ON DATA TYPES

by

Dr., Johannes J. Martin
Dept. of Computer Science
Virginia Tech
Blacksburg, Va 24061

June 1983

Technical Report #CS830004-R

O N DATA TYPESs

Johannes J. Martin

Virginia Tech
Blacksburg, Virginia 24080

June 1983

Abstract:

A semantic model of types is proposed. This model interprets
types as elements in an augmented domain constructed with the
Smyth powerdomain constructor. In this domain types
approximate the values of which they are types. Within this
model, a type of an application f(x) is found by applving a
type of £ to a type of x. This becomes the basis of type
checking and type inference.

The model accomodates in a natural way <1ype hierarchies,
polymorphic functions, and recursive polymorphic tvpes. A
number of examples are worked out in some detail.

PAGE 2

I. INTRODUCTION

This work pursues a simple semantic model for the treatment of
types in strongly typed languages. One can view types as names
for sets that are used as domains and codomains of functions (in a
broad sense), and type checking as the process that ensures that
functidns are applied only to values of their own domains. This
view seems to neglect the other function of type: being a vehicle

of data abstraction.

But both views can be held simultaneously. Concerned mainly with
data abstraction, we would not gquarrel with the recommendation
that our carrier sets ought to furnish the domains and codomains
of =all functions; similarly, recommending that the domains and
codomzins of all functions coincide with cérrier sets of given
types, we would not mind the requirement that there ought to be
small sets of primitive cperations on those sets with which all
other functions are to be constructed. In this paper we shall
deal with both concerns starting with the view that types name

domains and cecdomains of functions.

domain D by.adding additional elements, namely the (potential)
types. These types approximate the vaiues of which they are
types. Clearly, the claim "x is inteéer" gives less information
than "x is odd" which in turn gives less than "x is 3", The basgic
notions of this theory are described in [Martin82]. oOur method is

akin to that of MacQueen [MacQuéen82] in so far as elements of the

PAGE 3
same type form an ideal. It differs by the fact that types are
treated as ordinary objects in the (augmented) domain, and tha+t
they are subjected to The same rules of computation as all other
objects. Consequently, we shall not need any new rules or

concepts beyond the extension of the domain.

The domain T can alse be viewed as a domain for a Programming
language with dynamic types. With static type checking the domain
T is used for a rough calculation that is to ensure internal type
congistency of 3l1l eéxpression so that later calculations can be
based on the simpler computational domain D and, hence, can be

exXecuted more efficiently.

II. THE AUGMENTED DOMAIN

For the purpose of our discussion we assume that the computational

domain is given by the domain eguation

D=A+ (DxD)+ (D> D)

where A is g simple domain of atomic objects such as the integers,

booclean values, and sc on. Viewed as an information system
[Scott82]

D = (DDD, AD’ COND, Fb),
the elements x of the domain |D| are consistent subsets of DDD
(unions of members of CON) that are downward closed by . The

members of DD are interpreted as propositicns, and a set of

PAGE 4
propositions (a member of (D]} is the conjunction of its
constituent propositions. The distinguished element A is the

least informative proposition in DD.

The elements of the augmented domain are collections of sets of
propositions interpreted as cenjunctions of disjunctions of
propositions. The conjunctive sets must again bé consistent and
downward closed, and the disjunctive sets can be viewed as actual
data items of the augmented domain. A construction that gives us
these types of elements is the Smyth powerdomain constructor
[smyth78]. Therefore, ye replace in our original domain eguation

the base domain A by the powerdomain
PMS(B) where B = A + B «x B,
and obtain
T = PMS(B) + (I X T) + (T » T).

The subscript "Mg" (modified Smyth) indicates that this
constructor is modified in one important respect: instead of
using the finite subsets of A as the elements of T; we use the
recursively enumerzble subsets of A. This ensures that the
elements of DDT are still finitely described and the members of
[T| are defined. by countable sets. As we shall see, +this

moedification is needed because some of the elements gained are

vital to the model.

Recall that the element {XO,...,Xn_l} of a Smyth domain describes

an object to which (at least) one of *he propositions Xi applies.

PAGE 5
For example, the element {true,false} asserts that the object
described is either the value "true" or the value "false":; in
other words, it asserts that the object is of type BOOL. In
general, each recursively enumerable (RE) set S of total elements
in B hag a unique greatest lower bound t, that is to say, for each

such S there is an element t in B with the property
for all x. x € 8 iff + ¢ X,
Note: "c" means "included in" not "properly included in".

We view the element t as the type of the associated (carrier) set

S. The function E from types to carrier sets is given by
for all x. x e E(t) 1iff +t < x.

Because of the structure of B, our domain furnishes individual
types for all RE sets composed of atoms and/or (nested) pairs of

atoms. Furthermore,
with the types s and t for E{(s) and E(t), respectively,
(s,t) is the type of E(s) x E(t).

The element {{A}) is the universal type.

Note that the domain
D = B+ (DxD) + (D +.D),

which we assume as our computational domain, is up fto an

isomorphism the "upper part" of T.

.PAGE ©

Recursive specification of elements in PMS(B)

In PMS(B) (and also in T), we can solve some problems of the

following sort:

Find an element x such that x = G(X) and E(x) is a minimal set.
The smallest set E(x), of course, belongs to the strongest set X
+hat satisfies x = G(x), that is, it belongs to the greatest fixed

point of G. As an example consider

(1Y G = x.{inil}} n w X X.
The greatest fixed point of G is

FIX(G) = {{nil} n w X fnil} n w x (w X fnil}l) n ...1%.
and E(FIX(G)) is the set of all lists over elements in E(w).

There is no problem with the existence of a greatest fixed pecint
because our domain is almost a complete lattice. We can complete
the lattice by, adding the strongest element T. Hence, unless it

happens to be T itgelf, the greatest fixed point [Tarski5s]
u = FIX(G) = Uf{x | G(x) 2 x}

is guaranteed to exist in the original domain. We obtain for the

greatest fixed point operator
FIX(C) = n G(T).
n

With the reguirement that G is downward continuous at the fixed

point, the proof that FIX(G) is (a) a fixed point and (b) the

greatest fixed point follows the pattern of the analogous proof

for the least fixed point operator found, ®.9., in {Stoy77].
A function f£ is downward ¢continuous if ip downward directed sets S
f(ns) = n{f{z) | z ¢ S,

and a downward directed set ¢ontains for EVery pair of elements x

and y an element t such that t ¢ x v.

is even downward additive since g does not need t+o be directed),

because of the well known relationship

WX (nS) = niw x x | ®x e 8},

Functions
—Mclons

The elementary pPropositions that the system makes about functions

are of the form
(x +> y)

where "+»" denotes the functional assignment and x and Y are other
Dropositions. This assertion ls true for all functions (total

elements) y where Y is true of ¥(a) if X is trye ©f &, that is
(x = y) ey = (xcq =» Y ¢ ¥(a)).
Thus

E(x = vy) is a get of functions from E(x) to E(y).

PAGE 8

In other words, if a function contains the element (x +> y), then
we can be sure that it maps values from E(x) to E(y} since any
assignment (u +> W) with x € u for which w is not consistent with

Y 18 not consistent with (x 4+ y),

For the purpose of type checking and type inference, we go one
step further and consider a function f to have the domain type x

and the codomain type y only if £ contains (¥ + y) as an element.

Most assertions about functions will be (usually infinite) sets of

elementary assertions. Let f be such a set. Then
feocyp &x c g
=> £(x) = uf{y | (2 +> V) € £ for some z ¢ X} < P(a).
This, of course, is the usual definition of application.

Now suppose we Xnow only a type t of some value @, that is, t c g,
and we wish to find out what a function ¢ defined by £ computes if

applied to «. From the previous discussion follows
if ¢: E(r) » E(s) then (r ++» s) ¢ £, and, hence,
if r ¢ t ¢ g then we know that s c Pla).

In words, by applying v's approximation f to a type t of o we
obtain as a result (at least) the assertion that ¢(a) has the type
of ¥'s codomain provided that the type t is ‘stonger than the

domain type of ¢, that is, provided that E(t) © E(r).

This looks like a reasonable basis for type checking. But what

PAGE 9
happens if E(t) is not a subset of E(r)? In the worst case, we
have to expect £(t) = {A}] = ., which tells us that type checking

fails.

But here we seem to have a serious problem. The element A is the
least informative element in D and as such it is part of every
assertion. Thus, if we interpret L to mean "error", then the
attribute "error" applies to every assertion, which is a rather

useless convention!

On the other hand, categorically forbidding I to mean "error"
seems to be equally unfoﬁnded. Imagine that a function f is
defined exclusively by (r -+ s). Now, given some type + of a
prospective parameter for £, should we not be able to conclude
"valid" if r c t and "wrong" otherwise? This conclusion hardly

poses any computability problem!

Termination

Solving this problem amounts to recognizing that cbserved
termination of a procedure that defines = function is additional
information and, thus, makes for stronger assertions. Further,
type checking involves computations that terminate with results
that are usually considered bpartial, but, because of termination,
must now be considered total! For example, with type calculations
propositions that only claim "o is some element in E(x)" where

E(x) may be qguite a large set, are not always preliminary but may

be final. Such propositions, then, are not partial results that,

PAGE 10
with some luck, may become stronger, but final resulits that are

presented as the complete infermation attainabkle.

But what is the relative position of these new wvalues (for

example, "final INT") in our domain? Is "final 1" weaker than

"final INT"? The answer is no! If "final 1" were weaker <than

"final INT", then "final 1" could be strengthened to "final INT";

But, since "final 1" is a final result, no such improvement is
n

possible; "final 1", as all other final values, is a total

element.

As an immediate consequence we may conclude that "termination" is
not the same kind of proposition as, for example, INT. Rather,
for every partial element there is exactly one (stronger) total
element that occurs upon computation of the partial element if the
defining procedure stops. For example, there is final 1 | 1 and

final INT — INT, and so on.

A function computes a final element if two conditions are

satisfied;

(i) the defining procedure terminates, and

(ii) all parameters are final elements.

The second condition is not always necessary since there may be
parameters whose improvement would not alter the result; in this
case the result may be declared final although all data may not

vet be in.

Sirce final 1 is a total element, the comparison

PAGE 11

if final 1 < X then ... {fe.g.error}
is true exclusively for x = final .. Hence a function that
computes, for example, "wrong" for final 1 and "valid" for

final INT is monotonic as it should be!

III. THE BASIC RULE FOR TYPE INFERENCE AND TYPE CHECKING

From the above we obtain the following simple rule:

Because of monotonicity, we can compute a type for any eXpression
by replacing the non-variable constituents of the exXpression by
their known types. The only exception to this rule is the fixed
point operator. The least fixed point of an exXpression weakened
by the replacement of its parts by their types is usually 1. We

shall find that in this case the greatest fixpoint gives a proper

type.

Note that this rule is the direct consequence of the fact that "t
is a type of x" and "t ¢ x" mean +the same thing. Hence the
following lines are trivial observations!

Let f approximate some function and let t ¢ x be a type of =x.

Then
{(2.1) f(t) c© f£(x) is a type of £f(x), and
with h ¢ £, that is, with h being a type of f

(2.2) h(t) < h(x) < £(x),

PAGE 12

{2.3) Ax.h{x) <c Xx.f(x), and

(2.4) FIX(H) c FIX(H) u fix(F) for H c F.

While, by (2.1), £(t) is a type of f(x), the strongest type
justified by f's type h is h{t). Since type mappings are usually
considerably simpler than the corresponding value mappings, it is

also much easier to evaluate h{t) than to evaluate £(t).

The remainder of this paper will demonstrate by concrete examples
how this general rule allows type inference, type checking,
handling of polymorphic functions and of user-defined polymorphic

types.

IV. A LAMBDA NOTATION FOR THE DOMAIN ELEMENTS

To talk about specific elements in the domain T, we use lambda
notation augmented by an expression for denoting functional

assignments:
AX. a & X * b, read "a in x gives b", denotes a + b.

The rest of our notation is conventionsal. Lower case letters

denote elements in |T| or in CONT, and upper case letters as well

as numerals and gquoted letters denote members of DDT or DDA.

Letters from the beginning of the alphabet denote constants, and

letters from the end of the alphabet denote variables. As we did

PAGE 13
above, we use identifiers, such as "INT', 'CHAR', 'cond', or
"fac', with the traditional meaning to denote elements of |T).
All set braces are dropped. This notation, tailored after Scott’s

language LAMBDA, is informally defined as follows:
Definitien:
(3.1) cC denotes {{C}}, if C e DDA (e.g. 3 denotes {{3}})
(3.2) £(x) denotes {C | b + C ¢ f for some b < xi;
(3.3) X2.E denotes [(b +>C) | C ¢ Elb/x])};
(3.4) x u y denotes {iY | Ye x or Y e v}

(3.5) x ny denotes {Y | Ye x and Y e vy}

(3.6) ¢ £ x >y denoctes {(Yey | cc x}

Notes: (i) E[b/x] is the wvalue of the expression & if x assumes
the value of b (see [Scott761]).
(ii) We call the expression defined by (3.6) a function
element because it permits us to specify a single

functional assignment as a lambda expression by
AR.C £ X > vy denoting {(c = Y) | Y e yi.

The value "c" in (3.6) must be an element of'CONT, and it
must not be a wvariable since otherwise monotonicity is

lost.

The following examples show how function elements are used +to

PAGE 14

define other functions. We define the conditional "if" by

if = dzdxhly.(true & z > X)
U (false ¢ z » y)

U (BOOL & z > x n vy),
where
AZAXU.BOOL ¢ z » x n y

is a type of "if". and, with the assumption that "x + y" produces
the integer sum if handed integer numbers x and Y, we define

(curried) addition by

pPlus = Ax\y. (INT & x > (INT ¢ y = INT)

U (N1l ex~+ (N2¢g y >Nl + N2 |N1,N2 are integers)).

Below, we refer to cther elementary operation (such as -, %, etc.)

as it is convenient.

The following rules are useful for the transformation of

expressions that contain function elements . Thase rules are
derived in a straightforward manner from (3.1) - (3.6).
Lemmas:

(2.1) (ce x>y)cy;
(2.2) (cg > (c; > ¥)) = (¢, > (o5 > v))
{where the c; = (ny = x)};

1

(4.3) (z e (c» x)=>y)

PAGE 15

= 1if (z = 1) then v else (¢ > {z e x> vy));
(4.4) (¢ » E(c > y)) = (c » E(y));

(4.5) a & f(b) iff (Ax.b e x > ay £ £

{x not free in a or b};

(4.6) (z & (c > x | P(c,x)) » v | Q(z,v))

=(c>(zex+y) | Ple,x) and O(z,y));

V. A SIMPLE EXAMPLE OF TYPE INFERENCE

A simple example may illustrate how our lambda notation can be

used for the computation of types.

Let INT ¢ N and ODD < 2N+1 where N is an Iinteger number (a
proposition). Hence INT < O©DD. Assuming that "times" is the

integer multiplication similarly defined as "plus" above with the

type

AXAy. (INT & x » (INT = ¥y * INT)) c times
we define the squaring function

sgr 2 Ax.times(x)(x)
and claim that

tsg = AX.INT ¢ x > INT

is' a type of sgr. We verify this claim by applying (2.2), that

PAGE 186

is,

if h is a type of f, then h(x) is a type of £(x).

Thus,

tesg AX.<type of times>(x)(x)

Il

AX.(INT £ x » (INT & x + INT))

AX.(INT & x » INT) {by (4.4)}.. O

Now suppose we wish to check if sgr may bé applied to some number

z of type "ODD". We find that

tsq(ODD) = (Xx.INT ¢ x -+ INT)(ODD)

INT ¢ ODD + INT

= INT.

Notice that this type of natural coercion occurs simply as a

result of monotonicity.

VI. TYPES OF RECURSIVELY DEFINED FUNCTIONS

Consider the definition of the factorial

fac AX.if x = O then 1 else x =% fac(x-1}, or

fac fix{(F), with

F = XMlx.if x = 0 then 1 else x x f{=z-1).

PAGE 17
While the expected type Mx.INT & x = INT is consistent with the
recursive definition, it is not explicitely produced by the fixed
point computation. To be sure, fix(F) computes the correct wvalues
if given any (proposition that denotes a) single number, but we
would like to include explicitely the assertion that INT is mapped
to INT. If we do not add this assertion, then type inference {or
checking) across fac 1is impossible. In order to determine the
type of fix(F) we analyse the type of the functicnal F. With the

type for the conditional given above we obtain

F 2 XMx. BOOL & (x=0) + (1 n x * £(x-1))

With rules (4.1) - (4.6) and the types for "=", "«", and "-", this
leads to
F > AMix. ((M.INT ¢ uw > INT) £ £ =+ (INT ¢ x > INT)).

We see that the type of F(f) is A unless the type of £ is at least

AMLLINT ¢ u > INT. We want f to have the stronger type.

In general we want the strongest possible type suggested by F that
is consistent with the least fixed point of F. The gtrongest
possible type is the greatest fixed peint of F's type. We now

prove

(5) Lemma: let H be a type of F. Then FIX(H) is always consistent

with the least fixed point of F.

Proof: Let H ¢ F be a type of F and z = H(z) the strongest fixed

point of H. Because of monotonicity H(z) c F(z); thus

PAGE 18

U [F(FIX(H)) | n=0,1,...} is a fixed point of F,

more accurately, it is the least fixed peint of F that is stronger

than FIX(H). Thus FIX(H) and fix(F) are consistent. [

With this result the computation of the type of a recursively

defined function becomes easier. Consider again
F 5 H = Mix. BOOL ¢ (x=0) > (1 n xxf(x-1)).

The greatest fixed point of H is

FIX(H) AX. BOOL e (x=0) » (1 n X*T)

AX.(INT ¢ x + INT oy 1 g x » 1),

{note that both INT ¢ x and 1 & x guarantee BOOL & (x=0)}.

VII. TYPES AND POLYMORPHIC FUNCTIONS

The weakest (nontrivial) type ¢f the approximation f of a function

is always of the form

where E(d) and E(r) are the domain and, respectively, the codomain

of the function approximated. In our theory, polymorphic
functions are no exception. Polymorphic function just have,
loosely speaking, greater domains. Take as a simple example the

identity

PAGE 19

id = xx.x
with the type
tid = Ax. 8 & x » A.
(Recall that A serves as the universal type}.

In order to find out if restrictions of id to smaller domains
vield a smaller codomain, simply apply "id" to the type of the

domain in question, for example, to INT:
id(INT) = (ix.x)(INT) = INT.

Many polymorphic functions have this very simple type behavior,
that is, they map types and "real'" data (e.g. numbers such 3 or

25) in the same way.

Notation: Since it is weaker thar the complete function £, this
mapping of types is itself a type of f. Below, if we talk
about the type of a function, then we refer to the wvalue t

for which
E(t) = (domain » codomain).

For distinction, we refer to the function's strenger type as
f's type mapping tf; this gives the type for the restriction

of £ to the E(s) as
AX. 8 g X » tf(s).

Some polymorphic functions treat types differently from

ordinary values. As an example consider the operation

PAGE 20
"cons" that takes an item of type t and a list of type
List(s) and computes a list of type List(t n s). While
"cons" applied to ordinary values x and y computes a "pair"
of its two parameters, applied to types it computes a single
new type. As with all objects, also a function of this kind
is formally, as a special case, 1ts own type. But we
exclude this choice when we talk about "a type" of a
function; we rather refer to a mapping strictly weaker than

the function itself.

As a second example consider functional compogition defined by

comp = AfAgix.f(g(x))

with the type

tcomp

= AMgkx. (Au.Beu > A)ef > (Aw.dsw + Ayeg = (fex » A)

and suppcse, for example, that

{1

AY.INT £ yv + CHAR, and

Mz .REAL £ z » ODD.

Then by (2.2) comp(tf)(tg) is a type of comp(f)(g), and we obtain

comp(tf)

I

AGAX. (Ayv.INT & vy + CHAR) (g(x))

AAX.INT & g(xX) =+ CHAR,

and thus

PAGE 21
Comp(tf)(tg)
= Jx.INT = (Az.REAL ¢ z > ODD)(x) - CHAR
= x.INT = (REAL £ x > ODD) » CHAR
= Jx.REAL & x > (INT ¢ ODD > CHAR) {by (4.3)]

= AX.REAL & x > CHAR {since INT & ODD}

which is the desired result.

Now consider MacQueen's paradigm for his type inference rules:
twice = Ahlz.h(h(z)).

We can compute the type of twice in two ways; (1) we may use the
type of "comp" interpreting "twice" as comp(f)(f), or (ii) we may
use the type of the operation of application.

We shall proceed with the second method. With the universal type

A, the type of application is
Tapp = Mhlz.(Au.A e u > A) ¢ h > (A e z >)
tapp(f)(x) = (Au.A = u > A) & £ > (A e x > A)
and

tapp(£f) (tapp(£f)(x))

= (M.b e u=>4) e f> (Ae tapp(f)(x) = A)

Since the term (M:.A £ u =+ f) ¢ £ occurs both at the beginning and
within tapp(f)(x), we can remove its second occurence by {(4.4) and

obtain

Ctapp(f)(tapp(f)(x})

PAGE 22

=(AW.Bsu-=>b8)ef>(0s (Aex=>0)+A4).

The second part can be processed by rule (£.3) and gives

tapp(f) (tapp(f) (x))

= (A.Azu=>d)ef>(bexr>(Acd> D))

(u.d e u~>8) e £> (A x> A),

and the type of twice becomes

ttwice Ahdz. tapp(h) (tapp(h) (z2))

Ahdz.(du.d e u > A) e h> (A gz > A).

But what is the type mapping of twice?

Again, it is the function

\hiz.h(h(z))

itself! Suppose, for a function f we are given the type mapping

{t1 +> t2 , £2 +> t3} c f.

(The type of f is (tl n t2) ++ (t2 n t3)).

In our lambda notation the type mapping of f is

Az.tl ez + 2 U tZ2 g z > 3,

We obtain for f(x)

tl e x> t2 U t2 g x > t3,

and for f(£(x))

PAGE 23

tle (tl & x> t2 U t2 & x > £3) > t2

U tZ2 e (tl ¢ x » £2 U t2 ¢ x +» t3) + t3

Assuming that the types tl1, t2, and t3 are unrelated, we find by
{4.1) that the first term computes L. For the same reason the

second term yields

tZ2 & (t1 & x » t2) > £3,
which, by rule (4.3), gives

tl & x + (t2 & 2 > t3) = t1 ¢ x > t3.
This gives us the type of AX.E(f(x)) as

Ax.tl g x> t3. .3

Now consider Xf.f(f). It has been pointed out by MacQueen that

the type mapping of this function is defined as a fixed point of
Asit.s £ t » a,

This is not a legal lambda exXpression in our notation since the
variable "s" occurs in a position where only constants are
rermitted. Because of this defect, the expression is

antimonotonic in s, and the least fixed can not be found by the

usual methods.

Note: At the June 1983 workshop on types and polymorphism in
Pittsburgh, MacQueen described a solution +to this problem

for functions that are contracting in a suitable metric.

PAGE 24
But it turns out that the function again is its own type mapping.
Suppose we wanted to find out whether a function with the type

At.(ks,ae s+b)et+c U acect->b

is a proper parameter for Af.f(f) and, if so, which result type it

brings about. We obtain

(ME.£(f)) (M. (As.a ¢ s > b) ...)

(M.{(ds.ae s>*b)et>cuact> by {it.(...)...)

(As.a & s > b) ¢ (2. (...) et »>cuact=> by »cu ...)

= c. O

VIII. POLYMORPHIC TYPES AND DATA ABSTRACTION

We discuss polymorphic types by working through an example. We
choose the type of binary trees where the labéls stored at the
nodes can be of any type. First we define a functional whose

greatest fixed point is a function from elements {types) to trees:
TREE = FIX Ah\x.(nil n (x x (h(x) x h(x)).
The expression TREE(t) has the value

nil
N (t x (nil x nil))

N (t x (nil x (t x (nil x nil))))

PAGE 25
no(t x ((t x (nil x nil)) x nil))

n

It will prove useful to define the second, similar type

CITREE = JXz.(z x (TREE(z) x TREE(z})).
Note that
nil n CTREE(t) = TREE(%).

Since TREE is injective, there is the left inverse EERT with the

FProperties

EERT(TREE(x)) = x, ERRT(CTREE(x)) = %, and EERT(nil) = 7.
The last eguation is true because

EERT(nil}) o EERT(TREE(a)) for all a, and hence

EERT(nil) > U {a | any a}.
Since the set of all a's ié inconsistent, its upper bound is T.
Now we wish to define the following tree primitives

NIL T: -+ E(TREE(A)) {computes nil};

COMBO: E(A x (TREE(A) x TREE(A})) += E(CTREE(A));

LEFT: E(CTREE(A)}) =~ E(TREE(A)};

RGHT: E(CTREE{A)) = E(TREE(4));

INFO: E(CTREE(A)) = E(d);

PAGE 26

IF_NIL: E(TREE(A)) » (E(nil) + E(A))

> (E(CTREE(A)) » E(A)) = E(A).
The last operation, which could be read as
IF¥ NIL t then f(t) else g(ty,

is a filter [Martin83] which splits the domain E(TREE) into E{nil)
and E(CTREE) giving "nil" as a parameter to its then-part and
values of type CTREE to its else-part. A filter permits the
syntactic checking that the proper test for "nil" is present in
the code. We introduce this device here because we need it for

our last example below.

With the projections P(x x y) = x and Q(x x Y) = Vv, we obtain the

following lambda expressions:

NIL T = nil

COMBO = JAx\ylz. x x (y x z);
LEFT = Xxx.P(Q(x));

RGHT = AX.Q(O(x));

INFO = Xx.F(x);

IF_NIL = XtAfig.NIL & + + £(t)

U CTREE(A) & t > g(t).

PAGE 27

Now we wish that these functions have the following type behavior:
NIL T > nii;

COMBO > AzMlir. TREE(A) ¢ 1 > TREE(A) ¢ r

> CTREE(z n EERT(1) n EERT(r));
LEFT > Xt. CTREE(A) £ t » TREE(EERT(t;);
RGHT > Xt. CTREE(A) £ t =+ TREE(EERT({t));
INFO > Xt. CTREE(A) ¢ t - EERT(t);

IF_NIL > XAfAg.TREE(A) & t » f(nil) n g(CTREE (EERT ()))

It is easy to verify that these exXpressions are proper types of
the primitive operations. Consider, for example, LEFT. The type
of LEFT applied to anything that is not at least as strong as
CTREE(A) gives A; thgs we need an analysis only for t = CTREE(z)
with A c =z. For this, the type computes TREE(EERT(CTREE(z))) =

TREE(z) .

Now the function LEFT applied to CTREE(z), that is, to
z x (TREE(z) x TREE(z)),

gives

P(Q(z x (TREE(z) x TREE(z)))) = TREE(z). 0

PAGE 28

Abstraction

The operations above are not only applicable to trees but also to
all kinds of other values that happen to have the proper
structure. Furthermore, objects of type TREE can be manipulated
by any expression by means of the cartesian product and the
projections P and 0. How can we make the tree primitives the
exclusives operations for objects of type tree, and how can we
restrict these operations to trees? We have to construct a new

domain!

This new domain contains all elements of the old one. In
addition, there is an atomic prroposition AT in the new domain for
each cross product T denoting a tree object in the old domain. 1If
TREE(a) or CTREE(a) is the greatest lower bound of a set of such
cross products {Tl,...} in the old domain, then its counterpart in
the new domain is the greatest lower bound of the set {A } of

T

new atoms. The'operations defined among the old tree objects have
corresponding operations among-the new tree objects. In short;
there is a homomorphism H from old tree objects s (TREE(A) c s) to
the elements produced by downward closing the new atoms. H
preserves the semantics of the treé primitives. In our examples
with trees, this mapping underliying the homomorphism is a
bijection; in general one can only claim that such a mapping is a

surjection.

The information needed to specify the new domain from the old one

consists of

PAGE 29

the definitions of the carrier types in the old domain,
the semantics of the primitives in the old domain,
the type (mapping) of the primitives in the new domain.

The latter (the type behavior) is needed, because in the cld
dorain there may be an ambiguity about the meaning of an object.
For example, for the data type "tree" ye might consider a

primitive of the following form:
DECOMP: E(CTREE(A)) + E(A x (TREE(A) x TREE(A)).

Its implementation in the old domain is simply the identity, but

its type behavior is defined by

‘. CTREE(A) & t » EERT(t) x (TREE(EERT(t)) x TREE (EERT(t))).

We mentioned above that, in the general case, the mapping from the
representations of objects in the old domain to the abstract

objects in +the new domain may not be bijective but merely

surjective. This occurs if the representation of objects is not
unique. Consider, for example, the representation of sets by
lists. In this case, the mapping H.carries each set of equivalent

representations to one abstract chiject.

Restricted to total elements, the function H is Hoare's
abstraction function [Hoare72] (retrieve function in [Jones80]).
Hence, within this model, the algebraic theory of data abstraction

has its natural place.

PAGE 30

of a tree

This example is similar to the function MAP treated by Milner

[Milner78]. Consider the function fix(F) where

F = Mhifit.if nil(t)
then NIL T

else COMBO(£(INFO(t)), h(f,LEFT(t)), h(f,RGHT(t))).

The type of £fix(F) is the greatest fixed point of =a type of F.

With the type of IF NIL we obtain

Mit.nil n COMBO(f(INFO(CTREE(EERT(t)))), T, T)

Mit.nil n COMBO(f(EERT(t)), T, T)

u

AMfAt.nil n TREE(A) ¢ T + TREE(A) ¢ T

> CTREE(£(EERT(t)) n EERT(T) n EERT(T))

i

AfAt.nil n CTREE{f (EERT(t))})

AfAt.TREE(£(EERT(t)}). [

IX. CONCLUSION

The suggested model interprets types as elements in an augmented
domain. These elements approximate the elements of which they are
types. By monoteonicity, we obtain a type for any expression E by
evaluating the expression E' obtained from E by replacing all
constituents by their known types. The strongest type attainable

for the least fixed point of a functional F is the greatest fixed

PAGE 31

point of a type of F.

The augmented domain also allows the definition of new recursive
types in a most natural way. Functionals can be defined whose
greatest fixed points défine functions from existing types to new
types. The structure of such a functional specifies directly the
structure of the elements that make up the carrier set(s) of the

hew type(s).

Data abstraction is accomplished by creating a new domain which is
the homomorphic image of an exXxisting domain. Preserving the
semantics of the corresponding pfimitive cperations, this
homomorphism takes certain compound objects of the old domain to

new atomic objects in the new domain.

PAGE 32

References:

[Hoare72] Hoare,C.A.R. "Proof of correctness of data
representations,” Acta Informatica, Vol 1 (1972), pp
271-281,

[Jones80] Jones,Cliff B. Software Development: A Rigorous
Approach. Prentice-Hall International, 1980
[MacQueens2 | MacQueen,D.B. "A semantic model of types for

applicative languages," Conference Record, 1982 ACM

[Martin82]

[Marting3]

[Miiner78]

[Scotts2]

[Smyth78]

[Stoy77]

[Tarskis5s]

Symposium on Lisp and Functional Programming.

Martin, Johannes J. "a semantic model of data types, "
Technical Report CsS820%25~-R VPI & SU, May 1982, also
bpresented at a seminar at the Queen's University of
Belfast in July 1982.

Martin, Johannes J. "Precise typing and filters," To
appear in Information Processing Letters.
Milner, R. "A theory of type polymorphism in

programming, " JCSS 17(3) (Dec. 1978) pp. 348-357

Scott, Dana S. "Domains for denotational sematics," A
corrected and expanded version of a paper prepared for
ICALP '82, Aarhus, Denmark, July 1982.

Smyth, M. "Power domains," Journal of Computer and
System Science, (1978)

Stoy, Joseph E. Denotational semantics: The Scott-
Strachey approach to programming language theory,
M.I.T. Press, 1977

Tarski, Alfred "A lattice-theoretical fixpoint theorem
and its applications," Pacific Journal of Mathematics,
5 (1955) pp. 285-309.

