A REVISED STONEMAN FOR
DISTRIBUTED ADA* SUPPORT ENVIRONMENTS

Jeremy F. Goodwin*#*

Department of Computer Science
Virginia Polytechnic Institute
and State University
Blacksburg VA 24061

Report No. CS830010
June 21, 1983

ABSTRACT

This paper extends the conceptual model of the "STONEMAN"
document to more completely model the interfaces and protocols
that exist in the Ada Programming Support Environment (APSE). A
previous extension to the STONEMAN model is reviewed and
critigqued, the guidelines for the APSE set forth in STONEMAN are

reviewed, and an updated model 1is proposed. The new model 1is
shown to meet the guidelines set forth in STONEMAN, and to
include subseguent ideas as well. The new model 1s then applied

to the problem of user communication with an APSE, and it 1is
shown how the new model extends to include distributed APSEs as
well as single host APSEs. The issue of security enforcement; as
a necessary subset of dynamic verification, is also included in
the new model.

* Ada is a registered Trademark of the Ada Joint Program Office
of the U.S. Department of Defense.

** This research was supported by the Ada Jeint Program Office
through the O0ffice of Naval Research Information Sciences

Department. The Principal Investigator for the grant was Dr.
T.E. Lindquist, and the development work was supervised by Dr.
J.A.N. Lee. Reproduction in whole or in part is permitted for

any purpose of the United States Government.

PAGE 2

I. INTRODUCTION

A fundamental objective of the Department of Defense (DoD)
initiative to develop Ada was to¢ increase the portability and
maintainability of embedded socftware [1}%*. To achieve this
objective, the Ada Joint Program Office (AJPQO) is working to
ensure that Ada remains as independent of computing systems and
épplications as possible. The Ada language has been accepted as
an American National (ANSI) standard, and has been proposed as an
International (ISO) standard. The Ada Validation Organization

(AVO) has been set up to enforce and protect the standards for

the Language. However, the Ada project has evolved beyond an
effort toward a common programming language for embedded
software systems. In additiocn to the Ada language

standardization effort, work has been done to define requirements
for a common (standardized) Ada Programming Support Environment
(APSE), and its kernal computing system interface (KAPSE). These
programming support environmenté are an integral part of the Ada
standardization effort because they will provide a standardized
development and runtime environment for Ada programs.

A previous report [2] recommended that the Open Systems
Interconnection model be accepted as the underlying model of
APSEs, and that there be developed a 'Strawman' to extend Ada
systems into a networking environﬁent, based on the 031 Reference
Model. This report further suggested that the security aspects

* Numbers in brackets refer to references at the end of the
report.

PAGE 3
of the design of APSEs be investigated and that the results of
this study be incorporated into the Stoneman requirements [3].
This. pépex' will examine these ideas further, criticizing the
model suggested by [2] and proposing an updated and more detailed
model for communication between APSE programs that is based on
the 0SI Reference Model and that tékes into account the need *to
extend Ada systems into a network environment. This model also

incorporates a security layer, as recommended by [2].
II. REVIEW OF PREVIQUS MODEL

This section reviews the APSE model suggested by [2]. 1In
that report, the authors note that "The original intent of the
0s1 Reference Model was not to actualiy represent. an
implementation strategy but instead to model those elements of a
communications environment which need attention" (pg 8). In
other words, the. O0SI model is not intended to force all
implementations to have seven layers, but rather to encourage all
implementors to layer their implementations, and clearly specify
which functions are being implemented by each layer. Thus an
application of the OSI model to a specific implementation could
quite conceivably merge several layers into cne, and split one of
the OSI layers into one or more layers. This argument is given
as a justification for the model that the report suggests'should
underlie all APSEs. This model has three layers, which
correspond roughly to the top three layers of the 0SI Reference

Model. The bottom four layers of the 0SI model (the ones

PAGE 4
typically implemented in hardware) are not present- in the
proposed model for APSEs. The top layer (the 0SI Application
layer) is mapped to the APSE portion of the environment (as
distinguished from the KAPSE portion). If the ¢urrent
environment is a minimal Ada environment, (a MAPSE)}, then the top
layer will only include the necessary and sufficient toolset, not
user programs or additional tools. Conceptually then, there is
ne difference between an APSE and a MAPSE. The second layer down
(corresponding to the 0SI Presentation layer) is renamed the Data
Transfer Layer. This layer is intended to act as an interface
layer between the APSE and the KAPSE, and to implement the
verification and security mechanisms suggested in the report.
The middle layer accomplishes all matching of formal and actual
parameters, and associated typechecking. The bottom layer is the
KAPSE layer, and is mapped onto the Session layer of the 08I
model. The report notes that the KAPSF will be implemented as a
collection of Ada packages.

This model has the advantage that it clearly delineates what
interfaces and protocols exist. The report called attention to
the existance of certain "hidden protocols" within the current
STONEMAN model, and noted that these presented. a difficult
verification problem. In the model suggested herein, these
hidden protocols are no longer hidden, they are revealed as KAPSE
layer to KAPSE laver communication. Furthermore, the new model
is better than the STONEMAN medel because it takes into account
both wverification and security. The STONEMAN model was not

detailed enough to represent these problems.

PAGE 5
III. PROBLEMS WITH PREVIOUS MODEL

The previous model has three basic problems. The first, and
most basic, is that it makes the wrong use of the 0SI model.
Since the OSI Reference Model is a model of a communications
environment, and not a programming environment, it is
inappropriate to overlay the Ada Programming Support Environment
on top of it. The fact that the bottom four layers of the 0813
medel have been ignored in the APSE model shows that the model
produced for the APSE does not gquite fit onto the 08I model, and
therefore the 0SI model shouid not be used as the directly
underlying model. Nonetheless, the principles of the 08I model
are very much appropriate and ought be adopted in the design of
the APSE environment. Therefore the APSE should be layered, and
the internal implementation of one layer should be changeable
without necessitating a revision or rewriting of code in the
other layers. Furthermore, specific functionality should be
assigned to each layer of the implementation, and this
functionality should follow the overall design princiéle of
virtualization, where the functionality of each layer is
implemented in terms of (and by calls to) the functionality of
the layer immediately below.

A second problem with the model suggested by [2] is that it
fails to take into accounf (even to mention) the Data Base model
[4]. The APSE model should be well integrated with the data base

model, so that the design of the total environment is consistent

PAGE 6
and so that the interfaces between the Data Base and the KAPSE
are well defined and easy to validate.

The third problem with the previous model, and the problem
with the STONEMAN model before it, is that the model is not well
developed enough. It does not show where all the verification
mechanisms are to be installed. The report states that all
interfaces and protocols must be validated in order to wvalidate
the environment, and it is this need that inspires the Data
Transfer layer, where validation of the APSE to KAPSE interface
is to oceur. The problem is that this is not the only place
where validation of protocols or interfaces needs to occur. All
the horizontal protocols between two instances of layers at the
same level must be validated. For instance, a compiler could be
communicating with an editor. Both these programs would reside
in the top layer. They would communicate via a virtual protocol
which would be implemented by calls to the Data Transfer layer.
The previous model does not provide a mechanism whereby this
protecol 1is verified. Another place where the previous model
needs further development is in the distinction between dynamic
and static verification. The verification mechanisms suggested
in the report are all static, vyet the report suggests the
creation of a layer where verification occurs. This verification
would be dynamic, and the report does not expand upon the
mechanisms by which the verification would be accomplished. It
should be noted that there are two types of dynamic verification:
dynamic verification in the development environment (ie during

the time when the program to be verified is being written), and

PAGE 7
dynamic verification in the runtime environment (verification
that is done during the time when the pfogram to be verified is
runniﬁg). The first type of dynamic verification occurs in the
Ada Programming Support Environment on the host machine, and the
second type of dynamic verification occurs in the Ada Runtime
Environment on the targét machine. Both of these gsets of
verification mechanisms muét be investigated.

The report alsc mentions the need for some gsecurity
mechanisms, and suggests that they also be implemented in the
Data Transfer Layver. However, the report does not expand on the
different types bf security mechanisms, nor does it distinguish
between friendly and non-friendly or security intensive
environments in its discussion of the need for security
mechanisms. If a program exists in an environment where security
is important, and that program is not secure or does not meet the
securify requirements associated with its environment, then that
program is not valid for that environment. Thus we recognize two
fundamental principles about security: (1) Different instances
of Ada Environments may have different security requirements, and
therefore a program that is correct in one instance of the Ada
environment may not be correct in another instance of the Ada
environment because it is not secure enough, and (2), security is
a subset of wvalidation, because a proegram that is not secure
(enough) is not correct. These ideas clearly need much more
attention before a final model for Ada environments can be
approached. Another shortcoming of the previous report is that

it did not provide sufficient motivation for the model. The 08I

PAGE 8
model is no doubt a structured model that would provide a
framework for the development of the APSE, but it is only oné
model for software. Concurrent processes, data driven, rule
based or relational models might all apply. More rational needs
to be put behind the 0SI type mddel before it should be adopted
as the final model type.

Most of these issues were not addressed in the previous
report because it was preliminary and did not go into the level
of detail that would be necessary t¢ deal with all these issues.
This paper attempts to investigate all these issues and refine
the model in the light of its findings. Thus the process of
successive refinement of the model is carried one more step,
arriving at a new model more complete than the earlier model. No

doubt further iterations will need to take placé.

IV. REQUIREMENTS SECTION

Before updating the previous model the reguirements for the
APSE should be reiterated, and augmented by the ideas that have
been put forward since STONEMAN. The basic STONEMAN rhilosophy
emphasized fourteen general guidelines (see section 3). Five
among them are (1) long term software support, (2) host to target
system software portability, and (3) an integrated database and
toolset, (4) overall simplicity, and (5) uniformity of protocol.
Since.STONEMAN other principals have been proposed. The user
interface should not be direct to the APSE programs or tools, but

should be a wvirtual interface to the KAPSE with minimal JCIL

PAGE 9
functions such as LOGIN/LOGOUT, CONNECT/RUN and control character
processing. Terminal interface drivers should not be part of the
KAPSE, but should interface to it, much as the APSE tools do.

This model of user communication with the system is similar to

one used 1in many operating systems: user [/0 is handled by a
special I/C processor (hardware, software or firmware) and
buffered into the kernal of the operating system. A second

concept that has received attention since STONEMAN is the
configuration or version group, made up of shareable objects,
each of which has a name and attributes. Each object in the
version group has a date as one of its attributes, with later
dated objects superceeding earlier ones in subseguent
configurations. A third concept, which is related to the second,
is that the APSE environment may in practice be distributed,
either between the host and target machine (for down-line
loading, trace data collection, or emulation) or between several
hosts (for resource or information sharing or communication).
The problems of managing a distributed system are related to
those of managing a configuration with many dated versions of the
same objects, so the design of the APSE should encompass both

concepts as one goal.
V. DESCRIPTION OF THE UPDATED MODEL
The updated model (see figure 1) is a three layer version of

model presented in [2]. The top layer is called the APSE or

Program layer since it includes all tools or application

PAGE 10

Figure 1
Fomm———— + Fommm +
Application ——=>| | ! | <=-- Application
Program Layer | | o | Program Layer
Fmm e + Fommmm—m e +
Interface Layer ~--->| | | |<-~- Interface Layer
l l i |
By —— T —— - +
KAPSE package ———>] i | | <--- KAPSE package
for communication | | | i for communication
Fomm e ——— Fmm e e - +

Updated Basic APSE Model

programs. It 1s analogous to, but not overlayed upon, the
Application layer of the 0SI Reference model. It is this layer
that the user views himself to be at, since the Programs he
interacts with are at this level: editors, compilers, debuggers,
etc. If this layer contains only the minimal necessary tools and
not any other tools or applications programs, then it is a MAPSE.
Thus a MAPSE is a minimal instance of an APSE.

The middle layer is called the Interface lavyer. Inferface
is meant in the sense that it has been used in STONEMAN, and this
layer has grown out of and is an expansion of the interface line
between the APSE and KAPSE in the STONEMAN model. The parameter
passing mechanisms that match the APSE actﬁal parameters to the
KAPSE actual parameters and perform dynamic typechecking between
them exist in this layer. These mechanisms, formerly represented
as the thick line between APSE and KAPSE, have been made into a
level due to their complexity. The security mechanisms called
for by [2] alsoc exist in this layver and work along with the

typechecking mechanisms. The principle is to detect and stop

PAGE 11
security exceptions at as early a point as possible. This layer
dynamically prevents protected KAPSE packages from even being
called. System verification procedures can verify +that the
security layer properly performs its function, and then use that
assertion when verifying +the KAPSE facilities. The Interface
layer performs all dynamic interface verification, including but
not restricted to typechecking and rackage access control. In
addition, any necessary data tTransformation operations may be
performed within this layer. This layer will, like the KAPSE, be
implemented as a set of Ada packages, with a correspondence
between the names of the KAPSE level packages and the Interface
level ones. The KAPSE level packages will only be visible from
the Interface layer, and the APSE brograms must call a KAPSE
facility by calling the appropriate Interface laver package. The
Interface layer will perform its fefification and conversion
functions, and then invoke the KAPSE package with the %erified
and possibly modified argument list.

The bottom layer is the KAPSE layer. It is a set of Ada
packages that implement the kernal function of the Ada
programming support environment. The KAPSE is the only lavyer
that will be implemented differently on different host machines,
but regardless of implementation its function will be the_same
over all instances of the APSE. Part of the KAPSE may be
implemented in another language, such as the operating system
language of the source machine, but aé muéh as possible should be
written in Ada itself. No other layer should have any non-Ada

code. The functionality of the KAPSE shall be defined in such a

PAGE 12
way as to provide a general purpose set of operating system type
primitives robust enough to implement the rest of the APSE in,
but not defined in such a way as to prejudice the implementation
of the KAPSE toward any one particular architecture ameng those
on which the Ada environment must run.

Although three layers have been defined, this does not
preclude each layer from being broken down into sub-layers in
implementation. This dis, in fact, anticipated as being the
natural outgrowth of the development of a system whose underlying

model is a layered one.

VI. RATIONAL FOR A LAYERED MODEL

A layered model follows the guidelines set forth by
STONEMAN. It aids long term software suppert by defining and
consistently maintaining the functionality of the KAPSE, so that
internal modifications to the KAPSE layer will not affect
application software, or any other software above the KAPSE
layer. Since any program will only reference those programs (or
packages) in the lavyer immediately below its own, and since the
functionality (but not necessarily the implementation) of those
programs or packages is fixed across all systems, portability for
all software above the KAPSE layer is enforéed. Since all
protocols and interfaces are clearly defined for the entire
system, no hidden protocols exist. By rigidly enforcing one
means of inter-tool communication through the KAPSE, an

integrated toolset is arrived at and uniformity of protocol is

PAGE 13
enforced. A layered model is at the same time both simple and
complete. For the applications programmer, the APSE is a set of
procedures, packages and tasks that are visible to his program.
Thus the concepts of the APSE are those of the Ada language
itself, and the most straightforward possible. By judiciously
grouping the visible packages into a small bﬁt well organized set
of packages the functionality of the level below can be
preorganized for the programmer. Only the necessary portions of
the packages need be made visible, and the rest of the underlying
layer need not concern the programmer. This model makes the APSE
an easy environment to use as a programmer and te maintain as an
APSE mainﬁainer, for the same reasons that abstraction and

virtualization make any system easier to understand and maintain.
VII. BASIC MODEL APPLIED TO USER COMMUNICATION

The issue of how a user will interface to the APSE is one
that should not be overlcoked or put off until late in the design
phase if it is to be a natural and consistent interface. The
layered approach handles the user much as if the user were in
fact an application prodgram: that is, there is no difference
between communication with the user and communication with
another APSE program. All communication goes through the KAPSE,
and the KAPSE. routes the 'message' back up through the

appropriate layers to its destination (see figure 2).

PAGE 14

Figure 2
e + tmmm——— +
Application ———> | | [<==~ User modeled
Program Laver | | !] as a program
e + Ftmme e m - +
Interface Layer --->| | | {<=—- Terminal
l | | | Driver
Fmm e = o Fam e ——- +
KAPSE package ———>] t [| <--~ KAPSE terminal
for communication | | |] I/0 package
e —— e - — Fmm e ———— +

Basic Model as Applied to Communication with Users

VIII. BASIC MODEL FOR DISTRIBUTED APSES

The concept of an APSE as a distributed system or a
configured system is also encompassed by the layered model. As
in the OSI model itself, the upper layers do not have any
knowledge about the physical location of the peer process with
which they are communicating. The KAPSE layer to KAPSE layer
protocol is the only place where the actual locations of the
source and destination programs must be considered. If the
source and destination are on the same physical host, then
communication may be as modeled above (see figure 1). If not,
then the communication is via the network linking the two hosts.
It is intended that the networks used to link distributed hosts
also be modeled after the OSI reference model. Thus the model is
expanded to the wversion shown in figure 3 in the case of
distributed communication. In fact, only a part of the KAPSE

layer, the package specifically concerned with communicaticn,

PAGE 15

rather than the entire KAPSE layer, need be concerned with

Figure 3
fm——t dmm—t
| | | | APSE program layer
i | | I
tmm— +m——
| | [Interface layer
f ! i I
Fm =t -
| | Fo——t te——+t | I KAPSE layer and
| [<> | 7 | | 7 | <=> | | OSI application layer
Fm—— dm—— t———t -
| 6 | | 6 | _ Presentation layer
et te——t
I 5 | | 5 | Session laver
+m tm——
| 4 | | 4 | Transport layer
Fem—mt Fm-—t
| 3 | 3 Network layer
+———t ta——t
i 2 | [2] ' Data Link layer
+ema t—m— .
| 1] | 1 | Physical layer
e A L T R P +
Underlying Physical Media
e e e e e +

Basic Model Extended to a Distributed APSE Model

whether or not the source and destination are on the same host.

IX. RATIONAL FOR THE INTERFACE LAYER

Since the other two layers have been Present in all APSE
models thus far, there is no need to motivate their pPresence in
this model. The Interface layer, however, needs further

motivation. The first argument in favor of including this new

PAGE 16
layer in the model is that this layer was really always present.
Previously, the interfacewﬁbetween the KAPSE and the APSE was
presumed to perform all of the functionality now assigned to the
Interface layer. No new functionality has been added, except for
the need for security mechanisms as a subset of the verification
mechanisns. The case for the inclusion of security mechanisms
somewhere in the model has already been made by [2]. The
Interface layer is where these mechanisms belong, along with the
other dynamic verification mechanisms. The second argument in
favor of the new layer is that the interface mechanisms are too
complex, and their effects are too far reaching to ignhore in the
design of the APSE. If the interfaces are to be designed then
they must be visible as a part of the model. They should not be
allowed to fall into the crack between the APSE and KAPSE.
Thirdly, since verification is a necessary step in the life cycle
of all APSEs, it is better to provide for it ahead of time. This
was the basic thrust of the recommendation of [2], that
validation requirements be established and included in APSE
regquirements specifications. Finally, since security must be
considered to completely validate an APSE system, it is better
that the security mechanisms also be designed into the model from
the beginning, rather than added after the design has been
completed. This is more true of security mechanisms than of
others because of the subtle nature of security failures and the

low level at which most security mechanisms are implemented.

PAGE 17

X. CONCLUSIONS

The two part model presented in STONEMAN is no longer
descriptive enough to model all the considerations that have been
added since STONEMAN. A previous report originated the idea that
the 0SI model be used as the underlying model of APSEs. it is
recommended that a three lavered model, patterned after the OSI
Reference model, be adopted as the underlying model of APSES.

This report and a previous one have motivated the need for
dynamic verification. It is recommended that an investigation of
dynamic typechecking and verification technigues be performed,
and that the results be incorporated into the design of the
middle layer of the proposed model.

Security, as a subset of dynamic verification, is a
necessary consideration in any wverification system. It is
recommended that a security mechanism be designed and
incorporated into the middle layer of the proposed model as early
as possible to enforce the assertion that no KAPSE facility can

be called unless the appropriate security test has been passed.

It may be found that the security mechanisms proposed by the
research recommended above are difficult or impossible to
implement in Ada as it is now defined. It is recommended that
subsequent research be undertaken to investigate ways in which
Ada could be extended to include security and verification
mechanisms as a part of the language, rather than as a part of
the APSE or Ada Runtime Support Environment.

PAGE 18
XI. REFERENCES

[1] Carlson, W.E., Druffel, L.E., Fisher, D.A., and
Whitaker, W.A., "Introducing Ada", Proc. 1980 ACM Ann. Conf.,
ACM, New York NY, 1980, 539 pp.

[2] Xafura, D.E., Lee, J.A.N., Lindguist, T.E, and Probert, T.,
"Validation in Ada Programming Support Environments", technical
report, 1982

[3] Buxton, J.N., Requirements for Ada Programming Support
Environments, "STONEMAN", U.S. Dept. of Defense, February 1980,
pp. 50. '

[4] wan Griethuysen, J.J., ed., Concepts and Terminology feor the
Conceptual Schema and the Information Base, IS0 TC97/SC5/WG3, ISO
TC97 Computers and Information Processing, March 1982.

