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INTRODUCTION
Homotopy and continuation methods have recently found widespread

adoption as approaches for developing exceptionally robust algorithms
for many multidimensional problems in nonlinear solid and fiutid
mechanics and optimal control [1-8]. To a lesser extent, these ideas
have been applied to nonlinear estimation and system idehtification
problems, Refs. {9,107 are recent examples. It is important to remark
‘that merely adopting a homotopy or a continuation approach guarantees
ne%ther efficiency nor robustness of the resulting algorithm, A
marginal increase in the domain of numerical convergence in exchange for
a large decrease in computational efficiency is a dubious justification
for a homotopy or continuation method in comparison to, say, a Gauss-
Newton method,
‘ In the present paper, we demonstrate a recently developed homotopy
algorithm {3], and find an order of magnitude increase in the domain of
convergence in comparison to the embedded Gauss-Newton algorithm of

Kirszenblat and Chetrit [10]. Since Kirszenblat and Chetrit's algorithm

was originally shown to be considerably more robust than the classicatl
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Gauss-Newton algorithm, we astablish that the present Chow-Yorke

algorithm is robust indeed.

THE NONLINEAR LEAST SQUARE PROBLEM

We consider the problem of determining the best estimate of a
parameter vector x = (xl,xz...xn)T which results in a given nonlinear
function

- F(t,x) | (1)

being a best fit of a given set of measured y-values

{t1,§1, ,yz,..., Y W+ Mo (2)
where the m measurement times tj are assumed perfectly known. Adopting
the simple least Squares penalty function, we seek the estimate of x
which minimizes

W) = G - f(eg,07° (3)
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The classical Gauss-Newton algorithm [11] for obtaining successive
coorections Ax({1) to a sequence of ériai vectors x(i) is based upan
tafing.5_= x(1) +ax(i) and Tinearizing f(tj,ﬁj aboutvﬁji); upon
substituting this linear approximation for f{tj,5) ihto Eq. (3), the
resulting quadratic (in Ax) approximation of J can be minimized with

respect to Ax to obtain the normal egquations:
-1, T

ax(i) = (W) ATy 5 1= 0,12, | (4)
whera ' |
af(t_,x) df(t, ,x) -
ey B
oxp  x(1) 7Tt Tk Ix ()
[A] = : : (5)
af(t ,X) af(t !’()




is the locally evaluated Jacobian matrix and
oy <Ay - Flex(iDT L ., - fe (i) (6)

is the residual vector.

THE CONTINUATION METHOD OF KIRSZENBLAT AND CHETRIT
Motivated by the desire to enlarge the domain of convergence of the
Gauss-Newton algorithm [successive corrections using Eq. (4)1,
Kirszenblat and Chetrit [10] imbedded the Gauss-Newton algorithm.into a
continuation process; they introduced the one-parameter famjly of

penalty functions

J(is.f\) =Ad(x) + (1 -1) J_a [a;00) - f(tjsi)]z (7)
where

ag(M) =2y + (1 - a)F(t,,x(0)). (8)
Careful inspection of Eqs. (7) and (8) reveals that

J(x,1) = 3(x) | (9)
and '

J{x,0) =0, at x = x(0), (10)

Thus sweeping A from zero to one defines a family bf neighboring least
squares problems; if a converged solution at » = ] can be found, then we
have a minimum of the original penalty function, The algorithm of
Kirszenblatt and Chetrit involved introducing a sequence of x-values and
for each A linearizing the local behavior of f(t,x); an algorithm
identical in structure to (4) is obtained, see fef. [10] for the
details. In essence, the classical Gauss-Newton algorithm has been
imbedded into a process defining a one-parameter family of neighboring

Teast squares problems, By sweeping A at small increments, we can



remain close to converged neighboring solutions which can hopefully be
used to obtain good starting iterates. Thus one can structure the
algorithm to make the linearization implicit in éq. (4) more nearly
satisfied for each of a sequeﬁce of problems; as is evident below, this
usually results in an increased domain of convergence.

A number of difficulties may be encountered, however, in
appTications of this continuation approach. The Jacobian matrix
implicit in this quadratic approximation of J(x +Ax,A} from (7) is not
always well-conditioned. Also turning points and bifurcation points can
be encountered for some A-value less than one. The numerical results
presented below support the conclusion that our implementation [13] of
the Chow-Yorke algorithm [12] is vastly superior vis-a-vis the resulting

domain of convergence.

THE CHOW-Y ORKE HOMOTOPY ALGORITHM

The Chow-Yorke algorithm is a scheme for sofving nonlinear systems
of equations based on homotopy maps of the form

E(x,A,2) = 0, | (11)
where Xs F, a are n-vectors and xe[0,1] is a scalar continuation or
homotopy parameter. Under fairly weak assumptions on F, for almost all
(fixed) vectors a, the zero set of (11) is a smooth curve y in the {n +
1)-dimensional (x,A} space. The smooth curve ¥ can be further
parameterized-by the arc length s along the {n + 1) dimensional space
curve vy, thus

x=x(s)andr =a(s) , 0<ac< 1. (12)
Eq. (11) then becomes -

E(x(s),A(s),a) = 0. - | (13)

Considering both X and A to be dependent functions of s has many



theoretical and computational advantages. Whereas X is often not a
single-valued function of A, x is {with probability one) a single-valued
function of s. We now develop a set of sfmu]tanéous differential
equations whose numerical solution gives x(s), A(s). Taking the s-

derivative of £q. (13) gives the homogeneous equation
dx

ds

£o] =0 (14)
dn
ds

and, since ds is the differential arc length, we have
dx - dx
T : dh,2
(5« 7 = (15)

where the n x (n + 1) Jacobian matrix is

DX Tt 3xX_ dA
1 n
(xfs)a(s) = | 1o
dF aF_ aF
_n 1 _n
z L3 X TTYO3X. DN
1 n
the initial conditions are
x(0) = x, » A{0) = 0. ., . (16)
Equations (14} and (i5) determine the derivative vector (?E) =
dx
-j% . %%)T only implicitly, but as is shown in Ref. [3], the solution
(for D of rank n) is unique if one imposes a continuity assumption (the

dz - .
current derivative (zﬁg)'szt always make an acute angle with the

previous value of this vector). In Ref. [3] a novel solution process is



given which uses a robust Householder matrix reduction method [14] to
2 & a7 | . .
ca]culate-ag = (EE "EE) on each step of a variable step, variable
order Adams PECE differential equation solver. Tha Adams PECE
differential equation solver is implemented in L. F. Shampine's

subroutine STEP [15],

For the nonlinear least squares problem, we introduce the following

homotopy:
dd
| bTI,zs(S)
E(x(s)n(s),a) = (1 - A){x - a) +a : =0 (17)
20|
ox_'x(s)

It is evident that A = 0 has the trivial root x(0) = a and a solution
x(1) at » =1 requires that the gradient of the original residual
penaTty function [Eq. (3)] vanish.

In the example below, we consider the domain of numerical
convergence resulting from applying the three algorithms:

(1) The classical Gauss-Newton algorithm [11].

(2} The continuation algorithm of Kirszenblat and Chetrit [107.

(3) The Chow-Yorke homotopy algorithm [13] which follows the

zeroes of Eq. (17) from A = 0 to the condition » = 1.

The example we use is the nonlinear least squares example introduced by
Kirszenblat and Chetrit f10]. Other examples using the Chow-Yorke

-

algorithm are given in [16].



NUMERICAL SOLUTIONS OF KIRSZENBLAT AND CHETRIT'S PROBLEM

Following Ref. [10], we consider the function of four parameters

and time:
Xyt ‘

y = xe ces(x3t + x4) (18)
Data was simulated by taking

x=Dx; %, x3 %1 = [1.00 -0.70 2.00 0.00] (19)
Thirty time samples were taken, starting at t = 0 and using a unifarm
increment At = 0.2 sec hetween successive measurements. BRoth perfectly
calcuatled y-values and y-values corrupted by zero mean Gaussian random
numbers (o = 0.02) were used as measurements, The addition of this
small random noise had negligible impact upon any of our major results;
we therefore will not discuss further these noisy data solutions.

Following the pattern of Kirszenblat and Chetrit, we vary the
starting iterates for the four elements of X away from their true values
~(which obviously minimize Eq. (3) with a minimum value of zero), to
study the domain of numerical convergence of their algorithm. Since
graphical presentations are difficult in a four dimensional space, we
w111 discuss here a sub- -space of starting iterates for which X3 and X
are intially assigned their true-values, but starting iterates for Xq
and X5 are varied over a broad region. After the first correction, of
course, all four elements of x are typically displaced from their true
values until convergence is achieved: Using the sub-space of X1s Xp
over which convergence is achieved a; a graphical means to study
convergence is introduced ip Ref. [10]; we follow this pattern so
homogeneous convergence comparisons can be made,

Figure 1 d75p1ays a portion of the (x},x ) starting iterates over

which successful numerical convergence easues using (i) the classical
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Gabss-Newton algorithm, and (ii) the continuation a]gofithm of
Kirszenblat and Chetrit, A typical Kirszenblat-Chetrit continuatien
path is also shown in Figure 1. The Gauss-Newton algorithm converges
(in three to six Tterations) below the dashed curve whereas Kirszenblat
and Chetrit's algorithm converges below the solid line if ten or more
continuation steps are taken. Thus Kirszenblat and Chetrit's algorithm
does significantly expand the domain of convergence of the Gauss-Newton
a]gorifhm for thfs example, " The convergence domain of Kirszenblat and
Chetrit's continuation process does not increase sfgnificant]y,_however,
even if fifty continuation steps are taken. The failure to converge is
@ consequence of all elements of the Jacobian matrix (thch mist be
inverted) tending to zero for large negative values of X (due to

the ex2t terms). The results we computed in Figure 1 are essentially
idéntical to those originally reported by Kirszenblat-and Chetrit

[10]. Fiqure 2 displays the domain of convergence and a typical
homotopy path for the Chow-Yorke homotopy algorithm. Notice that the
regfon of convergence is over an order of magnitude larger in the X5
diﬁection. Fighre 3 displays x(s) along the same trqjectory shown 1in
Figure.Z. Considering arc Tength as the independent variable avoids the
numerical difficulty at turning points if A is chosen as the independent

variable; this is an inherent Timitation of the Kirszenblat-Chetrit

approach,

CONCLUDING REMARKS
The Chow-Yorke homotopy algorithm was found to be much more robust
than the Kirszenblat-Chetrit continuation method, when app1ied to their
example nonlinear least squares problem, The Chow-Yorke algorithm is

broadly applicable for achieving very large numerical canvergence



domains. However, as reported in Ref. [1], the homotopy methods as a
group (and the Chow-Yorke algorithm in particular) are relatively
egpensive vis-a-vis computer run time compared td; for example, a
successful solution using a Gauss-Newton algorithm, Of course, an
expensive solution is vastly prefered to no solution at all. Robustness
measures "stability with respect to initial ignorance," a high degree of
such stability is most important when seeking iterative solutions of

problems having both high dimension and nonlinearity,
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Figure 2 Chow-Yorke Homotopy Algorithm Convergence Domain
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