Suppose & is a solution.
Assume first that § is absolutely continmous with derivative 8'(zx) = —4(x) a.e.,
so that (2.16) holds; that is,
(3.2)  4(x) =22 [2 IO 500K flaras e

Multiply (3.2) by i (e < n { =) and integrate to obtain

(3.3) g{n)

I

f: d(x)x_indx

H

2f7 o (kik)e 2 27 % (x2e7%%) dz] £(o)do

1% B(En) 3,

wvhere
(3.4) B(n) = f7 e KS £(4) im0 4.

is the Fourier transform of b{g) = re-k“f(a) (0 < o { ). The

analogue of (3.3) for the gereral case of (3.1} is

(3.5) B*(n) = = B(Eq) &*(n) (=@ ¢ n < @),
where
(3.6) i*(n) = fz x 7 d@(x).

To justify (3.5), choose a sequence {8} of absolutely continuous, nonincreasing

functions with

(3.7) in(o) =1, 1lim 5 (x) =0
X—)® '

and In(x) t 8(x) (n -> ®w, 0 ¢ x ¢ ®): since F is nonincreasing and (2.,10)

holds, this is possible. By a convergence theorem for probability measures [5],
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5 8(x) @b (x) -5 [ g(x) daB(x) (2 ~> =)

for every bounded continuous funetion g on (0, =), 1In particular,

(3.8) @) = Lim&(n) = -lim (B )(m)  (vw <y < =),
n->w n—-)e

In addition, the functions

H(x) =z fz e ko in(rxe“kc) f(o)do

are absolutely continuous, norincreasing {in x), and nondecreasing (in n) to the

limit
B(x) =z [7 e X% 3(rxe7%%) f(o)dg,

with Hn(O) = H(0) = 1, 1lim H (x) = lim H(x) = 0. Thus the convergence theorem
X oo X >

for probability measures shows that

(3.9) lim Hn*(n) = H¥(y) = r jz x~in dx[f:e"ksi(rxe_kc)f(a)dc].

n-je
But since Hn is absolutely continuous,
B (n) = —r2f7 x'in[j: e“(k+i)U)Ié(rxe"ga)f(c)dc]dx,
as in the derivation of (2.16), so, as with (3.3},
(3.10) H(n) = -ri" B(En) B (n) (== < q < @),

Equation (3.1) shows that & = H, so (3.8), (3.9), and (3.10) yield (3.5).
Now #*(n) is contimnous and not identically zero. (Note that B* is the
Fourier-Stieltjes transform of the nontrivial finite measure d[B(et)} on {~w ¢

t < =}.) Thus $*(n) is nonzero on some open interval (nl,qz); by (3.5),
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(3.11) B(Eq) - r7in - (ny < < ay).

But B(in)—r—i“ is amalytic in {Im n < 0} and bounded and continnous in I

= {Im q £ 0}. By a basic result for bounded analytic funetions in a disk ox
half-plane [11], identity (3.11) extends to all of 1, and in particular to the
set of all real n. But by the Riemann-Lebesgue Lemma, #igm B(kq) = o,

while lr—i“l =1 (-= <{(n (=), so we have a contradiction, This proves

Theorem 2.

4. The case of linear growth —- theory. We have just proven that there does not

exist a stable time—independent size distribution for probabilistic models of
the cell cycle under the assumption of exponential cell growth. Brooks [3]
suggests that the problem lies not with the probabilistic passage of cells
through the cycle but with the assumption of exponential growth, If cells grow

linearly instead of exponentially, then
mass at division = mass at birth + ET.

The constant ¥ is now the growth rate - mass per unit time - for individual
cells; it is not related in any way to k, the specific growth rate of the
population as a whole.

We shall find infinite series solutions for (2.16), (2.7'), (2.8') in two
cases suggested by the transition probability model discussed at the beginning
of Sec. 2. Here T = TA + TB, where TB is a positive,'deterministic constant,

and Pr{TA >t} = f: fl(s)ds, where either

(4.1) fl(t) = Pe-pt {(t > 0) {tramsition probability model)
or
(4.2) fl(t) =.é§% (e—pt ) (t > 0} (two transition model),
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with p and q positive and p # q. The probability density (4.1) portrays TA as a
single random event which occcurs with probability p per unit time. Eq, (4.2)
portrays TA as a sequence of two such events which occur successively in a fixzed
order, Eq. (4.1) is the limiting case of {4.2) where ¢ —> =, and our solution
formulas can be obtained by taking this limit., Since (4.1) is substantially
simpler, however, we shall work out this case in detail ;nd outline the
procedure for (4.2). The solution for the excepted case p=q (fl(t) = pzte—pt)
of (4.2) can be obtained directly or by letting q -~) p in our solution formulas.
(See 'Remark om singular cases’ below.)
For simplicity in what follows, we scale time and mass in suvch a way that
E = '1‘B = 1. Then, in terms of (2.16),
0 . (0<Ct 1)
f(t) =
£,(t-1) (1<t (=),
Notice tkat under steady state conditions, there is a minimum birth size x =
1/(r~1), and d(x) = 0 for x ¢ = r/(r~1). To prove this {independently of
Theorem 1), suppose a cell is born with mass T, e X,. Then, after omne
generation, this cell will give rise to daughters of mass ) o, = (uo+1)/r. If
we iterate this process, we find that, in the J'th generation, all descendents

of the original cell have birth masses 2

vo=rdng 4 (1-r )/ (e > (-2 /e,

and this approaches xo/: &s j - =,
Since m(-o,x) = x—6¢ if 0 ¢ & ¢ =z and m{-g,x) = 0 if o > =X,

our basic equation (2.16) becomes

_ X -ko
(4.3) $(x) = r=f1 e ¢(r(x—a))f1(a-1)da.




PAGE 16

or, after the change of variable y=r(x-¢),

r{x-1)

(4.4) 4(x) = r ¢ KX I

/T 45 £, (x-1-(3/2)) a.
]

a. Transition probability model. When (4.1) holds, (4.4) is
(4.42)  §(x) = pr o (HPIX 2y T(xD) ((RRIY/T gioy 4

0

Differentiate (4.4a) to obtain
#'(x) = -(k+p)d(x) + rlpre E)g(r(x-1)).
But by (2.15), pre f = k+p, so we get
(4.5)  6'(x) = ~Gep)é(x) + Blx(x-1))  (x, Cx < ).
Eq. (4.4a) also implies
(4.6) $(x ) = 0.

Conversely, any solutiom of (4.5) and (4.6) will solve (4.42); to see this,
multiply (4.5) by expl(k+p)x] and integrate.

A solution of (4.5) is

(4.7 () = I (-1t e ()
n=0

o) (x-x )

where

€ (r) =1, ¢_(r} = 1 (n=1,2,...).
© B (r-1) (r3-1)...(z"-1)

This series and its derivatives to all orders converge absolutely and uriformly

on {xo L x {=}. Termby-term integration shows that

f;om Ido(x}! dx ¢ » and
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(4.8) (k"”P) fx = do(x)dx = ;:o (—l)n On(r) = N(I).
o n=0

Approximate values for N(r) are given in Fig. 1.

By (4-8)!
(4.9) 6 (x) ~ o~ (ktP) (x—x) (x => @);

in particular, ¢°(x) £ 0 and lim #(x) = 0. Integrating (4.5) from x, to @ and

® >m

changing variables, we see that

Bz =-7J 8:(x)dx = 0.

-4
a

Thus (4.6) holds for ﬁg, so 6, satisfies (4.4a). By Theorem 1 and (4.8), N{r} >

0 and
(4.10) 6(x) = d(z;1,p) = (k+p)¢0(x)/N(r)

is the unique solution of (2.16), (2.7'), (2.8') in this case, The cumulative
distribution function, #(x), derived from (4.10), is plotted in Fig. 2 for r =

2, 4 and 8.

b. TIwo transition model. Now let (4.2) hold. Then {4.4) can be written

ri{x-1)

(4.4p) 8(x) = pa(ap)~! zeP o~ (kMPIx e EPIV/T g(vyay
o

_ _ {x-1)
- palg-p) 1 re? ¢ (kD) f e (YT foy4r o By (x)+6,(x).
o
Differentiate (4.4b) to obtain
{(4.11) ¢'(x) = —kd(x) - pél(x) - qdz(x).

Eliminating 61 from (4.4b), (4.11), we obtain
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#(x) + (k+p)d'(x) = (r~a)é, ().
Anotber differentiation, using the definition of éz, shows that
87" (x) + [(k+p}+(k+q)18'(x) + (k+p)(k+q)d{x) = parze Xg(r(x-1)).
But (2.15) now says that pare ™™ = (k+p)(k+q), so our equation is
(4.12)  ¢''(x) + [(k+p)+(x+q)14'(x) + (k+p)(k+q)d(x) = r{k+p} (k+q) $(r(x-1)).
Solutions of (4.12) are

(4.13) aél(x;r.p.q) + péy(xir,q,p),

where o and B are arbitrary constants and

n
(4.14) ﬁl(X;IoPall) = %0 (_1)2 cn(I:P:Q) rn e ¥ (kw)(x xo)’
n=o
with
C (r,p,q) ] 1

(4-15) e (I,p.q) = 1' n = . ’

o Cp-1 (P> m 1- Kk

: k+q

except in the singular cases where
nl
1 =1 (k+p)/(k+q)

for some n’ » 1 (recall that p # q). We discuss these singmlar cases in a
remark below and ignore them for now.

The series (4.14) for él and its derivatives to all orders comverge
absolutely and uniformly on Ixo L x {®}, In particular, denote by ¢° any
solution (4.13) where a and B are chosen so that do(xo) = 0. Integrating

{(4.12) from T, to ®, we see that {éo)’(xo) = 0 as well., These initial
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conditions enmable us to reverse the steps leading from (4.4b) to (4.12). Since
P # q, (4.13) shows that 4°(x) # 0 for large x, so #° # 0. By Theorem 1, there
is a number N = N(r,p,q) # 0 such that #(x) = éo(x)/N is the unique solution of

(2.16), (2.7'), (2.8").
Remark on singular gases. When
{k+q) = rn'(k+p}, for some n' = 0,1,2,...

(including the excepted cases p=q, n’ = 0) the form of the series changes. The

solution él(x;r,q,p) of (4.12) remains valid (unless p=q), but there is a second

solution of the form

31(x;r,p,q) =
? DT E fMx)) sEr ) e im T " o (k4p)r” (xx )
a=n' n=0

We shall not pursue the details.

5. The case of linear growth - moments, To compare our results with

observations of cell size distributions in cell cunltures experiencing balanced
growth, we would like to know the moments of the size distribution é(x). The
moments can be obtained most easily by transforming (4.4) with the Laplace
transformation
(5.1) Liy}(s) = [_ % y(x)e™5(x 30l ax,

o .

The result (obtained with a change in the order of integration, a change of

variable, and use of the definition X, r/{r-1)) is

(5.2) L{$}(s) = 8(s) = B(s/r) re &  (s+k),

where ?1(5) = f: e—Stfl(t)dt. By (2.15), this can also be written as
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(5.3) 8(s) = B(s/D)T (s+1)/F, (k).

If ¢ is in L? and é4(x) decays exponentially (as in the examples of Sec. 4),
then 3(s) is differentiable to all orders (s > 0) and
(5.4) M o) = (-1m [ 7 (x-x)™ #(x)dx (m =1,2,...).

o

Eq. (2.8') implies that
(5.5) #(0) = 1.

For the higher derivatives, assuming that fl decays exponentially, we can
differentiate (5.3) to obtain
m—1 :
(5.6) (=™ ¥ (x) F™ (o) = P =i () o) Tl(m“J)(k), m=1,2,... .
j=0
This enablés s to evaluate the derivatives S(m)(OJ inductively; using (5.4)
we can then determine the moments of 4,
In practice, in the common case where ?1 is rational (e.g., if £, is a
linear combination of exponentials), the work can be simplified by first
multiplying (5.3) by the denominator of ?1(s+k), s0 that only polynomials need

be differentiated.

Specifically, in example (a) of Sec. 4, (5.3)‘becomes
(5.3a) (k+p+s) #(s) = (k+p) F(s/r).
Solving for the derivatives of $, one obtains
(5.7 fo T (x=x)P$(x)dx = m!(k+p)™® pm(m+1)/2 ¢, (r) (m=0,1,2,...).
o

The first three moments of ¢ are
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(5.8) mean = {x) = x [1+ (k+p)_1] = r(r—l)_l[l + (k+p)-11.
(5.9) variance = p, = [x_/(k+p)]%(2-1)/(z+1) = (k+p) 2e2(s2-1)71,
(5.10) skewness = Hslpglz = 2(r-1)1/2 (r+1)3/2 (r2+p+1) 7T,

where B, = n’th moment of #(x) about the mean. The distribution ¢ is quite

close to the Pearson Type III distribution [1]
. _ .p-1 -¥
(5.11) P(x.xo,ﬁ,p) =y e /Bl (p),
where
y= (x*xo)/p, r'(+) = gamma function

r/(k+p)}(c+1), p = (z+1)/(z-1).

™
)

Distribution (5.11) has mean and variance given by (5.8) and (5.9) and a
skewness of Z(r-l)llz(r+1)"1/2. The ratio of the skewness of P(x) to that of
#(x) is (z2+r+1)/(x3+2zr+1), which is never much different from 1. P(x) and
#(x) are compared in Fig. 2 for r=2.

Similar computations can be carried out for the three other models

discussed at the beginning of Sec., 2. The results are collected in Table 2.
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6. Discussion .

The probabilistic cell cycle models described in this paper are easy to
simulate by Monte-Carlo methods. Some results of simulations for the transitiom
probability model are reported in Table 3. The numerical values for the mean
and variance of the division mass distribution function, ¢(x), compare
excellently with the analytical results in Sec., 5. In Fig. 2 we compare the
analytical result for the cumnlative distribution function for the transition
probability model,

(6.1) F(x) = N_l(x) 2 (_1)11 cn(r) e"(k'l-P)rn(x-—xo)’

n=0
with the Monte—Carlo simulations, and we see more clearly the excellent
agreement between theory and simulation,

We have shown for probsbilistic models of the cell ¢ycle that, if cell
growth is exponential, then there is no steady—state size distribution. This is
contrary to the facts for expanding celil cultures. On the other hand, a
steady—state size distribution does exist for probabilistic models of the cell
cycle, if cells grow lineafly (i.e., at constant rate per unit time, independent
of cell size), and our Monte~Carlo simulatioms indicate that this steady—state
size distribumtion is stable,

However, the assumption of linear growth does not accord with a well-known
relation between average cell size and population doubling time_in bacteria. In

Salmonelia tvphimurium Schaechter, Maallde and Kjeldaard [12] found tﬁat

(6.2) 1n<x>JL =p + vk

where <x)l is the average cell mass (protein content) inm a sample of extant

cells, k is the specific growth rate of culture (i.e., doublings per hour), and
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ik and v are experimentally determined constants. A simple relation between

<x>JL and k can be derived from the Collins-Richmond equation [9]
(6.3) AMx)V(x) = k(r-1)71 7 U= (y) + $(3) - =(3)1dy

where A(x)dx = probability that the present size of an extant cell lies

between x and x+dx, Y(x) = - ¥'(x) = probability density for birth mass in a
sample of newborn cells, and V(x) = rate-of growth of a cell of size x. (The
Collins-Richmond equation is just a statement of the conservation of cells for
populations in steady state expansion.) If individunal cells grow linearly, then
V(z) = £ = constant, and, on integrating (6.3) from x = 0 to =, we obtain

(after changing the order of integration and substituting ré(rx) for wx))
(6.4) E=x <=,

In order that (6.4) and (6.2) be consistent, we must insist that

(6.5) E = yxe’k

where vy = e! = constant, There is no obvious reason why % should depend on
k in just this way..

This discrepancy, along with other problems, indicates that probabilistic
models with linear growth are not adequate descriptions of the runles of cell
growth and divisiom [14]. It appears that there must be some correlation

between cell size and the probability of cell division [15].
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Appendix - Some interesting series. The formula {4.7) leads to several known

identities from the theory of basic hypergeometric series. In.this appendix,
set k+p=1 iz (4.7). Since §_ satisfies (4.5) and (4.6), 6, (x)) = 0 (m =
0,1,2,...)., Differentiating (4.7) m times, we find that
¢im)(x) = I (-1)>"" ¢ {r) r(1+m)n a—rn(x—xo),
n=0
50

= (_qym ;(m) LT _qan a(m+1)
0= (-1)" ¢ " (x,) = nio( 1)" e () 1

=1+ § (D% e_(r) L)
n=1
let q = 1/r. Then
(A1) 1+ 7 ¢, (a) g o8 qn(nul)/2 = 0.
n=1
Bailey [2], gives
(A2} 1+ 3 ¢ () z" !;,n(n".'l)j2 = I (1-zq))
n=1 n=0

for lql <1, lz] < 1; with z = a™ (m = 0,1,2,...), (A2) reduces to (Al).
Notice that the idestity (A2) is valid for lz| > 1, lql < 1, since both sides
are entire in z,

Next we compute the moments of ¢o(x) sbout x=x by integrating the series
expansion (4,7) term by term:
us) fxo“ (x-x)"¢_(x)dx = ml[1 + nili—i)ncn(r)r"mn]-

Comparing (5.7) to (A3), and using (4.8) and (4.10), we see that
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1+ 2 (#l)ncn(r)r—mn - rm(m+1)]2 cm(r){l + (-l)ncn(r)],
n=1 n=1

or, with q = 1/r,

(A4) 1+ % ¢ (@ qn(n—l)lz qg(m+1)

n=1 o

- (D% (@11 + § et

n=1

In (A2), set z = q?+1; the left side of (A4) is equal to (1—q?+1)(1-q9+2)....

Next, set z=g in (A2); the right side of (A4) is zlso equal to
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Table 1
Increase in the mean and standard deviation of cell size for the

transition probability model, assuming exponentizl cell growth,

Generation Standard

Number ’ Yean Deviation Minimum Maximum
0 2 0 2.0 2 x 100
10 15 147 0.2 5 x 105
20 34 151 0.06 4 x 103
30 95 391 0.04 7 x 10°
40 317 1640 0.01 3 x 104
50 1497 15955 0.009 5 x 10°

A population of 1000 cells was started out with all cells of mass = 1 at birth,
Next 1000 random numbers, represeating TA for each cell, were generated
according to an exponential distribution with mean =1 (i.e., p = 1), The
generation time of each cell was taken to bhe TA + 1 (i.e._TB = 1), and the mass
of each cell at division was caleunlated as birth mass times ezp{i'(TA + 1)1,
where K = specific growth rate for individual cells, If a steady-state

exists, this pafameter must be the same as.the specific growth rate for the
population as a whole [15]. Thus we set k = k, where k, according to Eq. [10]

in Smith and Martin [13}, is given by the root of the transcendental equaticn
p+k-2p exp(—kTB) = 0.

In our case (p = TB = 1), we find £ = k = 0,375, which corresponds to a
population donbling-time of 1.85, whereas the mean generatioa time is TB + p_l =
2. After calculating the mass of each cell at division, we retained one
daughter (of half the mother—cell mass), thus generating a new population of
1000 newborn cells of known birth masses. This process was repeated 50 times,
and at division in each generation were calculated the mean cell mass, the

standard deviation of cell masses, the minimum cell mass zand the meximom cell

mass. Thongh this algorithm does not produce the mean and variance of d(x,t) =
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time—dependent probability density for mass at division in a sample of dividing .
cells, it does illustrate clearly the continual broadening of the distribution

of cell sizes in the probabilistic model with exponential cell growth.
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The mean and variance of the division-mass distribution function

for four different probabilistic models of the cell cycle.

Model
Transition Prob.

Two Transition

Kendalli's

Rahn's

Mean

1
k+p

=
+
o

Yariance

r-ll-l 1 -]

r+1[£k+p)2’+(k+q}f

Q

r-1 g
r+1 {k+p)2

1" 1 1
T+1 | (k+p) % (k+2p)Z

1

7 Tkegp) "]
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Table 3
Mean and variance of the steady—state division—mass distribution
function, as predicted by equations (5.8) and (5.9} and

(in parentheses) as calculated from Monte—Carlc simulations,

r =2 r =4 r =8

2.807 (2.811) 1.780 (1.801) 1.468 (1.496)
r =2

0.217 (0.218) 0.120 (0.166) 0.082 (0.073)

3,455 (3.428) 2.074 (2.074) 1.648 (1.598)
p=1

0.705 (0.763) 0.330 (0.329) 0.198 (0.114)

4.610 (4.627) 2.547 (2.690) 1.911  (1.899)
P = .5

2.271  (2.400) 0.883 (0.890) 0.459  (0.526)

|

In each box we report the mean and varience predicted by equations (5.8) and
(5.9) and, in parentheses, the same quantities calculated from a simulated mass
distribution. The simulation was carried out as follows. At time t =0 a cell
of arbitrary birth-mass, B,» was created, The generation time, To, of this cell
was calculated by choosing a random number, TA‘ from an exponential distribution
with mesn p™1 ang adding Tp = 1, i.e., T, =T, + 1., The mass at division was
calculated by adding fTo (with ¥=1) to the mass at birth., Thus at time t =

To we had r newborn cells of identical birth-masses, ny = (yo + T )/, i=
1,2,..., r. The generation times of these cells, Ti (i =1,2, ..., r) were then
calculated by choosing r random numbers from an exponential distribution (mean =
phl) and adding 1 to each. For each of the r cells, the times of division, t =
T0 + Ti’ and the masses at division, Mi =By + Ti’ were recorded. The

calculation continued in this fashion, allowing the cell population to expand
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exponentially in time until there were 4000-8000 cells (i,e,, 12 or 13
population doublings). At regmlar intervals of elapsed time a2 sample of
dividing cells was chosen by searching for all cells which divided in a time
window, chosen small enough so that no cell could divide twice in the time
window but large emough so that abomt 25% of the total current population would
be sampled. From this sample of dividing cells, the mean and variance of the
division masses were calculated. By the 12th population doubling the
division-mass distribution had reached steady-state, as judged by the relative

constancy of the mean and variance.



Figure 1.

Figure 2.
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N(r), as defined by (4.8). N(r) is needed to normalize the
division-mass probability density fumection (4.10) for the transition

probability model.

The division-mass cumulative distribution function for the transition
probability model with linear growth. The solid lines are graphs of
equation (6.1) for p = 0.5 and ¢ = 2,4,8. The dashed line is a graph
of the cumulative Pearsom Type III distribution for p = 0.5, r = 2, k
= 0.266; i.e.. B (x) = oV(y2/2 + 7 + 1), ¥ = (x-2)/0.8700. The
solid circles are the observed distributions of division masses in
the Monte—Carle simulations of the model presented im Table 3 {last

row). The open circles report a second simulation of the case r=4.
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