ON IMPLEMENTING GRAPH REPRESENTATIONS

Csaba J. Egyhazy
Computer Science Department
Virginia Polytechnic Institute & State University
Falls Church, VA 22042

€5830006

ON IMPLEMENTING GRAPH REPRESENTATIONS

Csaba J, Egvhazy
Computer Science Department
Virginia Polytechnic Institute g State University

2990 Telestar Ct,

Falls Church, va. 22042

-Summary. The three mostl common graph representations,
namely the adjacency matrix, one‘way.adjacency lists' ang
adjacency multilist, are implemented in PASCAL anqg their
performence.evaluated for twelve graphs typical to computer
network configurations;

We show that both adjacency multilist and one way adija-
sency listS'afe preferred.over the adjacency matrix repre-
Sentation, Although-their implementation is slightly more
compliceted_it out performg the.latter by a factor of at

least 5,

1. Introductibn

tant design deéision in implementing algorithms to perform fune-
tions on graphs; We know intuitively that the perfofmance chaf-
acteristics of software, given the sane set of simple, cennected
and undirected graphs will pe different for each Tepresentation
implemented. It.is this clainm that we'afe Set Fforth to pProve,

In the next section we will define the terminology ang notation

for the three most common graph Lepresentationsg: Adjacency
matrix, adjacency ligt and adjacency multilist, as well as indi-

cating two possible implementations for each. Section 3 ig

the time verformance of each representation implemented for a
single set'of 12 graphs. The resylts of the test runs are
reported ang discussed, The last Section is devoted to comments

and concluding remarks,

2. Graph Representations

Since many problems or instances of prcblems can best be
visualized and analyzed by simple, connected and undirecteg
graphé, efficient methods for representing.thcm arerdesirable,
- both in terms of processing'timé and storage 11 r21.

In an adjaéency matrix Lepresentation of & graph G the
matrix entry (vi, Vj) equals one if ang only if fhere is an edge
between yertex V: and vertex Vj' Since for this investigation
only Simple graphs are considered, the Mmain diagonals in the
adjacency matrix wiil always equal zero, Accordingly, in the

adjacency matrix representation of a graph, only the upper trian-

The same adjacency matrix could, if PL/I or FORTRAN are
used be implemented in two dlfferent wavs. In the first imple-
mentation the matrix entrieg would consist of ‘single hitg while
in'a second implementation the matrix entries woulgd . consist of
one word of storage (w bits). Computer storage will he conserved
in. the first implementation but more Processing time will be
required to access the matrix entries. 7In the-secgnd implementa-
tion the proce551ng time to access the entries of the adjacency
matrix will be 1less but more storage will pe required to repre-

sent the graph.

wiil be one list for each vertex V; in G. In each list the nodes
represent the specifie vert1c1es adjacent to vertex Vi' Each
node con51sts of two fields, INFD ang LINK. - The INFO field con-
tains the identifier of the next vertex that is aiso adjacent to

vertex Vi .

Again, if pr/T Oor FORTRAN were to be used, the same
'ad]acency llst would be 1mplemented in two ~different ways. In

the first 1mplementat10n the adjacency list will consist of pn

each of {logn = loge) bits. In the second implementation each of
‘the n header nodes would con51st of w/2 bits (a halfword) and
each of the np list nodesg will consist of w bits (w/2 bitsg for

the INFO field and w/2 bits for the LINK fielq), These two

The adjacency ligts method for representing graphs is com-

pared by Italj [3] te the information theoretic lower bounds, ang

‘it is shown to be optimal in many instances. They also Propose a

n log n + O(n) bits,

In the adjacency multilist Tepresentation of a graph @G

there will be one list for each vertex in G. Fach list has one-

node for each edge in @G, 'The node represents the edge that has

verticies v; and vj incident to a specific edge, Thus each node
- will be 3 member of two lists; one a member for vertex vi and one

a member for vertex Vj.

Bach list node has five fields. rLet M, Inrovr, INFOVT,
LINKVI, ang LNIRKVI denote these five fields. The first field M
is an indicator of whether the edge has been inspectéd. - The sec-

ond field INFOVI contains the identifier of vertex Vi that is

incident to the edge represented by the node. The thirqg field.

INFOVT contains the idehtifier of vertex-vj for which both Vi and

vj are incident to the edge represented by the node. The fourth

is incident to vertex Vi« The fiftp field LINRVT contains 3

pointer to ancther node for which an edge is incident to vertex

Vj' Thus the node Structure ig as follows:

The storage requirements are the same as for adjacency
lists exXcept for the addition of the mark bit M. The same adja- .
cency multiligs could, if PL/I or Portran is used, he implementegq

in two different ways. In the first implementation the adjacency

each list wilz consist of ¢ nodes (one node for each edge). The
storage for the five fields of each list node is asg follows: .one
bit for the inspection off fielqd M, log n bits each for fields
INFOV1 and INFOV2, ang log e bitg each for fields LINRV1 ang
LINRV2, In the second implementation the same adjacency multi-
list woulqg consist of p header nodes each of w/2 pitg (e half-
word) and each listrwill consist of e nodes, The storage for the
five fields of each list node is as follows: one bit for the
inspection fielg M, w/2 bits each for fields 1NFOVL and INFOV2,
and (w=1) /2 bits for fields LINRV] and LINKVZ. 'Thus in the'sec-

ond implementetion each list node requires ga double word of stor-

3. Implementation of Graph Representations

All three graph representations describedkabove were
implemented in both IBM ang DEC‘compute:s using the-programming
language PASCAL., The éhoice of PASCAL eliminated any considera-
tion to élternative' implementations within 3 pParticular graph
representation, 'Therefore, the emphasis was in finding the pro-
portion of cpy time'éonsumed in representing graph G asg opposed
to storage requirements.

Each of the three ‘graph representatiqns requires a

different'éesign approach when implemented. The adjacency matrix

Zation of the form:

PROGRAM; ADJACENCY MATRIX REPRESENTATION
coNsT

MAX N = 45; [NUMBER oF VERPICES !

TYPE

VERTEX = g ., MAX N;
ADJ MATRIX ~ ARRAF (1....ua%_ N, Le...Max N1 oF vEmreg,

VAR
N, vz, v, MATRIX A: AnJ_maTmx, TEMP: VERTEX, suM armow ROW
VERTEX ARRAY - -

BRaIN

READLN {N) f SNITIALIZE ADJACENCY MATRIX 1

FOR TEMP; = 1 to N 'ngd

SUM ARROW ROW [TEMP]: » o
FOR V. %7 = 1m0 n po

BFEIN
READ (MATRIX A | V2, VW iy,
SUM_ARR ROW{ v 7 | ..
SUM_ARF_ROwW| Vzg+ MATRIX Af v_z, VoW
END;

 PROCRAM 1

The adjacency 1ist implementation is derived from the

édjacency matrix representation, since the n rows of the adija-
cency matrix are Tepresented as n 1linked lists. The nodes in a
particular list represent the vertices that are adjacent to that

list. The record structure and its initialization is a follows:

PROGRAM ADJACENCY LIsT REPRESENTATION
CONST :

1

MAX N = 43 { wommER oF vERTTCIRS }

TYPE

NODE_POINTER = “VERTEX_NODE;
YERTEX_NODE = RECORD { sTRUCTURE OF EACH NODE {
V.INFO : VERTEX RANGE;: [18 TR Apsacewey LISTS |

V_LINK : NODE_POINTER
END;

VAR
V_INDEX, NUM _NODES, SUM_ARR_ROW, INDEX_VAR, ADJ _PTR, N -
TOP_ADJ FYRST_POINTERY { AN armay OF POINTERS THAT POINT ~Q
THE TOP OF EACH ADJACENCY LIST !

EOT*ADJ_PTR: NCDE_POINTER;

BEGIN
{ I8ITIALIZR voum STRUCTURES |
READLN (N} »
FOR V_INDEX := 1 70 § ng
BEGIN

READ [NUM_NODES); [READ THE wuMsER oF ADJACENT VERTICTES |
SUM_ARR ROW[V_INDEX ! := NUM_NODES;
INDEX VAR := NUM NODES;

TOP_ADT [V_INDEX] .= NIL;
WRILE (NUM WODES » 0} po
BEGIN

WEW (ADJ PTR);
READ (ADJ_PTR".V_INFOQ);
IF (INDEX"VAR = NUM_NCDES)
THER ~
BEGIN
TOP_ADJ[V_INDEX] := ADJ_2TR;
BOT_ADJ PTR ;= ADJ_PTR
. END -
ELSE
BEGIN
BCT_ADJ PTR".V LINR := ADJ_PTR;
BOT_ADJ PTR := ADJ_PTR
END;
ADJ_PTR™.V_LINRK := NIL;
NUM_NODES Y= NUM_NODES - |
ENDy T -
READLYN

Ly

PROGRAM 2

-7

ceﬁcy multilist is determining in what INFQV field (i or J) the
vertex V_Z being examined is located. The use of an inspection
indidétoﬁﬁof the form I_INDEX ang J_INDEX permits us to- check for
the validity of the Statement LOC V 7 = I_INDEX. If the equality
holds V_ 2 is in the INFOVT field, otherwise V_Z is in the INFOVJ
'field. Furthermore, 3 flag of type booleén is used to indicate
if the vertex currently being focused on ig in the INFOVI compo-—

nent of the node or the INFOVT component of the node.

The adjacency multilist fepresentation ig actually
established by.means of an array of LOp pointers ang two tempo-
rary pointers, PTﬁTl and PTRT2. For the first record, the M
field is set fo - Zero while the two INFO fields are read in.
- Finally, both LINK fields are given the value nil. As we set up
ouf second fedord the LINKVI field of the predeéessor will be
pointing to thig Second record if the vertex is common to both
edges. The ﬁINKVJ field on the other hand will be nil unti] a
record-is-established_that contains that vertex. One interesting
aspect of this implementation is that the vertex can appear in
either the T or the J INFO field., a flag of type boolean is used
throughouﬁ'to test for the'exact logation of the vertex. The
complete code for the establishment of an adjacency multiligt

fepresentation is given by Program 3,

PROGRAM: ADIACTNCY MULTILIST AEFRESERTATION
CONST
HAX_N w45 [wewreR oF remrroTES!)

PLAG_FISLD = §,,.,1;
TERTEX _RANGE = 0....MAX_N:
STACX_NODE = RECORD
T INFO: UERTEX ZANGE
V_INFO: ¥IRTINTSTACK POINTER

END:
HCDE_POINTER » " VERTEX NODE
! Tars 13 vwx staveTram oF THE ADJACENC? MULTILIST |
VERTEX_NODE = RECORD
- INSPECT : FLAG_FIZLD: [T218 ¢1zt0 Tomrearss
WHETEER THE NODE AAS
AEEN INSPECTED }

VERTEX_IANGE:; { THIS FIELD ROLDS oNE

V_INFO_I
= = VERTEX IDENTIFIER |

V.INFO_J . VERTEX _RaNGE: | Twrs rrerp AOLDS A
SECOND VERTEX
IDENTIPIER B

VLINET : HODB_POTNTER: ! THIS rIEnp pomes To
i THE NEXT ZPGE INCIDEWE
TC VERTEX v_iNPO T -

V.LINK I : NGOE_POINTER [TRIS ?TZLD PorNTS TO
THE NEXT IDGT INCIDENT
TO VERTER V_INFO_J
MD:

TAR
vH, N, NUM_.‘JGEES‘ ML_BTR, Z!ICE:(_’!A.Rt ‘&RTEX_RANGE
SUH_ARR_RO!M ’—IERTEX_:\RRAX_’:
TOP_ML:T PIRST SAINTER: | CONTAING POINTERS o THE TOR
IDGE FOR ZACH VERTEX |
30T_ML_PTR: NODE_POTNTER

| ESTABLISR THE sDIACENCY wmnTTLrgTs }
FOR V% :x 1 TQ N DO
3EGIN
READ (NUM_NODES) ;
[NDEX VAR :e NIjM_NODES:
WHILE (NUM_NODES > 3) 5o
3EGIN
SEW [ML_DTR!;
AL_PTR™.INSPECT 1 §;.
ML PTRC.V_INFO I-:w v u;
PEAD (ML _FTRC.F_raro T
STM_ARR_ROW{ ML™3TR“Tv INPQ I |
SUHM_ARRE_ROW(uF; 2T, ¥ INFd 1)
SOM_ARR_RCW[ML F79°.v _Tyrg T |
SUM SRR ROW{ ME 2R 7 [arf g |

A+
-

-

17 (TWOEX_vaz = Scu_wopEs)
THEN
3EGIN
I TSP POINTER [S YOT ASSIGNZD T3Em SET !
{ “ER —oP PoINTER ™ THE PRESENT ¥OOE !
IF (TOP MLl v ¥] = NIL)
TOP_AL[V¥ | r= mL_dTR
ZLSE
['17 2op sorvrem 15 assrenee THEN
SERRCE THE LIST OF v W roR
LINK FIELD J WHICH BXS NIL varue
PERPORM THE SEARCH PROM THE ToP
POINTER ON DOWN THE LIgT i
[TESP 17 17 18 tHE FimsT NoDE
THAT HAS A LINX PIELD J WiTR
A NIL YALOE }
IF (TOP ML[¥ W |".V_LINK_I = NIt}
TIEN

TOP_MLL VW ICLV_LINE T :woup,_3tR
SLSE -
3EGIN
[S2ARCH THE LIST rom a NQUE wWITH
;A LINK J PIELD . VALUE OF NIL |
¢ INITTALIZE A WORKING pTR |
mqp_mrw =
TP MLT V7 1t v e g
[INITYAT® Tap seadcm P
MRILE (TEMP_PTR_W~.V_LINK J<>NIL
oo -
TEMP_PTR W :m
TEMPPTR_W".V_LINR_I;
! $2T v LINK 7 FrELD WHICH WAS
NIL TO ML _PTR POTNTER |
TEMP_PTR W,V LINK T := Mp_pmm

INDs
30T _HL_DPTR :a ML_FTR - -

ZND | INDEX VAR = NUM_NODES }

IL3E | INDEX_VAR <> NuM_Voozs |
BEGIN

1 JET LINE PIELO I OF "RxviOus wope }

BOT ML_PTR".T LINK I :e ¥L_>TR;

30T ML_BTR e ur_piR

PROGRAM 3

4. Experiment and Test Resultg

-—

work configurations [4,5] were produced for the test runs. These

graphs are jllustrative. examples of the following smail network

structures:

A) Distributed Network: This graph has 11 vertices
and is configured so that No vertex is Ffurther away

than three edges from any other vertex - (Figure A).

B} Point to Point Long Haul Network: This graph has
41 vertices, with 8 vertices forming a ring structure.
One of the ring #ertices is connected to a Subnet
structure while the others are the roots of tree Struc-

tures (Figure B).

C) Double Ring Network: This graph has a double ring
like structure consisting of 12 vertices, Bach ring
vertex is connected to one ang only one vertex of the

other ring (Figure C).

D) intersecting Loop: This graph has two distinct

cycles with one vertex in common (Figure D).

E) fTwo Level‘Hierarchy with Five Regions: This graph,
comprised of 17 vertices has two levels of hierarchy

and five distinct regional topology (Figure E).

-10-

F) . Interconnection Network of Networks: This graph
has a complete subgraph of five vertices as the inter-
connecting network and five separate network structures
connected to the complete subgraph by only one edge

(Figure F).

G) Regular Network Representation: This graph has 20

vertlces with every vertex of degree four (Figure G).

H) Irreqular Network Representation: This graph has
12 vertices with one star tree configuration ag one

subgraph (Figure H).

I) Linked Network Representation: This graph has.24
vertices with a "unibus" structure to which five syb-

graphs are connectegd (Figure 1),

J) Distributed Network Representation: Thig graph has
128 vertices with a . complete subgraph ang four star
like configurations. This network is similar in struc—_
ture to the DATAPAC Packet Sw1tched Network [771. -The

graph is given in Figure K.

K) Subnet i} This planer graph has 8 vertices formlng
to squares with one face in common.

L) Subnet 2: ThlS graph is comprlsed of 15 vertlces.

All of the above graphs are given plctorlally in Appendix a.

-11-

For each of the above graphs we measured the cpy minutes
consumed in the execution of 3 particular PASCAL Program, hereby
referred to as the “initialization" Program, . for each of the
three graph representations.

The virtual' CPU minutes consumed was used to measure CPU
minute consumption on the IBM 4341 vMm/CMS. This quantity was
obtained by involving a QUERY TIME command just prior to execu-
tion, immediately after execution and then Subtracting the first
from the second. On the other hand, the total CPU minutes con-
sumed was used for measuring CPU minute consumptiop in the
VAX-11/780 vMs. This quantity was obtained by invoking a SHOWI
STATUS command just prior to executing a pProgram, immediately
after execution and then Substracting the first from the Second.
'Since~the total CPU time oﬁ both machines were influenced by the
load on the System at the time of exXecution, the measures of Cpy
minute consumption were averaged over three-executions, performeqd
at different times of the day, of the Same program.

| Tables I, II and 71T givé for each graph the IBM 434)1 VM,/CMS
virtual CPU minute and VAX-11/780 vMS (Cpy minutes consumption
values using an adjacency matrix, adjacency iist and adjacency

multilise graph tepreéentations are respectively,

-] P

TABIE I

A. IBM 4341 vM/cMs VIRTUAL CPU WINUTES CONSUMED IN IMPLEMENTING THE ARJACENCY

MATRIX GRAPH REPRESENTATION

GRAPHS A B ¢ D E F G i I J K L
INITIALIZATION 03 .2y o5 07 o7 L 0705 100 8 07 Lgs
05 .23 e o7 o7 L2 0T 05 11 07 e Lgg
03 _.24 05 .06 R A N A R T .05
AVERAGE (05 L2333 L0533 Loee7 .07 2033 07 L0531 11067 L0733 L0667 0433
b. VAX-11/vMs CPU MINUTES CONSUMED T¥ IMPLEMENTING THE ADJACENCY
MATRIX GRAPH REPRESENTATION
GRAPHS A B c D E F G H I J K L
3 .
INITTALIZATION 29 LB .30 - 32 34 sg 233 .30 40 L34 30 29
366 300 om0 33 g S w1 37 3 g
227 .87 .29 .33 L3 L S N) S O 233 .31 .29
. 320337 6167 L3167 .30 4067 3467 .31 2787
AVERAGE 29 L6633 .2967 .3 1337
T TABLE [T
TBM 4341 W/cus vIRTUAL cpy MINUTES CoNSuMED 1N IMPLEMENTING THE ApJacENcy
LIST GRAPH REPRESENTATION
CRAPHS A B ¢ D E F e H 1 I K L
IITEALTZATTON 05 es sy AL .06 o5 57 06 .08 o5
' 05t s a5 g L L AR . T 06 pg o5
B 105 95 e A8 07 o5 gy 06 .06 o5
AVFRAGE 05 ar s gs 0633 .1067 L0s67 g5 0733 .06 06 g5
VAX-11/VMS CPU MINUTES congpuep IN DMPLEMENTING THE ApJAcEncy
LIST GRAPH REFRESENTATINN
CRAPHS A B ¢ D E F G] 1 J K L
INTTTALIZATTON 27133 35 g B 29 56 g 29 .28 37
IREARE: S SRS T S B T AN 28 .28 g7
227 .36 .8 g 20 .32 1 5 g 28 .28 .23
AVERAGE 27 L0327 2787 a9 23 .32 39 aser 2967 L2767 .28 a7m

7'3

TABLE 11

IBM 4341 VM/CMS VIRTUAL CPY MINUTES CONSUMED IN IMPLEMENTTNG THE ADJACENCY
MULTILIST REPRESENTATION

GRAPHS A 8 C D A F G H I J K L

INITIALIZATION .05 .08 .05 .05 .05 0% .08 .05 .07 .05 .06 04
- 05 .18 .05 .05 .06 .10 .06 .04 .06 .06 .05 .04
-04 .09 .05 -05 .05 .09 .05 .05 .07 .05 .B5 S04

AVERAGE -0467 .0833 .p% .05 <0533 .0933 .0567 .0467. -0667 .0533 ,0533 o4

VAX-11/VMS CPU MINUTES CONSUMED IN IMPLEMENTING THE ADJACENCY
MULTILIST REPRESENTATION

GRAPHS A 8 c D E F G 1l I J K I,
TRITIALIZATION 25 .29 a1 . 25 37 o 25 .26 .28 26 a4
23300 27 29 .28 g 2% 27 27 390 a5
226 .31 .35 .28 .78 229 .20 .25 .28 .28 .27 .o
AVERAGE +2333 .30 L2433 2733 2733 .28 .o8e7 2633 .27 2767 .2733 2567
TABLE TV

SUMMARY ACROSS TWELVE GRAPHS OF THE CPU MINUTES CONSIRMED 1N
IMPLEMENTING ALL THREE GRAPH REPRESENTATIONS

Adjacency Marrix Adjacency Lise Adjacency Multilisc
IBM 4341 vM/CHS 0890 .0658 - L0578
VAX - 11-780 vMs] : 0230 .2619 L2936

~1l4-

Three different tuns per representation were made and an
average computed, Table IV summarizes the results of Tables T,
II, and 1TT. It shows that the adjacency multilist graph repre-~
Sentation yielded the minimal expenditure of virtyal CPU minutes,
the one way adjacency 1list vielded thennext lowest while the
adjacency m;trix representation was by far the one with the high-
est expenditure of virtual CpU minutes. The difference in CPU
minute consumption between the adjacency multilistrand. the cne

way adjacency list tepresentation is minimal compared to the CPU

tion. The same ranking of the three representations was obtained
for both IBM'4341 and VAX-11/780 machines. As expected, the
implementation of all three representations on the vVvax-11/780"
consumed, on the average, five times more CPU time than the equif
valent run on the IBM 4341. Which shows that the smaller the
computer we have available the moré critical, in terms of both
time and store, £he choice of 3 graph representation becomes.

One of the main findings of +this research effort was that
the choice of graph representation Substantially influénces the
CPU time consumed in initializing the Structure in gquestion, The
impact of the representafion is also felt in time it takes to
traverse 3 graph as found in [6]7. There we demonstrated that
across algorithms for generating the set of fundamental cycles
the adjacency multilist and the one way adjacency list graph .

representation implementations were found to require considerable

-less CPU time than did the adjacency matrix‘graph representation.

-15-

Furthermore, we found that, for the same set of graphs than those
given in this paper, 40 to 60 percént of the total time was con-
sumed in graph representation and traversal of the structure,
while the rest was consumed in executing the algorithm. There-
fore, the arqument that chdosing a représentations other than the
adjacency matrix for graphs with more than 20 vertices is so far
convincing. Ongoing research, at Virginia Polytechnic Institute
and State University, hopes to further ascertain the impact of
alternativé graph representatiqns in algorithm design and program

performance.

References

1. Horowitz, E., Shani, S. ™"Fundamentals of Data Structures™
Computer Science Press, Inc. 1976,

2. Aho, A., Hopcroft, J., Ullman, J. "Data Structures and Algo-
rithms" Addison-Wesley, 1983,

3. 1Itali, A., Rodeh, M. "Representation of Graphs" Acta Infor-
matica 17, 215-219 (1982).

4. Doll, R. D;- "Data Communications: Facilities, Networks and
Systems Design," John Wiley & Sons, Inc. (1978).

5. Booth, T. L. "Digital Networks and Computer Systems," John
Wiley & Sons, Inc. (1978).

6. Egvhazy, C. J. "Performance Evaluation of Three Algorithms
- to Generate Fundamental Cycles for Twelve Different Graphs" .
Technical Report #CS82012, Department of Computer Science,
Virginia Polytechnic Institute and State University, December
1982. ‘

~16-

APPENDIX A

A SPECIAL CLASS OF GRAPHS

This appendix contains the topologies for the twelve graphs
used in this research effort.

-17

FIGURE a
Distribhuted Network

FIGURE B
Point to Point Long Hauyl Network

~18-

FIGURE ¢
Double Ring Like Network

FIGURE D
Intersecting Loop

FIGURE E
Subnet 2

-19.

AV

r——a
ﬁ—-—L ;
FIGURE F

Two Level Hierarchy With Five Regions

FIGURE G
Interconnection Network of Networks

-20=

™

G

R
g
]
g

N

L N D

FIGURE H
Regular Network Representation

FIGURE I
Irregular Network Representation-

-21 =

9

FIGURE J
Linked Network Representation-

FIGURE K
DATAPAC Packet Switchec Network

FIGURE 1
Subnet 1

“22-

