Technical Report Number CS83025-E

A TUTORIAL VIEW*
OF
SIMULATION MODEL DEVELOPMENT

Richard E. Nance

Virginia Polytechnic Institute and State University
Biacksburg, Virginia 24161

26 August 1983

* An invited presentation for the 1983 Winter Simulation Conference, Washing-
ton, D.C.

ABSTRACT

Working from the background of simulation language developments, we
develop an understanding of the current status of simulation model develop-
ment. Factors characterizing the current status include a shift in emphasis
from program to model, more commitment to modeling tools, and the lingering
impedance of simulation language isolation. Current and future needs are
identified. Specific approaches to meeting these needs are cited in an exten-
sive description of current research, and in summary we conclude that the
technology of simulation model development is in a transitional period that
portends more rapid changes for the future.

1. A BRIEF HISTORY OF SIMULATION SOFTWARE

A brief chronology of simulation software conveniently divides into five
periods: the early era of custom programs, the period of emergence of simu-
lation programming languages (SPLs), the second generation of SPLs, the era

of extended features, and the current period.

During 1955-80, simulation like most computing applications was done with
custom programs, i.e. each simulation required the development of all soft-
ware necessary for accomplishing that task. The late K.D. Tocher lay the
ground work for changing this with his recognition of common functions,
grouped together under the title General Simulation Program (GSP)} (Tocher
and Owen 1960). Tocher's contribution of GSP, and his writing of the first
book {Tocher 1963) contributed much to the early realization of the impor-
tance of software support for the simulation task. Tocher also invented the
Wheel Chart, a forerunner of the Entity Cycle Diagram, which provides a
conceptual basis for symbolic modeling underlying the program generators still

in use in the United Kingdom and eisewhere.

The first SPLs emerged during the 1960-65 time frame. Thorough histo-
ries of both GPSS (Gordon 1981) and SIMULA (Nygaard and Dahl 1981) are
available. Contr"ol and Simulation Language (CSL) was produced by Buxton
and Laski (Buxton and Laski 1963) language in the UK, and the first version
of GASP was developed by Kiviat (1963). Interestiy, the software developed
during this ﬁve year time period form the foundation of the simulation soft-

ware in use today.

The second generation of SPLs followed in the time frame 1966-70. GPSS
i, 111, 360, and V all appeared in this period as did several versions of
SIMSCRIPT 1] - 11.5, and 11-Plus. SIMULA 67 superseded the earlier ver-
sion, and Extended CSL (ECSL) replaced its ancestor. Simulators like GASP

took on various new forms as well; e.g. GASP H, HA, and others.

While entirely new issues of SPLs were uncommon in the 1971-78 period,
marketing strategies emphasized the addition of features to the existing ver-
sions. For example SIMSCRIPT (1.5 incorporated the process concept and
added a co-n'tinous simulation capability. GPSS shed some of its insularity and
enabled external access to FORTRAN and PL/] réutines. In an ambitious
effort at .Norden, actually began in the late 1960s, graphical abilities were
added in a version permitting limited user interaction, designated as NGPSS
(Norden Division 1971). The interactive versions of other SPLs began to

appear toward the end of this period.

Major developments in the UK and Europe during the 1971-1978 pericd
extended the ideas introduced with Programming By Questionnaire (Oldfather
et.al. 1966, Oldfather et.al. 1967) to the interative production of simulation
programs. Prominent in this work are the original contributions of Clement-
son {1873) in the development of CAPS based on ECSL, the multiple target
language capabilities of DRAFT (Mathewson 1974}, (Mathewson 1975), and the
modular design suggested with MISDES (Davies 1873). Related efforts, with
more ambitious goals in the U.S., are described in the papers by Heidorn

(1974), (1976).

Toward the end of this period, concerns for more fundamental issues in

simulation modeling appeared in the book by Zeigler (1976), which drew

together ideas published earlier in various papers and reports. At the same
time, the need for a better domain for model development appeared in the

work of Nance (1977), Kleine (1977a), and Oren (1978). Efforts such as Nel-
son and Lindstrom (1977} and Heimberger (1978) began to illustrate the signi-

ficant capabilities for interactive model development and program execution.
2. THE CURRENT STATUS

Simulation model development is in a transition period: the transition in
focus from programming to model development. This transition is reflected in
the interest and activities of organizations. ranging from marketing firms such
as Pritsker and Associates to research groups in universities. While several
factors characterize the transition, three are most obvious:

(1) a shift from the program to the model/ view of the simulation pro-

cess,
(2) interest in and commitment to the development of support tools, and

(3) the influence of a concept/language impedance.

The shift in focus from program to model is refiected in the increasing
concern for conceptual problem description in opposition to tanguage pre-
scribed guidelines. The Graphical Modeling and Simulation System (GMSS) is
one example (Au-steH 1981), and recent extensions of program generators
(Mathewson 1978} offer yet another. In one sense the model view represents
a realization that executable Ianguagés often are constraining in their realiza-
tion and expression of concepts, and the "rush to code" is a poor design
strategy. Stemming from this emphasis on conceptual modeling is the devel-
opment of intermediate specification forms, most often not executable in them-

selves. The Ship Combat System Simulator (SCSS) (Pohoski 1981) utilizes a

network representation with. combat system elements described as nodes fol-
lowing a specific syntactic format. The nodal definition and the linkages
among nodes prescribed in SCSS provide a semantic structure closer to the
conceptual views of the combat system engineer than can be derived from the
SIMSCRIPT 1.5 code, that constitutes the eventual (executable) representa-
tion. Other examples can be cited to support the claim that muitiple model
representations are becoming more the "standard" for large, complex models,
and the clear trend is toward the separation of model description and program

execution,

Increasing expectations indicated by the use of simulation for vet larger
and more complex models and the increased focus on model description have
ushered in new concerns for tools to support the model development process.
Commercial products now offer auxilary data base systems and graphical out-
put generators. The communication and formatting capabilfti-es of SDDL
(Kleine 1977b) are being augmented by analysis routines that are applied to
non-executable model representations. Such support tools will play major

roles in the verification of non-executable model representation.

The concept/language impedance stems from the parochialism created by
slavish adherence to SPL representations of world views, see (Nance 1981b)
for further discussion of this problem. Even more serious is the contiﬁued
use of general purpose languages, in preference to SPLs, for simulation
modeling. Despite the optimistic expectations of educators, no decrease is
readily apparent in the number of models in FORTRAN, PL/1, PASCAL, etc.
This fact, perhaps more than any other single point, emphasizes the per-

ceived difficulties of translating modeling concepts into a correct SPL repre-

sentation, Nevertheiess, the barriers of language isolation will continue to
inhibit the development of simulation mode} representation. As Kiviat (1967)
aptly phrased it so many years ago, we continue to have an "inversion of
theory and interpretation” with the misguided view that the theory is

expressed by an SPL.
3. THE MODEL LIFE CYCLE

Figure 1, taken from Nance and Balci (1983), characterizes the model life
cycle as progressing through chronological periods: problem definition, model
development, and decision support. Figure 2 offers an eiabﬁration of the
phases within each of these periods and depicts the processes by which a

modeling study transitions from one phase to another.

The activitias during the probilem definition phases principally involve the
"client” and project manager dialogue that hOpefuﬂy results in a precise defi-
nition of the system to be studied and the objectives to be realized from the
study. Probiem definition is dependent on both technical and organizational
(political) factors, and success can be achieved only by effective communica-
tion among the participants and the documentation of decisions reached during

these phases.

The modei development phases begin with the defined system and thé
stated objectives. Conceptual modeis in the minds of one or more modelers
Mmust eventuaily find expression in one or more communicative models. The
communicative mode] represents a basis for assertions and tests as well as the
reconciliation of varying concepts. The program modei follows from a commu-

nicative model; and, embodied within an experimental design, the experimental

DEFINITION

MODEL
——=% DEVELOPMENT

DECISION SUPPORT

FIGURE 1. The Chronological Periods of the Model Life Cycle.

COMMUNICATED
PROBLEM
i
Problem b
Formulation :
FORMULATED
' PROBLEM
Investigation |
DECISION SUPPORT of Solution |
PHASES Techniques E
DECISION " PROPOSED SOLUTION
MAKERS TECHNIQUE
y A (Model ing)
INTEGRATED System
DECISION Invest1gat1on |
SUPPORT ‘x\\d
™ SYSTEM AND OBJECTIV
: DEFINITION
!
!
Presentation yd
of _ /
Model Results //Redefinition
|
j /
i !
!
!
' MODEL
RESULTS

i

\
\ . .
5 Exper1mentat1on

EXPERIMENTAL
MODEL

———-"-

PROBLEM
DEFINITION
PHASES

MODEL DEVELOPMENT
PHASES

~~\Mode] Formulation

- CONCEPTUAL
MODEL

\ Model
‘Representat1on

D

r Programmlng

ROGRAMMED
MODEL

COMMUNICATI
MODEL(S)

Cp

- Expe*amenta]

Design

FIGURE 2.
Cycle.

Phases in the Chronological Periods of the Model Life

model produces results. -Note that verification is intended to be used wher-
ever possible in all of the phases of problem definition and model deveiop-
ment. Validation in the traditional sense is reserved to the comparison of

model results with system behavior after compietion of the experimental model.

The integrated decision support period is initiated with the acceptability
of the model by the client manager(s). Again, both technical and organiza-
tional factors can contribute to the acceptance decision; however, the. support
tools can contribute significantly to the modei credibility, which is considered

to be the most crucial factor in the acceptance decision.
4. FUTURE GOALS FOR SIMULATION MODEL DEVELOPMENT

The most comprehensive goal expressed by researchers in simulation
modeling is the creation and consequent realization of the Mode! Development
Environment (MDE). The MDE would provide an interactive setting for model
creation so that the modeling activities, suppprted by necessary model devel-
opment tools, contribute to long term organization assets in the form of
models, data, experimental designs, and expermentét‘ion results. An analyst
or modeler, within the MDE, would be supported in a structured, more axio-
matic, approach to the modeling and experimentation activities. Model verifi-
cation, supported by such tools, would be applied throughout the modetl
development phases. Emphasis in the early model development phases would
be on problem definition and precise statements of system boundaries and
study objectives. Only later would the issues of efficient execution emerge as
constraints as the decision would be made regarding the implementation of

executable model representation.

A second important goal is that support be provided throughout the model

life cycle. Of course, this goal is intimately linked to the first.

5. - APPROACHES TO THE IMPROVEMENT OF SIMULATION MODEL
DEVELOPMENT

The intent of this section is only to identify approaches to improvement.
References are provided so that the interested reader can consuit them for
details and specific information. The approaches are categorize_d as fof!ows:
(1) extension of software development techniques, (2) extension of program
generators, (3} extension of SPL definition, (4) system specification lan-

guages, and (3) modei-based methodology .

Some claim that simulation modeling is only a minor extension of program-
ming in software development. Consequently, the Program Development Envi-
ronment (PDE) or Software Engineering Environment (SEE) ‘provide all of the
necessary tools. Perhaps a counter example to this opinion is found in the
necessity for creating SDL/SDA as an extension of PSL/PSA (Teichroew and

Hershey 1977) for simulation applications.

The program generator technology is widely used in the United Kingdom
and elsewhere in Furope. Some progtram genera;cor-s such as DRAFT and
CAPS are now rather mature software systems. Extensions to these geﬁera—
tors are viewed as providing ready communication between management and
analyst, and some capabilities for decision support are believed to be readily

achievable if not already present in current versions.

One school of thought is that more formal modeling approaches are

required to deal with the complex challenges of simulation applications. Gen-

eral systems theory is viewed as providing the foundation for such
approaches (Oren and Zeigler 1979). S$PLs "based explicitly on systems
theoretic concepts” and the "development of conceptual and mathematical theo-
ries for guiding the practice of modeiling and for designing software tools

." offer advantages over current appraoches {Oren and Zeigler 1979, p.
70). Also within the scope of SPL extensions, but differing from the general
systems theory approach is the entity-attribute-set (EAS) structure suggested
by Markowitz (1979). Utilizing the current five levels of SIMSCRIPT 'I1.5,
Markowitz extends the language applicability to a data base level and beyond.

The result is a more powerful descriptive mechanism but one that is stili exe-

cutable.

The Delta Project (Holbaek-Hanssan et.al. 1977}, cooperatively between
the Norwegian Computing Center and the University of Aarhus, represents a
holistic view of life cycle support. While the Delta Project can be viewed in a
narrow sense as another system specification language, the philosophy
advanced by Nygaard and Handlykken (1981), (1981) reflect an intent much

broader in scope.

A final approach is the modal based methodology, which is descriptive of
the Conical Methodology (CM) (Nance 1981a). This methodology forms the
basis for an implementation of a Model Development Environment that is illus-
trated in Figure 3, taken from (Balci 1983). The structure of the Ada*® Pro-
gramming Support Environment (Advanced Research Projects Agency 1980) is
followed in explaining the support tools for modeling. The CM emphasizes the
hierarchical decomposition through a top-down model definition followed by a

* Ada is a registered trademark of the U.S. Department of Defense Ada Joint
Program Office.

Model Hodel

Generator Translator

' Command Model

Language

EMDE Verifier

Interpreter Functionsg

Assistance Hardware and

Manager Operating System

Premodels

Manager

Project

Manager

FIGIRE 3. Layered Illustration of the Software Components
of a Model Develorment Frvirorment (MDE) .

bottom up model specification.
6. SUMMARY

A brief chronology of simulation software helps to understand the current
status, which finds simulation modeling in a transitional period. Viewed in
the context of the model life cycle, the needs for more effective and efficient
simulation. model development can be identified. Some consensus is evident in
the definition of tools, but the approaches to improvement are charted quite
differently by researchers and practitioners in the simulation community. At
this juncture no clear directions have been established. However one predic-
tion can be made without hesitation: the differences between the simulation
model! development technology of today and that of fifteen vears hence will be
far greater than the differences that are perceived between the current tech-

nology and that of fifteen years in the past.

REFERENCES

Advanced Research Projects AGency (1980), Requiremerits for ADA program-
ming support environments - STONEMAN, U.S. Dept. of Defense,
Arlington, VA.

Austell WP Jr (1981), Graphical modeling and simulation system (GMSS),
Simulation: Tools and Techniques Conference, Washington, DC.

Balci O (1983), Requirements for model development environments, Technical
Report CS83022-R, Department of Computer Science, Virginia Tech,
Blacksburg, VA. '

Buxton JN, Laski JG (1963), Control and simulation fanguage, Computer
Journal, 5, pp. 194-199,

Clementson AT (1973), Extended control and simulation language, University
of Birmingham, England.

Davies NR (1973), A modular interactive system for discrete event simulation
modeling, Proceedings of the Ninth Hawaii International Conference on
System Sciences, pp. 296.

Gordon G (1981), The development of the general purpose simulation system
(GPSS). In: History of Programming lLanguages, Wexelblat R (ed.),
Academic Press, pp. 403-437. ' _

Handlykken P, Nygaard K (1981), The KIELTA description language: motiva-
tion, main concepts and experience from use, Software Engineering Envi-
ronments, Hunke H (ed.), North Holfand, pp. 157-172.

Heidorn GE (1974), English as a very high level language for simulation pro-
gramming, SIGPLAN Notices, 9(4), pRp. 81-100.

Heidorn GE (1976}, Automatic programming through natural language dialogue:
a survey, /BM J/. Research and Deveiopment, 20, pp. 302-313.

Heimberger DA (1978), Interactive modeling, Simulation and SIMSCRIPT Con-
ference, Washington, DC. '

Holbaek-Hanssen E, Handlykken P, Nygaard K (1977), Systems description
and the DELTA language, Report No. 4 (Publication Neo. 523), Norwe-
gian Computing Center, Oslo.

Kiviat PJ (1963), GASP - a3 general activity simulation program, Apblied
Research Laboratory_, United States Steel Corporation, Monroeviile, PA.

Kiviat PJ (1967), Digital computer simulation: modeling concepts, RAND Memo-
randum RM-5378-PR, Santa Monica, CA.

Kleine H (1977), A vehicle for developing standards for simulation program-
ming, Proceedings of the Winter Simulation Conference, pp. 730-741.

10

Kleine H (1977), Software design and documentation language, JPL Publication
77-24, California Institute of Technology.

Markowitz HM (1979), Proposals for the standardization of status description,
Research Report RC 7782 (33671), IBM TJ Watson Research Centar,
Yorktown Heights, NY.

Mathewson SC (1974), Simulation program generators, Simulation, 23(6), pp.
181-189.

Mathewson SC (1975), Interactive simulation program generators, Proceedings
of the European Computing Conference on Interactive Systems, Brunel
University, pp. 423-439.

Mathewson SC (1978), Computer aided simuiation modeling and experimenta-

tion, Proceedings of the Eighth Australian Computer Conference, pp.
9-13.

Nance RE (1977), The feasibility of and methodology for developing federal
documentation standards for simulation models, Final Report to the

National Bureau of Standards, Department of Computer Science, Virginia
Tech.

Nance RE (1981), Model representation in discrete event simulation: the coni-
cal methodoiogy, Technical Report CS81003-R, Department of Computer
Science, Blacksburg, VA.

Nance RE (1981), The time and state relationships in simulation modeling,
Communications of the ACM, 24(8), pp. 173-179.

Nance RE, Balci O (1983), The objectives and requirements of model manage-
ment, Technical Report CS830024-R, Department of Computer Science,
Virginia Tech, Blacksburg, VA.

Nelson SS, Lindstrom G (1977), "CONSIM: a conversational simulation lan-
guage implemented through interpretive control self-modeling, Technical
Report UUCS-771086, Department of Computer Science, University of
Utah.

Nordan Division 'of United Aircraft Corporation (1971), Users guide to NGPSS,
Norden Report 4339R0003.

Nygaard K, Dahl QJ (1981), The development of the SIMULA languages. In:
History of Programming Languages, Wexelblat R (ed.), Academic Press,
pp. 439-493.

Nygaard K, Handlykken P (1981}, The system development process -- its set-
ting, some problems, and need for methods, Software Engineering Envi-
ronment, Hunke H (ed.}, North Holland, pp. 157-172.

Oldfather PM, Ginsberg AS, Markowitz HM (1966}, Programming by question-
naire: how to construct a program generator, RAND Report RM-5129-PR.

11

Oldfather P, Ginsberg AS, Love PL, Markowitz - HM (1967), Programming by
Questionnaire: the job shop simulation program generator, RAND Report
RM-5162-PR.

Oren TI (1978), A personal view on the future of simulation languages, Pro-
ceedings of the UKSC Conference on Computer Simulation, pp. 294-3086.

Oren TI, Zeigler BP (1979), Concepts for advanced simulation methodologies,
Simulation, 32(3), pp. 69-82.

Pohoski MW (1981), A top level description of the ship combat system simula-
tion, Naval Ocean Systems Center {jointly with NWC and NSWC).

Teichroew D, Hershey EA (1977), PSL/PSA: a computer-aided technique for
structured documentation and analysis of information processing systems,
IEEE Transactions on Software Engineering, Vol. SE-3(1), pp. 41-48,

Tocher KD (1963}, The Art of Simulation, Van Nostrand Company, Princeton,
NJ.

Tocher KD, Owen GD (1960), The automatic programming of simulations, Pro-
ceedings of the Second International Conference on Operational Research,
pp. S0-68.

Zeigler BP (1976}, Theory of modelliing and simulation, John Wiley and Sons.

12

