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The flow due to a rotating disk decelerating with an angular velocity

inversely Proportional to time with either sur face suction (or injection)

which again varies with time is investigated. The unsteady Navier-Stokes
equations are transformed to hon-linear ordinary differential equations

using similarity transformations, The resulting equations are solved

nunerically using a globally convergent homotopy methog.
°n two non-dimensiona) Parameters, namely an unsteadiness
a suction (or injection) Parameter A, gope interesting n

are bresented graphically ang discussed.

The flow depends
Parameter S ang

unerical results



1. INTRODUCTICN

Von Karman [1] noted first that the governing Navier-Stokes equations
for the steady viscous flow over an infinitely large rotating disk reduced
to self similar forms and obtained approximate solutions. Iater Cochran
[2] calculated more accurate solutions to the above problem by numerical

integration of the equations.

The fluid rotation is essentially unsteady at the start of the motion
before attaining the steady state. Hence there was much interest in this
transient phase of flow. fThriot [3] investigated the problem of flow due
to a suddenly accelerated or stopped disk. Nigam [4] discussed the flow
and pressure function in the early stages of motion for the suddenly
accelerated motion ¢f a viscous incompressible fluid. The case of
unsteady motion of a viscous liquid around a gradually rotating disk with
the angular velocity assumed to be timeédependent was solved by Inlidge
[5]. Sparrow and Gregg [6] Investigated the flow about a disk rotating
wnsteadily with time varying angular velocity. Benton [7] discussed the
steady state problem and investigated the flow die to a suddenly
accelerated disk. Chawla [8] studied the change from one steady state
ro-t;tion (von Karman solution) to a slightly faster steady state rotation.
All these problems are based on perturbation series. Rath and Iyengar [4]
studied in detail, by the Galerkin method, the unsteady flow produced by a
porous rotating disk with time dependent angular and suction (or

injection) velocities.



Problems are found in the literature where the time-dependent Navier—

T "Stokes equations admit similarity solutions., Some of these problems are
the msteady-stagnatioﬁ point flow found by Yang [19], the squeezing of a
flui@ between circular or two dimensional plates by Wang [11], the
Squeezing of a fluid filled tube by Whida and 2oki [12], and deceleration

of a rotating disk in a viscous fluid by Watson and Wang [13].

In this paper we study the deceleration of 3 Porows rotating disk where
the anguwlar and suction (or injection) velocities are taken to be time

dependent.,

- This gifficult nen-linear two point boundary value problem is
integrated nunerically by a new homotopy method developed by Watson [14].
The method has been successfuily used for several non-linear two mint
boundary valie problems by Wang and Watson [15), {16], and was found to
converge where other standard methods diverge. 7The homotopy method
converges regardless of the Starting point, and thus is truly globally

convergent.

2. FORMULATION

We use cylindrical polar coordinates, r, 6, z and denote the
corresponding velocity components byu, v, w. The disk

surface occupies the Plane z = 0 and rotates about
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the z-axis. In accordance with Watson and Wang [13], we use

the following transformations

U = £2oT £'(n) ' .o (1)
(legt)

v o= el a(n) oo (2)
(1-at) __
-2( v )i/2

W= w;’_‘ ‘\1/2 f(?’]) ..,((3)
VL=t

p = - g_D-Q-'O P(T} ) s e (‘d)

(l—at)

where p is the pressure, ¢ is the density, ) is the

kinematic viscosity and

n = ('——r)'—') (l__&, t)lﬁ .w (5)

Here the angular velocity of the disk £2(t) and suction

(or injection) velocity W(t) are taken as

Q(t) = Qo/(l—at) LI (6)
'~ and .
Wt) = VR A/ (1-at)l/2 e (7)

a and A are constants and.glo‘is @ positive constant, A > 0

Corresponds to suction and A < O to injection.,
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Using (1) - (5), the unsteady Navier-Stokes equations [13] reduce

to a set of non-linear ordinary differential equations

LI B | 1y
f42ff +g°-f't' = s(Enrtrerr) ..(18)
g't=2ft'g+t2fg' = S(%ng'+g) sol G}
where § = a[fLo is a non- dimensiocnal number measuring

unsteadinessjand primes denote differentiation with rescect

to n.

" The boundary ccnditions are

£(0) = a4, f(0) =0, g(0) =1

..{10)
f' (=) = 0, g(=) =0

3. METHOD OF SOLUTICN

Equations (8) - (10 ) are solved using the globally
convergent homotopy algorithm [14] which does not require a good

initial approximation. The method is described briefly as

follows:
fll(o)) ( )
Let V = eaf(11
~ g'(0)
and
£1(T5 V) \
F (V) = = 0 ..(12)
- g (T; V) ~

where T is sufficiently large such that




—fome

f(T) v fle), o(T) a gl)

Define ga : [0,1) x EM" — EP by
g.0A>Y ) = AE(W) + (1-2) (v-a) ..(13)

The earlier work of Chow et.al,[ 17 ] and Watson [14]
showed that for almost all a (in the sense of Lebeégue
mezsure) the zero set of ga in [0,1) x E® contains a sméoth
curve y  emanating from (O:g), and the Jacobian matrix
Dgf-a has full rank along y (even if ¥-turns). Under ceitain

hypotheses on E(E)’Y reaches a zero :\Z of E at A= 1.

This'amounts to solving the initial value problem

..(14)

]
o

§32, (209, Ws) =0, Al0)

H(/\(S)y E(S))II ‘—‘l! ;\{(0) = .9(15)

1§

where sis arc length along v (see [14] for the practical

implementation of the homotopy algorithm).

4, CONCLUSIONS

In the case of axial distribution of velocity, positive
values indicate an inflow towards the disk from the free
stream while negative values indicate an outward flow towards

the free stream. For different values of the unsteady parameter



the axial distribution is presented in Figures (6,9) for injection and
Fig. (3) for suction. When suction is applied the axial velocity at
infinity towards the disk is larger than for the impermeable disk (Watson
and Wang [13]). From Fig. (3) it can be seen that as the magnitude of S
increases t';he flow at infinity also increases. In the case of injection,
Figures (6,9), the incoming stream is retarded by the outflowing stream of
injected fluid. The greater the injection velocity the more strongly the
inflow is\opposed. Hence there is a decrease in the magnitude of the
axial flow at infinity with increased injection velocity. As the
injection velocity increases the outflow penetrates to greater distances
from the disk surface. As a result the crossover point between the
neggtive and positive axial velocity is pushed farther outward. ‘The same

rhenomenon 1s observed by increasing the magnitude of S.

The above discussion is reflected by the radial velocity distribution
given in the Figures (1,4,7). When suction is applied, Fig. (1), the
radial velocity decreases and the maximum occurs at smaller 0 ; 85
compared to the Impermeable case (Ref. [13]). The radial velocity
increases with increase in the magnitude of S. The level of the radial
velocity is raised with an increase in injection velocity and an increase
.in magnitude of S. 'This can be seen from Figures (4,7). From the Figures
(1,4,7) it can be observed that the boundary layer becomes thinner and

more prominent for large negative S.
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The tangential velocity distribution can be seen
from the figures (2,5,8), In the case of suction (4 = 1,0),
figs. (2), for S < 3% = 8,6292 and in the case of injection
(A = =2), Fig, (%), for S < 5% = 1,256461 and (A = - ,5),
fig. (8), for S < S* = - ,865099, the fluid near the disk
rotates faster than the disk. This is atiributed to the
fact that for fast deceleration of the disk ({more negative S)
the fluid rotation is unable.to aecay as fast as the disk.
Fluid deceleration near the disk surface is faster in the
case of suction‘while it is slower in the case of injection.,
Table 2 gives the values of S for differznt A's for which

g'(0) = G,

Neglecting the edge effects we may write the torque

eXperienced by a disk of large but finite radius R as

R
v
T = -2¢ [:%89(&)  dr
o “'z=0

= -3 2*03)Y2 (1-056)3/2 g (0)

When © 2 S > S¥, the rotating disk eXperiénces a resistance
since g'(0) is négative,while for 5 < 5%, the disk experiences
a torque in the direction of rotation as g'(0) is positive,
Table 1 gives the values of g'(0) for different values of

S and A. For 0 2 S > 5%, for 211 A, the magnitude of the

resistance experienced by the disk reduces for decreasing S,



and for S < 5* the torque experienced by the disk increases for
decreasing S. The particular interesting case of S = g% corresponds to

the decay of rotation of a free, massless disk in an infinite fluid.
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FIGURE CAPTIONS

Radial flow velocity distribution £'(n) for A = 1.0 ang

S =-20, -1g, -5, 2, -1, -.5, 0.8 (top to bottom).
Tangential flow velocity distribution g(n) for A=1.¢ ahd
S =-2¢, -1g, -5, =2, -1, -5, 2.9 {top to bottom).

Axi‘al flow velocity distribution f(n) for A =1.0 and

S = ~20, -18, -5, -2, -1, =.5, @.¢ {top to bottom).

Radial flow velocity distribution £° (n) for A = —-.2 and

S =-2¢, -18, -5, -2, -1, -.5, @.¢ (top to bottom).
Tangential flow velocity distribution g{n) for A = -, 2 and
S =-28, -1g, -5, -2, -1, -.5, 0.0 (top to bottom).

Ayial flo‘w velocity distribution f(n) for A =-.2 and

S =-2¢, -18, -5, -2, -1, -. 3 2.9 (top to bottom).

Radial flow velocity distribution f£° (n) for A =~,5 ang

5 =-20, -1@, -5, 2, -1, -.5, O.¢ {top to bottom) .
Tangential flow velocity distribution g(n) for A = -.5 and
S =-20, -1¢, -5, -2, -1, -. 3r 2.8 (top to bottom).

Axial flow velocity distribution £{(n) for A = -.5 and

S = _'2@’ _lg' —5, "'2; "'l, e 5' g-g (tOp tO bOttOl'n) -



[

i ~ _
Ap =5 b -2 b 00 1 10 b 30 1 s
C—
0.0 5 .489480 516445 .510225 . 242416 .08%298 -049997
il-.302172 ~. 468360 -.615917  -2.038526 ~6.001541  -10.0003%3
I (13.5) (13.5) (10.0) (9.0) {9.0) {(9.0)
! _
-.5 5 603523 630690 614283 . 256255 .083376 .050122
i"129177 -.285914 -.428406  -1.919049 -5.959905  -9.975335
1 (10.0) (10.0) (10.0) (7.0) (4.0) (4.0)
| .
-1.0 731015 - 750622 719787 - 270049 -084454 -050247
| .048379 -.098044 -.2%36575  ~1.801463 -5.918269  -9.950%38
| (9.0) (9.0) (10.0) (7.0) (4.0) (4.0)
]
-2.0 51.008138 -897706 .931507 297524 .085609 -050497
g 416866 .289219 .154981 -4.564717 -5.834996 © -9.900342
i (8.0) (7.0) . (10.0) (6.0) (4.0) =~ (4.0)
f
-5.0 §1.911857 1.756017 1.562797 .379293 089075 -051247
Ig1.593348 1.501086 1.360850 -.855807 -5.585181  -9.750357
} (5.0) (5.0) (10.0) (5.0) (4.0) (4.0)
i
-10.023.495329 3.029122 2.600801 «514195  .094852 .052496
{3.672101 3.594832 3. 413860 .322887 -5.168828 -9.500380
| (4.0) {4.0) (10.0) {(4.0) (4.0) (4.0)
|
uzo.o§6.743608 5.572189 4.646424 L781166 . .106405 054996
=8.011314 7.889504 7.579882 2.674404 -4.3361%9  -9.000429
; (4.0) (4.0) (10.0) (4.0) (4.0) (4.0)
|
1
i

TABIE 1. £"(0), g'(0), and T (where f{T) ~ flinfinity)) .



A ; S b £"(0)

.'
|
|

-.5 ; -.865099 . 695641
|

Y } -1.256461 .813327
§

0.0 5 ~-1.6065699 .848244
1

1.0 5 -8.629200 -477339
#
|

TABIE 2. S arnd £"(0) for which g'(0) = 0 .
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