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ABSTRACT. Direct complementary pivot algorithms for the
linear complementarity problem with P-matrices are known to
have exponential computational complexity. The analog of
Gauss-Seidel and SOR iteration for linear complementarity
problems with P-matrices has not been extensively developed.
This paper extends some work of van Bokhoven to a class of
nonsymmetric P-matrices, and develops and compares several
new iterative algorithms for the linear compiementarity
problem. Numerical results for several hundred test
problems are presented. Such indirect iterative algorithms
may prove useful for large sparse complementarity problems.
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1. INTRODUCTION.

For a matrix M ¢ gO*m and a vector g e Rm, the linear
compiementarity problem, denoted by (g.M), is +to find

vectors x ¢ R™ and y ¢ RT such that

y=Mx + g
t, _
X20, v20, y'x =0,
The c¢onstraint ytx = 0 is called the complementarity
condition since for any i, 1 £ i < m, Xi = 0 if Yi > 0, and
vice versa. It may be the case that x, = y; = 0 however,

This problem arises in such areas as economic modeling
[9,10,29], bimatrix games [18,19], mathematical Programming
[5,14,21], mechanics [13], lubrication [16]), and numerical
analysis [3].

Numerous algorithms exist to solve linear complementarity
problems. Among the more important are Lemke's
complementary pivot algorithm [18], Cottle andg Dantzig's
principal pivot method [2], Bard-type algorithms [1,pp.
147-149, 241, ang the n-cycle algerithms [31,321. Also.of
interest are algorithms for solving the nenlinear
complementérity Problem such as the homotopy methods of
Merrill [22], Eaves {6;7], Saigal [27]), and Watson [31].

All of the.mentioned algorithms for solving the linear

complementarit problem (g,M) are based on simplex type
D Y | _ P yp



prdcesses. For large scale Sparse problems these pivoting
methods may destroy sparsity, require too many pivots, ang
suffer from roundoff error, Just as matrix itérative
technigques have a pProminent place in the numerical solution
of partial differential equations, iterative algorithms
might prove important in the bractical solution of large

scale linear complementarity problems. van Bokhoven [30]

algorithm. The'complementary pivot and Bard-type algorithms
can require 2™ iterations to solve (2.M) [26], and it is
pProbable that the hybrid n-cycle algorithm has exponential
computational complexity [232]. van Bokhoven cléimed that
his algorithm hag polynomial complexity, but in fact the
complexity depends on the spectral radius of M, and hence isg
not polynomial in +the technicai Sense, Nevertheless, the
modulus algorithm may prove to be very efficient on certain
classes of pProblems,

van Bokhoveh .proved that the modulus algorithm works
correctly when the matrix involved is a symmetric P-matrix.
A P-matrix is a matrix for which all brincipal minors are
positive [8]. This baper extends wvan Bokhoven's results by
showing that the modulus algorithm can be applied to a class
of non-symmetric P—matrices. In addition, a2 more efficient

block version of the modulus algorithm is Presented.



Finally, experimental data for the modulus algorithm, the
bilock algorithm, and a related fixed point iteration

algorithm are presented.

2. NOTATION.

Let R™ be m-dimensional real Euclidean space and RO R be

m

the set of all real mxm matrices. For =z € R and n a

z(n) refers to the vector ocbtained

nonnegative integer,
after n iterations inside the first cycle of an algorithm

(1f there is more than 1 cycle). In a similar manner, for

2 e Rm, 1 £ m < m, z(n) refers to the vector obtained

after n iterations inside some subsequent cycle of an

algorithm. For 1 £ i < m, Zi refers to the ith element of
(n) . th

Zz, and zi refers to the i element of the vector

obtained after n iterations.

e R™, let K and L be a partition of {1,...,mj.

Given M
MKL denotes the submatrix of M with rows indexed by elements
of K and columns indexed by elements of L. A principal
pivot submatrix & of M is obtained by applying a principal
pivot transform [2] to M, and then permuting the rows and

columns to produce a matrix of the form



A P-matrix has 2m~1 Principal pivot submatrices, each of
which is also a P-matrix [2].

. mxm m - .

Given M ¢ R and g € R, the linear complementarlty

pProblem is to find vectors y € R™ and x ¢ R™ such that

Yy = Mx + g

X20, y20, y'x = o
Following Murty [25,p. 484], the complementarity pProblem is

denoted (g,M).

3. DERIVATION OF THE FIXED POINT ALGORITHM.

To accomplish this, (a.M) is transformed into another
problem using the transformation |
Yy = |z! ; Z and X = |z| + g _ (1)
where z ¢ R™ ang lz] is defined by
2l = dzylizy0, .0 2| E.
Theorem 1. {(van Bokhoven [30])

Rme’ g e RM and assume that -1 is not an

Let M e
‘eigenvalue of M (always achievable by scaling M by a
poSitive constant).. The linear complementarity rroblem
(g.M) is equivalent to the determination of a vector z ¢ RM™
which satisifies

2= (0 g+ (1) (1w 1o (2)
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The solutions z of this equation and the solutions x and Y
of (g,M) are related by
y = lz|l -z, = = |z| + z, z = K(x-y).
Proof:
From transformation (1) it follows that vy 20, x 20 and

z| - 2%z = 0 for any z ¢ R", and therefore the

ytx = |z
substitution guarantees that the complementarity conditions
on X and y are satisfied.

Any complementary feasible pair x and y determines. a
vector z = 3(x-y), for which |z| = %(x+y), and (1) holds.
Hence the mapping (X,y) + z = %(x-y) is a one to one ﬁapping
of the set of complementary feasible vectors onto R™. Then
there is a one to one correspondence between the solutions
of (g,M) and the solutions of the equation derived from
(q,M) by the substitution (1). This substitution yieldé

(I+M)z = -g + (I-M)|z].

By assumption (I+M) is nonsingular, so

z = ~(1+M) " Yq + (14m)"(1-M) 2.
Q.E.D
Eguation (2) may be rewritten in the form

z = Dlz| + b, (3)
where b = ~(M+I) >q e R™ and D = (I+M) 1(I-M) ¢ R ™,
In the rest of this paper references will be made to an
absolute norm [} over R™, which has these properties:

2) Ix] 2 0 for all x ¢ R™ and Ix] = 0 if and only



if 2 =20

b) fax| = |e|fx] for all o € R, x ¢ R™

c) la+b| < Ja| + Jb| for all a, b e R"

d) |iai} = jal for all a ¢ R™

e) |al s |b| implies Ja| < |b| for all a, b ¢ R™.
Householder [12,p. 160] has demonstrated that properties d)
and e) are eguivalent. The standard I*l_ and H'Hz norms are
absolute norms.

Furthermore the norm [A| of a matrix A is defined to be

the induced (or operator) norm

Al = sup jax|/|x]
x#0

such that |Ax| £ [Ajlx].
We will use the trivial fact:
Lemma 1.
la]~|b|| £ |a-b] for a, b e R™.

For completeness a proof of the following lemma, due to
van Bokhoven [30], is included.

Lemma 2.

If DI < 1 in some absolute norm, then fixedA.point
iteration z(n+1) = D[z(n)f + b converges and the 1imit z* of
the sequénce {z(n)}'is the unigue solution of z = D|z| + b.
Proof:

With f£(z) = Djz| + b, equation (3) can be written as z =
£f(z). For zl, 22 € Rm, |

le(zh-225)1 = Ipczti-122D)] < Iptzt-12200. (e
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By Lemma 1 and the absolute norm propertieé d) and e) it
follows that

H=t-12211 = 1112122000 < 1ietez?)) = j2leg?),
Thus equafion (4) yields

i£z*)-£(2%) ) < |pif2t-22)
and hence f satisfies a Lipschitz condition with Lipschitz
constant |DJ.

(n+1) _ £(z(") converges by

If ID| < 1, the iteration gz
the Contraction Mapping Theorem (Henrici [11]) and

z* = lim z(n)
TNee

is the unigue solution of z = f(z).

The iteration
2{8*1) < p (), (5)

will be called the fixed point iteration algorithm.

Lemma 3.
Let T ¢ RO*M be a positive definite diagonal matrix and
define
l=i = HTXHp, 1<p<oa
Then [+ is an absolute norm, and
| m 1/p
(min Ty )l=l, < Ixf < z o, Pi x|

i : i=1

Proof:



Since T is positive definite and f%ﬁp is an absolute

norm, it follows that [x| = Ilx]]. and therefore I*| is an

absolute norm.

Now using the definition of the p-norm

x| = |7 =
Ixl = 7=l
" m m 1/p
P _
I 11 1 z lrii max lxji} | =
i=1 _ 3
/P m 1/p
P _ P -
(maxiji) b ;Pii[ = max!le L }Tiil
] i=1 j i=1
m 1i/p
P
LM
i=1
Also
[m 1/p m 1/p
ITy,x, [P 2! % minT,, x, [P =
i=1 i=1
_ m 1/p m i/p
: | =4 b . e -
: . b . = . . . =
(mszTJJl) ]xll mlnlrJJ} 3 ixlf
J i=1 3 i=1

min T, HX”
J
Since Hxﬁ 2 x| _,
min P fo 2 min F Hx”
j ]

Therefore



m 1/p
p
LTy I=l

1

(min T, )zl < x| <

I!

i i
Q.E.D.

Lemma 4.

mxm
R

Let T € be a positive definite diageonal matrix, D e

Rme -1

. and |IDr Hp < 1 for some p, 1 € p € «. Then D} < 1
in an absolute norm.
Proof:

Let the vector norm be the absolute norm defined in Lemma

3. Then

IDi = sup |oyl/ly| =
y#0

=P Iyl = eup IrDrTinyyy ) =
T 40 T
Tyl yH 4 | y!!p
-1 o -1, ~1
sup |IDr (I‘Y)”p = sup |IDT Wﬂp = |IDT llp < 1.
£0 T +0
ve0 T TivI wo Tl
9.E.D.
Theorem 2.
Let I+M be invertible, D = (1+M) " T(1-M), T & positive

definite diagonal matrix, ang HPDT_al

< 1 for some r, 1 £p
£ «. Then (g,M) is solvable by fixed point iteration (5).
Proof:

Since ‘I+M is invertible and D is defined as in Theorem 1,

(4.M) can be transformed into the equivalent problem (3) by

Theorem 1. Since T is a Positive definite matrix and



HTDF-lﬁp <1 for some p, 1 £ p € «, it follows from Lemma &
that [P} < 1 in an absolute norm. Finally from Lemma 2 it
follows that fixed point iteration will vyield the unigque
solution to (3), and the (unigue) solution of (g,M) can be

found by using (1).

Corollary 1.

Let M satisify:

1) I+M is invertible,

2) There exists a positive definite diagonal matrix T
and a number p, 1 £ p € », such that nr(I+M)'1(I-M)r'1np <
1.

Then M is a P-matrix.

Proof:

It has been demonstrated in several different ways that M
is a P-matrix if and only if the problem (2,M) has a unique
soluﬁion for all g e rR™, (See Ingleton [13], Samelson,
Thrall, and Wesler [28], Murty [23], Watson [31], or Kelly
and Watson [15] for example.)

Since the hypotheses satisfy the requirements of Theorem
2, from the proof of Theorem 2 it follows that (g,M) has a

unigue solution for all g e Rm, and therefore M is a P-

matrix.

Corellary 2.
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Let M satisify the hypotheses of Corollary 1. Then =all
of the eigenvalues of M lie in the complex (open) right
half-plane.

Proof:
The eigenvalues ¥; of D = (I+M)“1(I—M) are given by

ui(Dy = 1-3,(M), i =1,...,m,
13, (M)

where li(M) are the eigenvalues of M. If an eigenvalue of M
lies in the complex closed left half-plane then there exists
an eigenvalue My of D such that Iuil 2 1. Therefore the
spectral radius p(D) = maxiuil 2 1. But then for any norm,
IDI 2 p(D) 2 1. This contradicts the second hypothesis, and
therefore all eigenvalues of M lie in the complex open right
half-plane.
Q.E.D.
As examples of P—ﬁatrices that have eigenvalues with

negative real parts consider the matrices

v 1 0

2

y/z y 1
1 0 vy ?

where O<y<.l. This example is from Watson [31}.
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4. CONVERGENCE OF THE MODULUS AND BLOCK ALGORITHMS.

van Bokhoven [30] derives an algerithm which he calls the
medulus algorithm to solve (g,M) when M is symmetric and
positive definite. This section will demonstrate that <the
modulus algorithm can actually be applied to a more general

class of matrices M. A more efficient block version is also

presented.
If M ¢ ROUR the modulus algorithm reguires at most m
cycles to solve (g,M). Each cycle determines an element of

X or y that is positive, and therefore the correspohding
element of the other vector is zero by the complementarity
condition. The problem is reduced in size by one. During
each pass through this loop the current problem (;,&) is

transformed into the similar problem (3). The fixed peoint
iteration (5) is performed a calculated number of times, say
N. The magnitude of at least one element of ;(N) is known
to equal or exceed a test value, and the sign of this
element can be used to determine if the corresponding ;i or

~

¥y element is positive. The actual number of cycles needed

depends on the number of Xiv Vs pairs which both equal zero.
If the number of such pairs equals k then exactly m-k cycles
are needed. Finally the actual values of the positive
elements of x and y can be determined.

Theorem 3.
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~

Suppose that for every principal pivot submatrix M of M

Rme’ I+M is invertible and there exists a positive

definite diagonal matrix T such that H?(I+i)-1(l-&)rhlﬁ <
1 for some p, 1 < P <« Then M is a P-matrix and (g,M) is
solvable by the modulus algorithm of van Bokhoven.
Proof:

First transform (q,M) into z = Dlz| + b as described in
Theorem 1. Now let £f(z) = Dlz| + b. Then

I£(z)-2z%)1 = 1D(12%}-122))) < Ipijt-2?.

Since ;;r(I+M)'1(I-M)r'1ﬁp < 1 for some p, 1 £ p £ «, it
follows from Lemma 4 that IDf < 1 for an absolute norm.
Therefore by the Contraction Maﬁping Theorem (Henrici
.[ll,pp. 99-100]) the fixed point iterates z(®) = g(,(n-1),

satisify

J2*-2 M) <« o (D), (0) (6)
1- DH-

with z~ being the solutiocn of the equivalent problem z2* =
D!z*ﬁ + b. By Lemma 2 z* is unigue. Now

1271 = IB+D12"( 1 > [b-IDI2*|| 2 |oi-Ip]i=*]
and therefore

i2¥] = |bl.
1+[D

By letting z(o) = 0, z(l) =b. Ifb=20then x = y = 0 and
the solution has been found. Otherwise from (&)

122 < p)® .
1-|D

Then

13



Iz*¥1-12 () < 2% (B)) < IJ@E ]

Y
or
A B P B N L
1-|D
Ibl - ? | —( D:; ylbn
1+{D| -JID 1+ D
From-

1z (8 a( 1~ DR\ Ib)
o v Y

there exists an i such that

12 = z{™) °1( 1 - HDHn)ifbll
1+p] 1-o]

where c; is a constant dependent on the norm I*] used. Also

252 < 2o () < (liD!! )nbn
1- D}

with C, another constant dependent on the norm [*li. From
Lemma & it follows that ¢y = 1/(1r, . P)1/P ang ¢, = 1/(min
Pii). As soon as
n n
cl(l - IpI™\> ¢, Ipj
\1+[Df  1-|D| 1-|Dff

it follows from the above that the component ZI must have

. n . :
the same sign as zi ). This occurs as soon as

1 >/1+ N D)t
1+|D| ¢, /)1-ip}

or



en 27IPE L pn A s o
n2N-= 1+|D| Tl‘

tn|D|
Hence after N iterations, the sign of at least one component

of z*, say z;, is known. The index i is determined by
(n)

- (n)
Izi | = maxlzk I,
k

From Theorem 1 it is now known whether X; or Y4 in the

complementary feasible solution has to be Zero.

th

In the case that X = 0, the i equation of (g,M) is

deleted as well as the ith

column of M, and a similar
problem of dimension m-1 with matrix ; e RO o qers.
Should v, = 0, exchange X and Yy in (g,M) by a principal
pivot transform [2] and reduce the problem in the same
manner.

It was assumed that all principal pivot submatrices & of
M have the property that there exists a positive definite
diagonal matrix ' such that HT(I+&)-1(I-&)FMIHP < 1 for
'some p, 1 £ p £ o, Therefore the algorithm can be correctly
applied to all possible reduced problems that arise.

The algorithm results in the signs of all_bomponents of

z* after running through at most m such cycles. In the case

that Xy = y; = O for some i, a reduced system is encountered

o~

sooner or later for which the b vector is zero leading to
z = 0, and hence the remaining components of x and y are
zero.

15



Q.E.D.

If M is symmetric and positive definite, Theorem 3
reduces to a result of van Bokhoven [3C], with I = I and p =
2., For this case the constant c, = 1/v¥m and the constant <,
= 1.

The block algorithm is nearly identical to the modulus
algorithm except that all elements of ;(N) that equal or
exceed the calculated test value are used to determine
whether the corresponding R, or vy, elements are positive.
Therefore the number of cycles needed to solve (g,M) is
significantly less than m.

Theﬁrem 4.

With the hypotheses of Theorem 3, (g.M) is solvable by
the block modulus algorithm.

Proof:

In the proof of Theorem 3 it was demonstrated that after

N iterations there exists an i such that

12{M 2 cl(l - unnn>nbn.
1+p]  1-[p]

It is possible that more than one element of z(N) satifies
-this condition. Since any of these elements ziN) may be
chosen as the indicator as to whether y; or X in the
complementary feasible solutiqn has to be zero, and the
unigue solutions y and x will correctly be determined, it

follows that all elements of z(N) that satisfy this
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condition can be used to determine if the corresponding
elements of y or x are zero, and the solution vectors y and
X will still be correctly determined. Therefore it is
possible to reduce the problem by more than one eguation at
a time.

Q.E.D.

5. IMPLEMENTATION DETAILS OF THE ALGORITHMS.

Four different algorithms to solve the linear
complementarity problem were implemented and tested, and
several more variations were considered but not fully
exXplored. Thg first algorithm tested was a straightforward
implementation of the modulus algorithm that was derived in
the previous section. This algorithm reduces the size of
the problem by one for each outer iteration. The algorithm

X . . . SHXm
therefore requires m outer lterations if M € R .

The
second algorithm is a variation of the first, differing in
the determination for which element of 2z should be chosen as
nenzero. . The third algorithm, referred to as the block
algorithm, is an enhanced version of the modulus algorithm.
The problem is reduced as much as possible after each outer
iteration. The minimum reduction is one dimension per outer
iteration, so this algorithm requires at most m iterations,

but in almost all observed cases the _number of outer

iterations was far less than m.
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The fourth algorithm tested was a straightforward
implementation of fixed point iteration. Technigues were
considered to speed up fixed point iteration using the
diagonal Aitken procedure or Steffensen's iteration [11,pp.
90-92]. The details of the four algorithms and the problems
encountered with Aitken acceleration will now be Qiscussed.

As shown in  the preceding section the linear
complementarity problem (g,M) can be transformed into the
equivalent fixed point problem

z =Dlz|] +b, De RM b, z ¢ ™.
The modulus algorithm as implemented works as follows. A
loop based on the size of the problem, m, is set up. Each
pass through this loop allows the size of the problem to be
reduced by 1.

During each pass through the outer loop the
transformation of the current problem .

y=Mx+q x20, y20, yor=o0

o mam T T @ ~
M e R , X, YyYe R, l<€me<m

to

t
?
{
?
H
t

is reqguired.
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First b is determined using the LINPACK routines DGEFA

~ e ~

and DGESL [4] to solve -g (I+M)b. If at some point b

~

= 0 then it is known that x = y = 0, and the outer loop

may be exited early.

~ ~

Assuming b # 0, the spectral radius 8(%) of D is
determined by finding the eigenvalues ki(&) of i and
letting

8(M) = max |(1‘li(M))/(1+Xi(M))l°

Next a wvalue

in 1-8(M) - gn (1+vVm)

=1
i

1+8({M)

in 8(M)

is calculated. Letting z(o) = 0, the iteration
2(P+Ll) Dlz(n)] + b

~

is performed N times. A test value

P

1 - e ) b,
E = 1+B(&) 1-8(&)
/
can be calculated. If the original matrix M in (g, M) is

symmetric and positive definite, then there exists an i such
that
(N}, 5 o
lzi | =2 T. . |
Furthermore the'ith component of the solution z" {(to the

‘reduced problem) has the same sign as the ith component of

19



~

o~
z(N). Therefore it is known whether the ith component of vy

~

or X in the complementary feasible solution is zero. In

~

the first modulus algorithm T is not explicitly calculated.

it is assumed that the element of z(N) with the largest

~

magnitude would exceed T. The index of this element is
noted in a pivot wvector. If the current iteration of the
outer loop is the jth iteration for example, the jth element
of the pivot vector is assigned the index of the element

chosen. This algorithm will be referred to as the modulus

)

algorithm (max). In the second modulus algorithm T is

calculated. The first element of z(N) which egquals or

~

exceeds T is used or, if no such element is found, the
element with the largest magnitude is used. Agzin the index
of the element is noted in the pivot vector. This second
modulus algorithm will be referred to as the quulus

algorithm (test).

If xy =0, the ith equation in v = MX + g is deleted

th column of M. This is implemented by

as well as the i

-interchanging the ith and mth rows and columns of a matrix,

and the ith aﬁd mth compeonents of a wvector. - The new
reduced problem is thus left in the first m - 1 rows and
columns of a matrix, and the first m - 1 components of a

vector. The corresponding elements of the pivot vector are
also exchanged, so all row and column exchanges can later be

deduced.

20



If v, = 0, the variables Ry and y; are exchanged in v

o~ ~

= Mx + g and the problem is reduced in the same manner as

above. One constant 1s added to the appropriate element of

the pivet wvector to signify that X5 = 0, or a different

~

constant is added if vy = 0. This concludes ocne iteration
of the outer cycle.

After this outer loop términates a modified system which
can be represented by

mxm t '

M'x' = g', M' € R , X', gl e rM

is left. M' is lower triangular with minus ones on the
'
diagonal, all of the elements of g' are known, and X, =

—q;. Therefore x;+l equals the inner product of the first

i componehts of the (i+1)St row of M' with the first i
components of x', minus q;+l, where 1 £ 1 £ m-1. It is

therefore_straightforward te calculate x aﬁd Y sSince it is
known from the pivot vector which elements of x and y are
represented by each element of =x'. This concludes the
modulus algorithm.

The modulus algorithm as implemented is guaranteed to
work only when the original matrix M is symmetric and
positive definite. This is because the 2-norm and 1//;
(the constant relating the 2-norm and the max norm) have

L (n+1)

been used to calculate the number of iterations of =z

Dlz(n)i + b. As shown in the proof .of Theorem 3, the

21



norm to be used and the constants <4 and <, depend on the
current problem. The appropriate norm and constants for
nonsymmetric P-matrices cannot be easily determined, and
therefore the 2-norm, c; = 1/%;, and c, = 1 have been
arbitrarily used. As shown in the next section the use of
these choices seems reasonable, since the algorithm has =a
good success rate on nonsymmetric problems.

If the calculated number of iterations, ;, is not large
enough it is possible that the algorithm as implemented will
return one or more negative X, or ¥y values even though a
feasible solution does exist. This may be due to the
inapplicability of Theorem 3, the use of the Z-norm instead
of an appropriate absolute norm, or roundoff error.

Theorem 3 also required +that all principal pivoet
submatrices  satisfy a certain condition. However, the
modulus'algorithm as implemented may work even if some of
the principal pivot submatrices wviolate this condition,
because such a submatrix might not actually be created
during the execution of the algorithm.

The block algorithm as implemented is identical to the
modulus algorithm (test) with the single exception that all
. elements of z(N) are <Tested against ;. The problem is
reduced when the first element of z(N) is féund that eguals

~

or exceeds T, but instead of returning to the top of the
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~
outer loop to begin again, the testing of elements of z(N)
continues until all possiblé reductions have been made. If
" no elements of z(N) equal or exceed % then the element with
the largest magnitﬁde is used as in the.modulus algorithm
{test).

'This enhancement greatly reduces the overall time to
solve the problem if more than one reduction can actually be
made for each pass through the outer loop. As mentioned, it
is almost always the case that the number of outer
iterations is far less than m, at least in the observed
cases. This is clear from the timing results presented in
the next section.

The fourth algorithm implemented and tested was fixed
proint iteration. As with. the preceeding algorithms the
problem (q,M) is transformed to z = D|z] + b. The vector b
is again determined by using LINPACK routines DGEFA and
DGESL to solﬁe Fq = (I+M)b. However, this calcuiation is
performed only once, as compared to once for each pass

through the outer loop in the previous algorithms.

Next the fixed point iteration z(*T1) = Dlz(n)[ + b
starting with z(o) = 0 is performed until convergence is
detected, For the tests reported here, convergence was

defined to occur when all elements of z(n+1) differed from

the corresponding elements of z(n) by less than 10"12.
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Since it is possible for some of the elements of z(n) to
oscillate or for convergence to be eXxtremely slow, an
arbitrary limit of 10,000 iterations was enforced.

Assuming convergence is detected, the x and v solution
vectors are determined using

y = lz| -~ 2 and x = |z]| + z.

Another algorithm considered was the fixed point
iteration (5) coupled with the diagonal Aitken procedure to
accelerate convergence. This algorithm is also referred to
as Steffensen's iteration as it was first proposed by
Steffensen according to Henrici [1ll,p. 91]. This algorithm
would solve the equivalent fixed point problem z = Dlz| + b
as the previous algorithms do, again with z(o) = 0.

(n+l1)

The wvector z would be determined'as follows: Two

iterations are performed, say

z(nl) - Dlz(n}l + b and z(%?) = D|z(n1)l + b.

(n+1)

Each element of z is determined using the formula

(n+l) _ _(m) (nl) _ _(n),2
zs z; (zi 2z )
(zgnz) - Zzgnl) + z(n))
i i i
If the denominator is equal to zero, z§n+1) is set egual to
z£n). The eiements of z(n+1) are then compared with the

elements of z(n) to determine if convergence has occured.
However, it is possible for there +to be various

combinations of positive and negative wvalues in the set
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{zin),zénl),zénz)}. This leads to the possibility that

some elements of z diverge rather than converge. This was
frequently the case during the testing of this algorithm.
Variocus modifications involving testing the signs of zin),
zinl), and ZinZ)’ and handling each case differently were
tried, but none proved successful. It is possible that a
method to accelerate fixed point iteration using methods

along the lines of Mangasarian [20] can be found, however.

6. EXPERIMENTAL RESULTS.

The four algorithms discussed in the previous section
were coded in Fortran 77, and were compiled and run on a
VAX-11/780 computer. All real wvariables, vectors and
matrices were declared to be double precision. Execution
times for the different algorithms were measured by
accessing system +tables. This section will discuss the
timing data and success rates observed during the testing of
these algorithms.

Two generating algorithms were used to create, in a
somewhat random fashion, the problems that were used to test
the algorithms.

The first algorithm generated P-matrices in such a manner
that the elements could be positive or negative with a

slightly higher probability that any given element was
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positive. The P-matrices generally did not havé the
property that all principal pivot submatrices had
eigenvalues with positive real parts. However, each matrix
generated was tested to insure that the original matrix had
all of its eigenvalues in the complex right half-plane.
(This is tantamount to (D) < 1.) Any that did not were
rejected. The absolute values of the eigenvalues generated
by this method were found to be fairly randomly distributed
between 0 and 10 with a scattering of values larger thén 1G.
The maximum eigenvalues in absolute value for each matrix
fell fairly randomly in the range 10 to 50, with a few
observed above or below this range. This generating system
will be referred to as Method 1.

The second algorithm generated 2x2 block diagonal
matrices in suéh_a manner that the principal 2x2 submatrices
(and therefore each principal submatrix) were P-matrices
with their eigenvalues in the complex right half-plane. The
absolute values of the eigenvalues for these matrices were
exponentially distributed from 0 +o 142. The maximum
eigenvalue in absolute value for each matrix fell in the
approximate range 15 to 140 with the majority in the range
30 to 50. This generating system will be referred to as

Method 2.
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Both generators created g | vectors with an even
probability that any given element would be positive or
negative, and each component of g uniformly distributed in
the interval {-10.0,10.0].

As discuséed_earlier the modulus algorithm (max) did not
calculate the test wvalue ;. Instead the element of z(N)
with the largest magnitude was used to indicate which
element of % or ; wWas zero. The modulus algorithm ({test)

m~

actually did calculate each T. If none of the elements of
, (M)

~

equaled or exceeded T, the element with the iargest
magnitude was used. Tables 1 and 2 show that the modulus
algorithm (max) is about equal to the modulus algorithm
(test) in terms of execution time.

For both of the generators the followihg was.done: One
hundred problems of size 5x5, 10x10, 15x15 and 20x20 each
were generated. Each of these 400 problems was passed to
each of the four algorithms for solution. Table 1
summarizes the results of the testing using problems
generated by Method 1. For each size the decimal number
represents the average time in seconds for each problem to
be solved. Only those problems successfully solved by all
four algorithms are included in the average. The number in
parentheses following this decimal number is the number of

problems out 6f 100 that the particular algorithm did not
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successfully solve. The 1last row shows the number of
problems out of 100 that all four methods correctly solved.
Table 2 shows the results for the same number of problems
generated using Method 2.

A second batch of tests was run with enough problems
generated so that each of the four algorithms tested ran
successfully on 100 problems of each size. Table 3 shows
the average time in seconds for 100 problems generated by
Method 1 o©of each size +hat each algorithm solved
successfully. Table 4 shows the results when 100 successful
solutions of each size problem gen.erated by Method 2 are
compared.

An interesting question is the significance of the number
used for 9(;). As an experiment, the incorrect formula

81(M) = [(1-max|h (M)])/(1+max|x (M)])]

was used instead of the correct formula for B8(M) shown in
the previous section. Clearly 8'(M) € 8(M), so the number

~

- of iterations N' calculated using 8'(M) is less than or

equal to the number of iterations ; calculated using the
corrrect wvalue. It was found that the modulus (test),
modulus '(max), and block algorithms all ran faster when
B'(&) was used, and that the succesé rates were only

slightly reduced when compared with the results from the

correct versions of these algorithms.
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Timing and Failure Rates-

size

modulus{test)
modulus(max)
block

fixed point

sample sgize

.59(15)
.72(16)
.39(11)
.36(4)

77

TABLE 1

29

10

.93(14)
.03(20)
.92(5)
.80(4)

71

14.
14.
4.
2.

15

39(19)
51(19)
41(5)
S7(6)

70

Generating Method 1

23.
20.
6.
3.

20

15(21)
92(21)
90(8)
94(7)

69



Timing and Failure Rates- Generating Method 2

size 5
modulus(test) .35(0)
- modulus{max) .38(0)
block .38(0)
fixed point 1.27(0)
sample size 100

TABLE 2

(9200 N I 8

30

10

.62(0)
.56(0)
.55(0)
.03(1)

99

14,
14,

10.

i5

45(0)
17(0)
.14(0)
66(0)

ioo

37.
37.
18.
20.

20

41(0)
52(0)
08(0)
19(1)

99



TABLE 3

Timing - Generating Method 1

size 5 10 15 20

modulus(test) .96 3.16 11.17 27.00
modulus(max) 1.01 2.72 9.54 16.20
block : .61 1.25 2.58 4.13
fixed point .55 .96 1.99 3.44
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TABLE 4

Timing - Generating Method 2

size 5 10 15 20
modulus(test) .68 4.82 14.35 37.21
modulus(max) .64 4.67 14.10 36,57
block .41 2.585 6.93 16,17
fixed point 1.35 4.99 ©.87 19.48
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Table 5 shows the timing and failure rates for the
modified versions of these algofithms. The problems used
were exactly the same 400 problems used to produce the
results shown in Table 1. Table 6 correspdnds to Table 2 in
a similar manner. Timing data obtained on a time-shared
system always contains some variability, which explains the
discrepancy between the fixed point iteration times in
Tables 2 and 6.

It is reasonable to assume that the modulus (test)
algorithm and the modulus (max} algorithm would have similar
success rates. This was found to be the case; with the
single exception of the problems of size 10 generated by
Method 1 (Table 1). Since there seems to be no logical
eXplanation for the modulus (max) algorithm to have a higher
failure rate than the modulus (test) algorithm, it can only
be assumed that the difference in the failure rate is a
random fluctuation, and would diminish with a much larger
sample size.

The block algorithm is Clearly superior to either modulus
algorithm, both in terms of execution time and success rate.
The block algorithm is considerably faster because the
problem can frequently be reduced by more than one eguation
for each pass through the outer loop. By reducing the

problem by more than one equation at a time, there are fewer

33



TABLE 5

Results using §'(M)- Generating Method 1

size S 10 15 20
modulus(test) .47(15) 3.26(18) 10.64(19) 16.63(22)
modulus (max) | .54(15) 3.07(1%) 9.14(18) 13.57(21)
block .29(10) L90(7) 2.61(5) 3.08(8)
fixed point .35(4) 1.80(&) 2.90(8) 3.39(7)
sample size 78 71 71 68
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TABLE 6

Results using 8 (M)~ Generating Method 2

size 5 10 15 20
modulus(test) .53(2) 3.89(0) 11.87(0) 31.17(C)
modulus(max) .52(2) 3.84(0) 11.61(0) 30.74(0)
block .34(2) 2.15(0) 5.75(0) 14.87(0)
fixed point 1.24(0) 5.01(1) 10.50(0) 20.12(1)
sample size 98 99 100 99
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subproblems to solve, and therefore the chances of
encountering a principal piveot submatrix with eigenvalues in
the complex left half-plane are reduced. This could account
for the lower failure rate for the block algorithm that is
apparent in Table 1.

For problems generated by Method 1, the fixed point
iteration algorithm is faster than the block algorithm, and
has a better rate of success (Tables 1 and 3). However, for
problems generated by Method 2, the block algorithm is
faster than the fixed point iteration algorithm (Tables 2
and 4). This suggests that for problems with matrices with
fairly small eigenvalues (e.g., those created by Method 1),

~

the overhead of calculating the number of iterations N and
the test wvalue ; does not offset the gain from having to
perform fixed point iteration a fewer number of times to
determine a solution. For problems with matrices with
larger eigenvalues (e.g., those created by Method 2), the
overhead of calculating these values does pay for itself,
however.

With generating Method 2, p(D) < 1 is guaranteed,
However the fixed point iteration algorithm failed.to solve
two problems generated by Method 2 (Table 2). It was found

that neither of these two problems was solved when the

number of iterations allowed was increased to 100, 000. It
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is possible that for these two problems, the rate of
convergence is extremely slow. However, it is also possible
that, even though (D) < 1 for both of these problems, |D| 2
1l for all absoclute norms, and convergence could therefore
not be guaranteed.

In comparing the data in Tables 1 and 2 with the data in
Tables 5 and 6, it seems that the algorithms using the

~

incorrect wvalue 8'(M) are faster than the corresponding
algorithms which use the correct value 8(&). The_failure
rates are, on average, only slightly better when using the
correct value. This suggests that the use of the Z-norm angd
setting c1 = 1/7; are reasonable choices, or even in some
way "conservative" choices. It seems that the number of

iterations N calculated using these wvalues is perhaps

larger than necessary.

7. CONCLUSIONS.

~

The number of iterations N calculated for each
subproblem during the execution of the modulus and block
algorithms is somewhat arbitrary, as shown by the testing
invelving 8'(&). The tradeoff between % and the failure
rate of the block algorithm warrants further study.

Of the algorithms tested here, the fixed point algorithm

seems to be the best. Depending on the nature of the

37



proklem, the block algorithm can be faster. Howewvar, the
fixed point iteration algorithm has a better success rate.
The success rate could possibly be even better if the
arbitrary limit on the number of iterations were increased.
Further research into a method to accelerate the fixed pdint
algorithm needs to be done. An accelerated fixed point

algorithm would clearly be better than the block algorithm.
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