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ABSTRACT

A generalized mathematical model for describing the whole-cell-hollow-
finer reactor and the annular bed reactor is presented. The annular
reactor model consists of a mixed-type problem for which a novel numerical
procedure is developed. The procedure is demonstrated for a number of
examples, and it is proved that the model and solution technique are

well suited for the simulation of annular reactors.



INTRODUCTION

In recent years two reactors of analogous configuration have been
theoretically and experimentally studied, and show promise. These two
reactors are the whole-cell hollow-fiber reactor (NCFR) [1-4], and the
annular bed reactor (ABR) [5-8]. Each reactor is made up of a central
core which_is surrounded by an annular region of catalytically active
material (see Figure 1). For the WCFR the active material is whole-cells,
and for the ABR it is solid catalyst. - In the WCFR, the two regions are
separated by the hollow-fiber wall, and in the ABR they are kept apart by
an inert screen,

The purpose of the WCFR design is to immobilize the catalytically
active, enzymatic material by immobilizing the whole-cells. Advantages
of immobilizing who]e-cel]s over that of enzymes are [2]: minimization
of enzyme denaturation, elimination of enzyme purification, and the
ability of whole cells to catalyze multistiep reactions.

The ABR 1is configured such that for highly exothermic reactions,
the reactor shows good thermal behavior. This advantage of the ABR has
been experimentally confirmed using the hydrogenation of behzene with a
supperted nickel catalyst as the test reattion [8]. Ultimate uses for the
ABR could include systems which invoiv% supported transition metal
catalysts, and reactions which produce coke. Supperted transition
metal catalysts are very sensitive to temperature, and thus require
excellent temperaturecontrol. In the case of a coking reaction, the

coke formation would occur in the annulus and could never plug the core,



where the regenerat%ve oxygen flows. Therefore, regeneration, a highly
exothermic reaction, could not be inhibited by tube plugging due to coke
formation as it is with fixed-bed reactors.

Although these two reactors have been designed for different purposes,
their structure is the same, and thus they can be described by similar
sets of mathematical relationships. In this paper we (a) deﬁe]op a
generalized mathematical model for these annular reactors, (b) introduce
a new computational procedure for solving models of the structure given
in (a}, and (c) show the feasibility of the computational procedure for

modeling the WCFR and the ABR.
REACTOR MOBEL

The following reactor model is developed to describe annular
reactors in general, and thus can be used to simulate the WCFR and the
ABR. Simplified versions of this model have been prev%ous]y derived
by other investigators [2-6, S, 9].

Consider a mixture of MT chemical species which participate in MR

independent chemical reactions:

Yo Vngfa T 0 a1 ., R,

Assuming that the effects of volume changes due to the reactions on the
concentrations and axial velocity can be neglected, the continuity

balances for the inert core are:
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The radial distribution functions are included to allow for point
transport coefficients and for laminar or turbulent velocity profiles.
The functiona]ity of.V(r), E(r}, and G{r) for turbulent flow in the ABR
is described elsewhere [6}. If V(r} = E(r) = G{r) =1 for ¢<r ST
then the traditional turbulent flat velocity and dispersion profiles
are obtained; Also, if E(r) = G(r) = 1 and V(r) = 2[1 - (r/rs)z] for
0<rc< res the traditional laminar velocity and diffusion coefficients

are acquired. In Egs. (2) and (3) axial dispersion processes are

(5)



neglected. This omission may not be applicable for certain cases in the

ABR [7], but in the majority of the anticipated uses for the ABR and the

WCFR, the neglecting of axial dispersion effects is Justified.

The continuity baiances for the medium which separates the inert

core and the active bed (membrane or screen) are:
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Finally, the continuity balances for the active bed are:
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For the ABR, s designates the inside surface of the reactor tube wall,
while in the case of the WCFR it represents the so ta11ed "hollow fiber
mid-point“ [2}. The hollow fiber mid-point is calculated by equating
the total cell suspension volume to that of the individual annulus
volume multiplied by the number of hollow fibers in the unit. Examples
of this calculation are given in [2-4]. A'propér simplification of o
Eq. (13) when describing the WCFR is to set U = 0; that is, zero heat
transfer occurs across the hollow fiber mid-point, (For most practical
situations, the WCFR will be essentially isothermal and the addition of

the heat balance not required.)
COMPUTATIONAL TECHNIGQUES

A nonlinear, mixed-type problem similar to that described by Egs.

(1-13) has been previously solved by a non-iterative finite difference



method [S-ﬂ . This procedure involved an extrapolated Crank-Nicolson
discretization, and details can be found elsewhere [9].

For thick catalytic beds, near complete conversion within the catalytic
region is possible at any z. Although computed concentrations must
remain finite at r = r {except for zero-order reaction rate, see Appendix
A), they can become exceedingly small for significant portions of the
active bed. 1In this case, the procedure given 1in [é] requires excessiﬁe?y
small meshes in both the axial (due to extrapolation), and radial {due
to truncation error} directions. Next, we develop a new computational
- procedure which overcomes this difficulty and can be used for all problems
with structure similar to that of Egs. (1-13).

To begin, the core balances, which are of parabolic type, are
discretized. For the purpose of illustration, we outline the procedure
on a single equation, with V(r) = E(r) = 1. Let yi,j denote the
approximation to the exact solution Cn(iAr, jaz) for grid points
=0, «o. , Ny J=0,1... M, where Ar = rS/N and Az = L/M. A

Crank-Nicolson discretization of Eg. (1) is:
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Next, approximate the flux at rs by
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Since the screen or membrane continuity balance is easily integrated,

the "jump® across this region is accomplished using Eq. (16) to give:
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Eguations (17) and (18) together with Eg. (10) (for a given n) constitute

an initial valuz problem for the active bed.

step Adams method is used to solve the ordinary differential equation

until r = o or'Cn = 0, whichever occurs first. The remaining boundary

condition which must be satisfied is

BCn
g;- =0 if Cn(ro) > 0,
rO
or
acn _ _
-a:;—- =0 if Cn(r‘)=0, P, ST <.

Rl

A variable order, variable

(19)

(20)
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Appendix A proves that the boundary condition Cn(F] = 5;5-__= 0 is
r

impossible except for a zero-order reaction rate. Thus, Eq. (12) is
ultimately satisfied for all non-zero-order reaction rates. Equation (20)
is included to explain how the numerical algorithm handles the case where

Cn(ro) < 0. The boundary value problem within the bed is known as a

aC aC
"free boundary" problem. Note that the value of 3;3 or 5?2'— depends
r r
"0

in a highly noh]inear and implicit fashion on the values of the core
concentrations yi,j+1' i=0, ..., N Converse}y, the free boundary
condition in the bed propagates inward and implicitly imposes a constraint
on the solution in the core. Thus,.Eqs. (14), (15), (19) and (20)
comprise a set of N+1 nonlinear equations in the N+1 unknowns yi,j+l’

1T =0, ..., N,

The nonlinear system of equations is solved for each z-level by a
least change secant update quasi-Newton algorithm [10]. Since the
concentration varies slowly, obtaining good starting points for the
quasi-Newton iteration posés no difficulty. Furthermore, the slow Varia-
tion of the concentration and the small band width of the Jacobian matrix
makes the quasi-Newton iteration very efficient.

The e%ror 1h the numerical solution is a combination of several
factors. These are: (a) error 1nhdiscretizing the parabolic core
equations'(Eqs. {14) and (15)), (b) error in approximating the flux

at re (Eq. {16)), (c) error from the variable order, variable step Adams

method used to solve the active bed equations, and {d) the error



associated with the least change_secaht update quasi-Newton algorithm,
The expected core discretization error is 0(A22 + Arz) where 0( ) denotes
terms of order { ); that is, f(Az) = O(Azg) if |fl{az)] §_®(Az)g as

Az -~ 0 (£ and & are constants) [11]. The error in approximating the

flux at re is O(Arz) while the errors associated with the Adams method

and the quasi-Newton are determined by specifying their magnitudes, and

are denoted by TOLA and TOLN respectively.
NUMERICAL EXPERIMENTS

To show its feasibility, the computational method proposed is
demonstrated for three subcases of the generalized reactor modé]. ATl
calculations have been performed on a VAX 11/780 in double precision
arithmetic, Example 1 shows the computational properties, e.g., approxi-
mation errors, quasi-Newton iterations, of the method. Examples 2 and 3
illustrate the use of the reactor model and computational procedure to
describe a liquid-phase reaction éystem'in the WCFR (single species)
and a gas-phase reaction system in the ABR (two species), respectively.
'The final two examples demonstrate that the model and numerical procedure
are sufficient to simulate gas or liquid phase reaction systems over a

wide range of operating conditions.
EXAMPLE 1

Consider a fictitious annular reactor where re = ps that is, no
screen or membrane is required to separate the inert core from the active

bed. Also, assume that the reactor is 1sotherma1 and that a reaction
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with a zero-order reaction rate is occurring in the active bed, If the
concentration of the reactant remains positive atro, then the effectiveness

factor for the catalytically active bed is equal to one [2, 3]. Thus,

the annular reactor can be described by (E(r) = 1}):
dee,  fefe g eey
2u1-(—-—) LapfA LA 0crcr, 0zt (21)
s az ar r or
with
aC aC
L.gatr-= 0, Dg lofatr=r .
ar - ar S
and
0 o
Cl = C1 at z = 0,
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2 2
F=-o " Tshy
r
S

The analytical solution to Eq. (21) is (converted from the heat transfer

analog [12]): :
r 0 " .
¢ (7 %) -0 2z S 8%z DS
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(st/Dl) ur 26,1 re 2uro
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where the first seven values of v, R{1}, and 62 are given in Table 1.

- _ c _ S _ b _ - 0 _ -
Now let re = 1, o = 1.5, Dl = 0.1, D1 = 0.1, D1 0.1, u = 10, C1 1x10

and k = 1x107°. Using the above parameters, Eq. (22) gives Cl(l’ z)
to at least five significant figures for & > 3.
The reactor model consists of Eqs. (1), (3), (5), (6), (8}, {10),

and {12) with MR = 1, v, ., =1, ande =k. Provided the reactant concen~

1,1
tration remains finite at For the numerical solutions are independent of
the magnitudes of Di and D? as predicted by Eq. (22). Table 2 shows the
root mean square error (RMSE) in the numerical solution for various Ar

and Az, The RMSE ig defined as:

M .
(C (13JAZ) - Yy i
RHSE = 1 |» | —1L i,
J=1

From these results, the numerical procedure 1is shown to be consistent
with the differential equation model. That is, RMSE + 0 as Ar and

Az ~ 0. For the results given in Table 2, the average number of function
calls is seven. (One function call represents one evaluation of the
system of noniinear equations.) The minimum possible number of function
calls per j-step is seven, Thus, increasing TOLN will not aid iﬁ
increasing speed. When TOLN was set below 10"6 there was no change in
the RMSE, but the execution time increased due to the larger number of
function calls required to obtain the higher accuracy. For values of

b

TOLA < 107°, the RMSE was not changed from those reported in Table 2,

while execution fimes increased slightly with tighter TOLAS.

5
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From the above discussibn it becomes clear that the major source
of error is the core discretization which is coupled to the error in
approximating the flux at r.. Although the finite difference method
outlined in this paper is the easiest discretization (especially for the
case of multiple equations with E(r) # 1, G(r} # 1), Galerkin and
collocation procedures are recommended if higher accuracy is desired.
For complete discussions on Galerkin and collocation refer to Chapters
3 and 4 of [11].

Figure 2 shows the axial dimensionless profi1es at the centerline,
the coreQbed interface, and at the outer surface of the bed, The
differences between pairs of curves indicate the overall concentration
gradients between corresponding boundaries. This figure also shows,
for z/L > ~ 0.2, the concentration gradients in the two regions are of
approximately equal magnitude. Thus, the highly coup1ed nature of the

system 1s-we11 illustrated by this example.
EXAMPLE 2

Webster and Shuler [ 4] describe the following experiment. A WCFR
with physical dimensions listed in Table 3 contains a mutant cell slurry
with a high concentration of the enzyme urease. A urea substrate
solution at a concentration of 2.00 g/% is pumped through the reactor
at an everage velocity of 2.235 cm/s. It was observed that the urea
concentration exiting the WCFR was 1.80 g/&. It is known that the
diffusivity of urea in water and in the hollow fiber membrane is

1.2x10™° en’/s [14], and 1.63x1075 cw?/s [4], respectively. Given




13

1

that the first-order reaction rate constant is 0.01125 s -, the desired

quantity is the diffusivity of urea in the mutant cell slurry.

Webster and Shuler [4] considered their reactor to be operating
differentially, and neglected the diffusion resistance of the core in
their analysis, Thus, the concentration in the core was assumed uniform
for all v and z. Their results specified D? = 1.2x10"5 cmz/s; the same
value for that of urea is pure water. ATlthough the mutant cell slurry
could contain a high concentration of water, it is very unlikely that
the diffusivity of urea through this slurry would be equal to that in
pure water.

We modeled this reactor system using Egs. (1), {3), (5), (&), (8),
(10) and (12) with MR = 1, E(r) = 1, V(r) = 2[1 - (r/r)?], =1,

In order to obtain the specified cutlet average
7

and Ry = 0.01125 C

1 I

concentration, we found that D? = 3.0x107 cmz/s. Figure 3 shows the

radial concentration profiles for various axial positions when using

D? = 3.0x107

s not uniform for 0 < r < v, 0 <z <L, and this effect produces a two

cmz/s. As can be seen from Figure 3, the concentration

order of magnitude difference in the calculated vaiﬁes of D?. Our valﬁe'
of D? appears more reasonable in light of the magnitude of the urea
diffusivity in pure water, and a complete discussion the physical impli-
cations of this result will be presented elsewhere [13]. The primary
conclusion drawn from using the full model is that the major diffusion
resistance is the whole-cell slurry, and not the hollow-fiber membrane

as reported by Wester and Shuler,
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EXAMPLE 3

Davis et al. [8] hydrogenated benzene over a supported nickel.catalyst

in an ABR. The stoichometry of the reaction is:
C.H. + 3H, = C_H

[t was found that

83872 exp [Zzigﬁ} ¢, C, '
R = - T ' ~ f/gmoles (23)
1 68,768 ( 3,
1+ 1.96x107% T exp { : ]cl em=-$
T

where C1 and C2 are the concentration of benzene and hydrogen, respectively.
Because of the hydrogen dependence in Rl’ hydrogen material balances

are needed for the solution of the benzene continuity equations. Since
there is only one independent reaction, the hydrogen balances can be
obtained és follows. In the inert core, the flow is turbulent for this
case, and transport will be dominated by convective processes, Thuﬁ,

Dgs(r) = D%E(r), and

. ~0 0 _
C2 = C2 - 3(C1 Cl), 0<z<tL, 0 ir< re (24)
Since it is assumed that no axial flow occurs in the screen and catalytic
bed, transport in these régions s purely molecular in nature. Therefore,
the hydrogen continuity ba]ances'for the screen and catalytic bed are

respectively:
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TN .
C2 = (r ) - 3(Di>[cl(rs) - ClJ’ re 2r< L - {25)
2

where Cz(rs) is calculated from Eq. {24), and

b
D
2

-

where Cz(rb) is computed with Eq. (9). In total, the reactor modei_
consists of Egs, (1-13, 23-26) with MR = 1 and vl 1° 1. |
Parameter data representative of the ABR in our laboratory are given
in Table 4. The results of simulating the ABR with the data Eisted in
Table 4 are shown in Figures 4 and 5, For this set of data, the mode]
calculated the exit conversion of benzene to be 93%. As can be seen in
Figure 4, the reactor model pred1cted re]at1ve1y small temperature
gradients, These results illustrate the excellent therma] behavior
of the ABR. Figure 5 shows the concentration profiles in the forward
and exit regions of the reactor. As can be seen in Figure 5, the magn1tude
of the concentration gradient decreases with increasing axial position.
The results provided in Figures 4 and 5 show that the numerical
procedure. can adequately "handle" problems which contain large gradients,
gradients in opposing directions {gradient always negative for concen-

tration, but changes sign in various regions for temperature), and multiple

continuity balances.
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CONCLUSIONS

The results presented herein demonstrate the effectiveness of the
annular reactor model and its associated solution technique for the

simulation of annular reactors in general,.
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NOTATION
A reaction component
Cn concentration of species n
Cp heat capacity
Dg, D;, DS diffusivity of species n in the core, screen, and bed
E(r) distribution function for radial mass dfspersion
G(f) distribution function for radial heat dispersion
AHq heat of reaction for the qth reaction
K zero-order reaction rate constant
Kc, KS, Kb thermai conductivity in the core, screen, and bed
L reactor length
MT total number of species in_the éystem'
r radial corrdinate
_Rq reaction rate function for the qt-h reaction
R parameter in Eq. (22)
u average axial velocity
U overall heat transfer coefficient
V(r) radial distribution function for axial velocity
yi,j numerical approximation to Clidr, jaz)
z axial coordinate

B parameter in Eg. (22)

RV stoichiometric coefficient of i for the j reaction
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o density
VR parameter in Eq., (22)

Subscrigts

s at core-screen interface

b at screen-hed interface

0 at wall or hollow fiﬁer mid-point

Superscripts

¢ in the core region

S in the screen or membrane region .

b in the bed region

0 at the reactor inlet

+ evaluated from the outer side of the interface

- evaluated from the inner side of the interface
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APPENDIX A

Zero~Order Kinetics

The equations describing the annular catalytic region are ordinary
differential equations (ODEs). More specifically, the ODEs are two-point
boundary-value problems with highly implicit and nonlinear boundary values
at r = rys and satisfy the boundary condition of dC/dr = 0 with ¢ remaining
positive at o For certain forms of the reaction rate function,

“reactant exhaustion® occurs, and the conditions at ry are replaced by

C = dC/dr = 0 at ¥ where Py ST < Yo+ Below we show that the form of the
reaction rate function determines whether "reactant exhaustion” conditions
are appropriate substitutions for the standard boundary conditions in an
annular reactor.

Consider the following ODE which can describe the behavior of the

catalytically active bed

2
d’¢ +1dC R(C) (A.1)
E;? r dr

and write it as a first-order system:

(A.2)
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where a; = C and @, = dC/dr. Now Jet ry < r <r . Invoking the "reactant

0
exhaustion" conditions at ¥ as initial conditions for (A.2), and integrating

tor = " gives C = 0 at ry except for the case where R(C=0) # 0. 1In

i

other words, if ¢ 0 satisfies (A.1) then it is thé only solution to
(A.1) (see [14] for an existence and uniqueness proof for solution to (A.2)),
Since C at ry is not zero (no reaction in core and screen), "reactant
exhaustion" can not occur for a R(C) that satisfied R(C=0) = 0. Thus,
Tor R{C=0) = 0, the boundary condition dC/dr = 0 with C remaining positive
at ro Must be satisfied. Alternatively, if R(C=0} # 0, then "reactant
exhaustion™ can occur. Such is the case when R(C) = k, or zero-order
kinetics.

DeBruijn et al. [}5] modeled their paralle] passage reactor (rectangular
coordinate analog of the annular reactors) by specifying C = dC/dr = 0
at r = o Since their reactor model satisfied R(C=0) = 0, the "reactant
exhaustion" condition is mathematically impossible, and calculations

based on it are at best accidentally correct if dC/dr(rO) = 0 and

C(ro) x 0, or at worst just plain wrong.



Table 1:
Table 2:

Table 3:
TabTe 4:

TABLE HEADINGS

Parameter Values for Equation {(22) from Reference [IZJO

Root Mean Square Error in the Numerical Solution,
TOLA = TOLN = 10-F,

Whole-Cell-Hollow-Fiber Reactor Data from Reference [4].

Annular Bed Reactor Data.



FIGURE LEGENDS

Figure 1: Schematic of Whole-Cel1-Hollow-Fiber or Annular Bed Reactor.

~Laminar Velocity distribution function is illustrated,
Figure 2: Axial dimensionless concentration profiles,

Figure 3: Radial concentration profiles in the whole-cell-hollow-fiber

reactor with D? = 2.0 x 1077 cmz/s. Core (I), membrane (II),

and whole-cells (I1I).
Figure 4;: Temperature Contours in the ABR.

Figure 5: Radial Dimensionless Concentrations in the ABR.



jr=

L
25,6796
83.8618

174.167

296.536

450.947

637.387

855.850

R,(1)
-0.492517
0.395508
-0.345872
0.314047
-0.291252

0.273808

-0.259852

vy,
0.403483
-0.175111
0.105594
-0.0732804
0.0550357

-0.043483

0.035597

Table 1



(Az, Ar)

RMSE

0.025 , 0.1000

0.025 , 0.0500

0.025 , 0.0250

0.100 , 0.0125

0.050 , 0.0125

0.0250, 0.0125

0.2187

0.7791

0.4508

0.4350

0.4076

0.3937

x 10
-2
x 107°
x 107

x 1072

Table 2



Table 3

Parameter - Value
rs 0.01001 cm
y 0.01300 cm
o 0.01781 cm

L 21 cm



Parameter

Value

Table 4

20.35 cm/s
6.105 cm2/s
1.0

2
0.447 cm“/s
1.0
0.447 cm®/s
1.0

2,27 x 10°% cal/em3-k

1.39 x 1073
2.48 x 1072
1.25 x 1073
0.8484 cm
0.8712 c¢m
1.27 cm
15.54 cm

- - -

5.98 x 10"3 cal/cmz-s-K

390 X
5.34 x 1077
0.0174

cal/cm-s-K
cal/cm-5-K

cal/cm-s5-K

gmo]e/cm3

-50,000 cal/gmole
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