Design and Architectural Implications of

A Spatial Information System

Prashant D. Vaidya
Linda G. Shapiro
Robert M. Haralick
Gary J. Minden¥*

CS82¢4083-R

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

December 1981

‘*Department of Electrical Engineering, University of Kansas, Lawrence,
KS 66045 '

ABSTRACT

Image analysis, at the higher levels, works with extracted regions
and line segments and their properties, not with the original raster
data. Thus a spatial information system must be able to store points,
lines, and areas as well as their properties and interrelationships.
In a pre&ious paper (Shapiro and Haralick [22]), we proposed for this
purpose an entity-oriented relational database system. In this paper
we describe our first experimental spatial information system, which
employs these concepts to.store and retrieve watershed data for a por-
tion of the state of Virginia. We describe the logical and physical

design of the system and discuss the architectural implications.

Key Words: spatial information system, relational database system,
geographic information system,

I. INTRODUCTION

A digital image is a raster data structure, It consists of one or
more bands of spectral and/or symbolic information, each bénd consist-
ing of a rectanqgular matrix of elements called pixels. For example, a
color image of an outdoor scene might be represented by‘three spectral
bands: red, green, and biue. A land-use map of a nation might be
represented by a single symbolic band where the value of each pixel
defines the land use in that part of the map. The raster representa-
tion allows a choice of resolution, from fine to coarse, and retains
the spatial.relationships among the pixels of the image or map. Cer-
tain operations such as smoothing or sharpening and the so-called
"heighborhood operations" can be performed very efficiently on the
raster structure. However, these operations are generally of use only
in the early, low-level phases of image or scene analysis, The mid-
and higher-level intelligent processes require more concise and mean-
ingful structures than pixels. At this level, the primitives are
points, regions, and lines. These are the same primitives that are

required in geographic or spatial information systems.

Once an image has been transformed from pixel level to edge-region
level, the information must be organized for efficient access. A spa-
tial information system provides the hardware and software support
necessary for storage and retrieval of spatial data. In a previous
paper (Shapiro and Haralick, 198¢p [22]), we suggested a relational
approach to designing a spatial inférmation.system. - Our approach has

the advantage of allowing either vector or raster data or both 1in a

2
unified framework suitable for high-level dquery. In this paper, we
describe the implementation of this approach in our first experimental
database system for storage and retrieval of watershed déta. In Sec-
tion II we review the definition of the general spatial data structure
that is the building block of the system and give the logical design
of the experimental database. In Section III we describe the physical
design of the system. In Section IV we describe the query language
interpreter that is used to communicate interactively with the system
and define the low-level and high 1level operations required to answer
queries. In Section V we discuss the architectural implications of
the system. In the remainder of this section, we give a brief review
of related work on representations used by spatial information systems

in both geographic and computer vision applications.

General Representations

Most spatial information systems have been organized either as a
set of polygons or as a raster of grid cells. Conceptually, in the
raster‘representation of spatial data, a regular grid is placed over a
picture or map, and certain properties such as spectral reflectance
and texture (for pictures) or population, vegetation type, and soil
type (for maps) are recorded for each grid cell, The raster represen—
gation fétains the spatial relationships of the photographic image or
map, but computational and input/output efficiency is sacrificed for
some operations. Another disadvantage is that the locational preci-

_ gion is not inherent in the size of the grid chosen.

The polygon method defines a spatial area in terms of the digitél

S

rvn e e e T

3
- coordinates of its boundary. This polygon representation is suitable
for explicitly representing. region gouﬂdaries and line data 1like
cracks in objects {(in images) and rivers or roads (in images or maps).
It allows a higher degree of locational accuracy. However, initial
preparation and digitization of the polygon outlines are more expen-

sive, Also, the data structures for polygons are more complex than

the simple array structures which can be used for grids.

Geographic Systems

Of the geographic spatial information systems, the Canadian Geor-
graphic Information System (CGIS) [23] is one of the earlier and suc-
cessful ones. Two types of files are used: the image data set which
contains line segments defining the polygons that represent regions
and the descriptive data set, which contains the user assigned identi-
fiers, centroid, and area for each polygon. In the image data set, a
line segment points to its left and right polygons and to the next two
line segments that continue bounding the polygons on the 1left and on

‘the right.

In the 1late 19680's the U.S. Bureau of the Census developed the

Dual Independent Map Encoding (DIME)} {25] concept to digitize and edit

city street maps. In this system, the basic element is a line seg-
ment. Each line segment is defined by two end nodes plus pointers to
the polygons on the right and left sides of the segment. The data

structure was kept simple at the expense of extra processing time for
certain operations. For instance, determining that 1line segments

share a node or £finding the whole outline of a polygon requires

4
searching the database. The structure is adequate to represent topo-

logical spatial relations between regions.

The POLYVRT system [16] is similar to the DIME syétem described
above. In the POLYVRT data structure, the polygons are formed by
chains (sequences of points). A chain has two end points called
nodes. A chain also has a polygon to its left and to its right asso-
ciated with it as in the DIME system. The polygon, however, 1is
established as a separate entity linked to the chains which compose
it. This allows easy maintenance and manipulation of the chains. In
POLYVRT searching can take place in two directions: from chain to

polygon and from polygon to chain.

GEOGRAF is a system proposed by Peucher and Chrisman [21] to han-
dle both planar data and surface data. The system includes the con-
cepts of (i) a least common geographic wunit (an area that can not be
partitioned further), (ii) a chain group (a set of chains forming a
boundary of two regional units of a given polygon class), and (iii) an
attribute cross-reference table. To handle surface data the system
has a two part database including both a triangle data structure and a

set of points that lie along lines of high information content.

The advantages and drawbacks df the grid formatted data structure
are almost perfectly complementary to those of the topological or
polygonal data structure. With this in mind Weber [27] has proposed a
combination of locational data structure and grid formatte& data

structure, The operations on this data structure are defined 1in a

5
hierarchical manner, so that the transition from grid formatted to
linear (polygonal) representation is to be considered merely as the
last step in a proceés_of successive refinement defined by a nésting
of squares of different sizes. Weber claims that his locationél data
structure is well suited for the purpose of automated cartography.
However, there are no defined operations to traverse the structure and
no explanation of how to store the linear representation and the grid

formatted representation.

IBM's Geo-data Analysis and Display System (GADS) [2] is the first
documented geographic database system which used the approach of rela-
tional database. It is the most ambitious of the geographic informa-
tion system in terms of flexibility and interactive problem solving
capability. This system has database management facilities and sup-
ports database integrity and different user views of a pictorial data-
base. GADS extracts data from large databases to form a small set of
wolygonal features in a relational data structure. It uses the power

of the query language to help users solve unstructured problenms.

The GEO-QﬁEL system developed at U, C. Berkeley is another system
which uses the relational database approach to manipulate geographic
~data [1@]. The basic entity in GEO-QUEL is a map, which is a collec-
tion of points, lines, 1line groups (polygons) and zones (collections
of polygons). A map is stored as a 9-ary relation. A query langquage
QUEL which is similar to SEQUEL [3] is used to interrogate the system.
The system can handle simple‘ queries about a map and can display

information from a map. Only Codd's conventional relational operators

6
are included; there are no picture operators defined to handle

retrieval and manipulation of pictorial entities.

Modeleski [18] proposed additional relational attributes to permit
topological manipulation of gepgrgphic files. He emphasized the sto-
rage of chain files in relational structure, topological access, and
the use of topological information to enhance GEO-QUEL's recbgnition
of graph-theoretic properties of a geographic file stored in a rela-

tional form.

Hagan [12] developed and analyzed a logical data model for carto-
graphic features built from nodes, segments, and polygons using the
owner-member concepts of the CODASYL specification. Her structure has
two levels. The higher level contains the features such as lakes,
roads, and towns. The lower level contains the detailed outline and
position of each feature in a network of nodes, segments, and poly-
gons. This two level structure has the advantage of allowing inter-
feature relationships to be computed using direct links instead of

searches.

Computer Vision Systems

S, K. Chang et al [6] designed and implemented a pictorial data-
base system for storage and retrieval of tabular, graphical, and image
data. Logical pictures are extracted from images and stored in rela-
tional form, while physical images are retained in a separate image
store. - A generalized :zooming technique [5] has been implemented to

allow for flexible hierarchic information retrieval.

7

N. S. Chang and Fu [4] désigned a relational pictorial database
system where access is through a high-level relational query language
called "Query-By-Pictorial-Example."” The system extracts structures
and features from the original images and stores the information in
the relational database, while saving the images in separate storage.
The users' gqueries are answered by the database system if possible.
Otherwiée, selected images are retrieved and processed_further to

obtain the answer.

Hanson and Riseman [13] have designed and partially'implemented an
integrated computer vision system {called VISIONS) for intérpreting
natural scenes. Although this system includes a variety of elements
such as three-dimensional models, hierarchic proceSs control, and low
level image processing that are not present in the geograbhic systems,
it shares with them the intermediate level representation consisting
of lines, regions, and points. At this level, they use a partitioned
directed graph structure to represent the relationships among regions,

their line segments, and their end points.

Of courSe there are too many computer vision systems being devel-
oped to mention them all. However, thef all have in common a need for
storage and retrieval of the mid- and high-level information extracted
from the image. (See Marr [17] and Barrow and Tenenbaum [1] for
important discussions of mid-level information.) The structure that
we have proposed represents a unified approach to storing such infor-

mation in a universal structure.

II. LOGICAL DESIGN

II.1 The Spatial Data Structure

In this section we define a general spatial data structure that
can be used to represent'any spatial information or relational data in

raster, vector, or tabular format.

An atom is a unit of data that will not be further broken down.
Integers and character strings are common examples of atoms. An attri-

bute-value table A/V is a set of pairs A/V = { (a,v)] a 1is an

attribute and v is the value associated with attribute a }. Both a
and v may be atoms or more complex structures. For example, in an
_ attribute—value table associated with a structure representing a per-
son, the attribute AGE would have a numeric value and the attribute
MOTHER might have as its value a structure representing another per-

50nN.

A spatial data structure D is a set D = [R1,...,RK} of relations.

Fach relation Rk has a dimension Nk and a sequence of domain sets
S(1,K),...,S(Nk,k). That is for each k = 1,...,K, Rk ¢ S(1,K) X ... X
S(Nk,k). The elements of the domain sets may be atoms or spatiél data
structures. Since the spatial data structure 1is defined in terms of
relations whose elements may themselves be spatial data structures, we
call it a recursive structure, This indicates 1) that the spatial data
structure is defined with a recursive definition, 2) that it will

often be possible to describe operations on the structure by simple

9
recursive algorithms, and 3) that it can naturally represent both

relational and hierarchical dependencies.

A spatial data structure represents a spatial entity. The entity
might be as simple as a point or as complex as a whole map. An'entity'
has global properties, component pafts and related spatial entities.
Each spatial data structure has one distinguished binary relation con-
taining the global properties of the entity that the structure repre-
sents. The distinguished relation is én attribute~valde table and will
generally be referred to as the A/V relation. When a spatial entity is
made up of parts, we may need to know how the parts are organized. Or,
we may wish to store a list of other spatial entities that are in a
particular relation to the one we are describing. Such a list is just
a unary relation, and the interrelationships among the parts are n-ary

relations.

I.2 The Logical Database Structure

One objective of a database system is to systematize the access to
the data elements. The first step in the implementation of any data-
base management system is the design of its conceptual model (also
known as a data model),- The conceptual model is a representation of
the entire information content of the database 1in a form that is
somewhat abstract in comparison with the way in which the data is phy-
sically stored (Date, 1977 [8]). In order to translate a model into an
operational system, the model has to be described in a form which

lends itself to implementation. Such a description is called a schema

_ 19
(Wiederhold, 1977 {28]). A schema defines the logical structure of

the database without any storage/access details.

In this section we develop the schema for the spatial database
system. The spatial data structure is the primitive or the building
block of the system. Each spatial data structure represents one par-
ticular type of spatial data and has a unique name. The schema is
developed in the form of a prototype structure for each typé of spa-
-tial data structure- The prototype indicates what attributes may be
found in the A/V relation of this type of spatial data structure and

what relations besides the A/V relation comprise the data structure.

our first use of the system is with geographic data. The data*
used in this system is of two types: stream data and road data. The
stream data consists of watershed areas, water streams, and labels,
while the road data consists of a road network.

A digitized map** of the stream data, along with é description of
symbols used 'in the map to represent various entities, is shown in
Figure l. The stream data comes from the region labeled N3 in Figure

1. Region N3 is a watershed area.

The road data used is a subset of the road data for the entire

* This data was obtained from the Dept. of Fisheries and Wildlife Sci-
ence, Virginia Tech, Blacksburg, VA, courtesy of Dr. Robert Giles.

% This map is a subset of the Watershed Area Map for the Appalachia
guadrangle, located in WISE county, VA. For more information refer to
the U.5.G.S. map number N3652.5 - Wwg8245/7.5.

- - L
—

LY

v ——

e

in our system.

d map of the stream data used i

t

.i

Figure 1 shows a dig

1Ze

11
Appalachia quadrangle which includes region N3, The road network ié
similar to the stream network. There are two types of roads: primary
and secondary. The roads may intersect with roads of the same type or
of a different type, but unlike streams, the roads may cross the boun-

daries of regions,

From the description of the data, it can be observed that the
basic geographic entities used in the system are regions, water
streams, roads, and labels. A region can be represented by a polygon
which has a closed boundary. A stream or a road can be represented by
a chain which is comprised of an ordered list of points. A label can
be represented by a point which has coordinates. Thus we have the fol-
lowing high level spatial data structure types: 1) REGION, 2) WATER
STREAMS, 3) STREAM, 4} ROAD NETWORK, 5) ROAD, and 6) LABEL. The loﬁ
level spatial data structure types are: 1) POLYGON and.2) CHAIN. A

POINT is implemented as an atom.

Figure 2 illustrates the Prototypes REGION, WATER STREAMS, STREAM,
LABEL, POLYGON, and CHAIN. Each spatial data structure of type REGION
consists of four relations : i) - the A/V relation, A/V REGION, ii)
SUBREGION ADJACENCY, .iii) STREAM NETWORK, and iv) LABELS. The A/V
relation has four attributes: NAME whose value is a character string
representing the name of the region, AREA whose value is a number
representing the area of the region, BOUNDARY whose value is a spatial
data strﬁcture of type POLYGON (to be described later) representing
the boundary of the region, and PARENT whose value is a spatial data

structure which itself is of type REGION, representing the next immed-

REGION

A/V REGION

SUEREGION
ADJACENCT

STREAM NETWORK

A/ AZCION
KAME 1l

AREA 12345
BOUNDARY { POLYGON)
PARENT (RECION)

LABELS [
r——-—-—-
I
bmn) l { 2ECTON)
;
[L'-'.\m STREaMS)]

EPHEMERALS

PERRINIALS

STREAM

A/V STREAM

INTERSECTING
STREAMS

A/¥ STREAM
AME s1
TTPE EPERMERAL
'ORDER e
LENGTH 567

INTERSECTING 12

* POINT * { sTREAM)] EPMEMERALS
INTERSECTING 5
PERRINTALS
COURSE | { CHAIN }
LABEL A/V LABEL
[UV LARET, ' ‘——i-——'- NAME , L1
LOCATION] ® POLNT
BOLYGOR
CHAISS | — ¢ TS)
cEATY A/V CHAIN
A/V CBATY 1T { BEGICN)
POINTS | AIGHET { ZEGION)
l agom 20INT

|

Figure 2 illustrates the prototypes for spatial data structures
REGION, WATER STREAMS, STREAM, LABEL, POLYGON, and CHAIN.

12

iate region which encloses the region under consideration.

A region may have to be divided info subregions, in which case the
subregions are stored in a SUBREGION ADJACENCY relation. This 1is a
binary relation associating each subregion with every other subregion
that neighbors it. Both the components of each pair in the relation

are spatial data structures of type REGION,

The relations of type STREAM NETWORK are unary relations whose
components are spatial data structures of type WATER STREAMS. The
relations of type LABELS are unary relations whose components are spa-
tial data structures of type LABEL. There are two types of streams:
ephemerals and perrinials. WATER STREAMS therefore consists of two
relations:r EPHEMERALS and PERRINIALS. Both EPHEMERALS and PERRINIALS
are unary relations whose components are spatial data structures of

type STREAM.

Each spatial data structure of type STREAM consists of two rela-
tions: an A/V relation called A/V STREAM and a binary relation INTER-
SECTING STREAMS. The A/V STREAM relation has seven attributes: NAME,
TYPE,.and ORDER whose values are simple character strings representing
the name of the stream, its type, and its order, respectively; LENGTH,
INTERSECTING EPHEMERALS, and # INTERSECTING PERRINTIALS whose values
are numbers representing the length of the stream, the number of
ephemerals intersecting, and the number of perrinials intersecting,
respectively; and QOURSE. whose value is a spatial‘ data structure of

type CHAIN representing the course of the stream.

13

The relations of type INTERSECTING STREAMS are binary relations
whose components represent the point of intersection, which 1is an
atomic POINT and the stream intersecting at—that point, which is a.

spatial data structure of type STREAM.

Each spatial data structure of type LABEL consists of only one
relation, an A/V relation called A/V LABEL, The A/V relation in this
case has two attributes: NAME whose wvalue is a character string_
- representing the name of the label and LOCATION whose value is an
atomic POINT representing the location of the label. The labels in
our experimental system would be replaced by other point data such as

cities in a real system.

The low level spatial data structure types include the POLYGON and
CHAIN and <also the atom POINT, We represent the boundary of.any
region by a spatial data structure of type POLYGON. A polygon is com-
prised of chains. Each spatial data structure of type'POLYGON has a
unary relation called CHAINS, whosSe components are spatial data struc-

tures of type CHAIN.

We represent the course of any water stream or road by a spatial
data structure wﬁich is of type CHAIN. Each spatial data structure of
type CHAIN is comprised of two relations: an A/V relation called A/V
CHAIN and a relation.POINTS. A chain has a region to 1its left and
region to its right. The A/V relation therefore hés two attribqtes:
LEFT and RIGHT. The values of both these attributes are spatial data

structures of type REGION.

14

The relation POINTS is an ordered list (a binary relation) of
points that define the chain. A POINT is an atom, a data element at
the innérmost level which can not be further broken down. A POINT
consists of an ordered pair (X, ¥) where X represents the latitude or

the X co-ordinate and Y the longitude or the Y co-ordinate.
IIT. PHYSICAL DESIGN

The physical design consists of three parts: the data structures
used in internal memory, the file structures used in external storage,

and the memory management system that interfaces between the two.

III.1 Internal Memory Data Structures

In internal memory, spatial data structures and relations are
linked structures implemented in PASCAL. Each spatial data structure
(3DS) and each relation has a unigque name. An 8SDS can be aécessed by
name through the SDS—Dictionary, and a relation through the REL~Dié~
tionary. The dictionaries (temporarily implemented as ordered-1lists
in Version 1) will be implemented as height-balanced search trees [14]
in our next version. Looking up an SDS or relatidn name in the appro-
priate dictionary returns a pointer to the header of the structure.
Both SDS's and relations use a structure called an RDS (relational

data structure header) for their headers.

The RDS is a 6~tuple consisting of NAME (the unique character

15
string name of the structure), TYPE (§ for SDS headers and 1 or 2 for
relation headers), LENGTH (number‘of relations for SDS headers; number
of tuples for relation headers), USE_CNT (number of structures that
reference this one), and STRUCT (pointer to the rest of the struc-
ture) . In an SDS header, STRUCT points to a list of relation cells,
and each of these points to the header of a relation. In a relation

header, STRUCT points to the first tuple of the relation.

There are two types of relationé: TREE relations (type 1) and
LIST relations {(type 2), depending on whether the N-tuples are stored
in a TREE or a LIST structure. For a TREE structure, the tree is N
levels deep, corresponding to the dimension of the relation. The
first component of the N-tuple is stored on the first or the highest

level. The second component is on the second level, and so on.

The-tree 1s structured so that all the N-tuples with the same
first component share the same TREE _CELL on the first level. All the
N-tuples with the same first two components share the same TREE_CELLs
on the first two levels, and so forth. For example, a relation con-
sisting of three N-tuples; (a, b, ¢), (a, b, d}, and (b, ¢, d) will be -
stored as shown in Figure 3. To facilitate searching the ﬁree, and

hence the relation, the N-tuples are stored in a lexigraphical order.

In a LIST relation there are two lists: a list of N-tuples, which
drows vertically, and a list of components of an N-tuple, which grows
horizontally. Figure 4 shows how a relation consisting of N-tuples

(a, b, ¢), (a, b, d), and (b, ¢, d) is represented as a LIST relation,.

NAME | TYPE DIMENSION LENGTH | USE CNT | sTRucT
X 2 3 3

Figure 3 illustrates the structure of a TREE-structured relation
with tuples (a, b, c¢), (a, b, d), and (b, c, d).

NAHE TYPE DIMERSION - LENGTH. USE_CNT STRUCT

Y 3 3 3 -
> a b > c
A
> a b d
\
> [3 c > d

Figure 4 illustrates the structure of a LIST-structured relation
with tuples (a, b, ¢), {(a, b, d), and (b, c, d).

16

The order of the N-tuples stored in a LIST relation is user
defined, and N-tuples may be added at the beginning of the list, at
the end of the list, or at a user-specified position in the list. A
TREE relation, on the other hand, stores the N-tuples in a lexigraphi-
cal order. This provides a quicker access when the relation is being

searched for an N-tuple by its content, than a LIST relation would.

Figure 5 illustrates the physical structure of the spatial data
structure for a region and its A/V relation in our experimental sSys-

tem..

III.2 External Storage Structures

The physical structures defined in the preceding section are sui-
table for internal manipulations. However, it is ?ot feasible to set
up these physical structures in memory every time the dafabase is
loaded. A real spatial information system would be much too large to
load the entire database into memory at one time. Our experimental
system, therefore, resides in secondary storage and parts of it are

retrieved as necessary.

The main objective of Veréion 1 was to bring up a system that used
the spatial data structure as a bdilding block and stored real geo-
graphic data obtained by low-level proceésing of multispectral
remotely sensed imagery or by digitizing maps. Therefore, the physi-
cal structure of the database in secondary storage was kept as simple
as possible; the issues of optimal record and file organization have

been ignored, Instead, the VAX/VMS file system was used as much as

possible.

RAME TYPE | DIMENSION | LENGTH USE CNT STRUCT
REGION X 1 0 4 —
9
A/V REGION X SUBREGION STREAM LABELS_X
ADJACENCY X NETWORK_X
NAME TYPE | DIMENSION | LENGTH USE_CNT STRUCT
A/V BEGION X 2 2 4 1
b
AREA BOUNDARY > - NAME PARENT
] Y]
1234 , X l
(POLYGON_X) (REGION Y)

Figure 5 illustrates a spatial data structure for a REGION

and its attribute-value relation.

17

Each spatial data structure and each relation in the database is
stored in a sepafate file on the disk. The wunique character string
names of the structures are used és file names. This makes it very
- easy to fetch an entire SDS or relation into internal memory. The
data is stored sequentially within a file, and no indexing is used.
Thus there is no efficient way to access a part of an SDS or relation
in external storage. This is reasonable since Version 1 only accesses
external storage in order to read an entire structure into internal
memory or write one back to secondary storage. The advantages of
using the sequential file organization are 1} simplicity and 2) the
ability to store the data in that order which best facilitates the

formation of the internal physical structures.

III.3 Memory Management

The memory management method used by our experimental system is
‘'similar to the scheme known as "segmentation" when used by operating
systems. The MULTICS operating system uses this type of memory man-

agement.

The experimental system keeps two tables SD5_IN CORE and
REL_IN_CORE which are circular lists of the spatial data structures
and relations, respectively, that currently reside in internal sto-
rage. The least and most recently used spatial data structures in
these lists are known. In addition, the SDS—ﬁictionary and the REL-
Dictionary store a tag in each element, indicating 1if the structure is

currently in internal memory or not. The variable SPACE keeps track

18

of the amount of space currently in use in internal memory.

When the user references a relation whose tag indicates it is not
in memory, the first five records of the file for that relation are
read from the disk, 'and the header is created in internal memory. The
variable SPACE 1is incremented to account for the header, and the
REL DICTIONARY entry is updated to indicate "in-core" and to point to
the new header. Now if the user tries to access any tuple in the
relat{on, the relation is entered in the REL_IN*CORE' table and made
the most recently used relation in core. The tuples are read one by
one from the file and inserted into the linked struture being con-
structed. If a component of any tuple is a spatial data structure and
is not ©present in internal memory, a header for that spatial data
Structure is created, and a pointer to the héader is inserted in the
tuple. In any case the USE_CNT of the spatial data structure is

incremented to reflect the new pointer to it.

When the user references any spatial data structure that is not in
memory, its header is created in the same way as relation headers are
created. If the user wants to access any information in the SDS, the
remainder of the structure (the relation list) is transferred to
internal memory. At this time, it is added to the table SDS_IN_CORE
and made the most recently used spatial data Structure. As the rela-
tion list is read in, the headers of those relations not yet in inter-
nal memory are constructed. The USE_CNT fields.of all the relations

are incremented.

19

If sufficient space is not available in internal memory for newly
created structures, then other structures are transferred back to the
disk (only if they have chanéed since they were read) and deleted from
internai storage. When a relation 1is deleted from ‘internal storage,
its tuples are deleted one by one. The SPACE variable is decremented,
and the USE_CNT fields of any spatial data structures referenced by
such a tuple are decremented, If 1its USE_CNT becomes zer§ and its
entire structure is not in internal memory, the SDS is also deleted.
After the tuples are all deleted, the relation header is deleted.if
its USE_CNT is 1less than one. When a spatial data structure is
deleted from internal memory, its relation list is traversed, and the
USE_CNT's of the relation headers are decremented. If they become-
2ero and the relations are not fully in internal memory, the relations
are also deleted. Then the SDS header can be deleted and {ts space
recovered if its own USE_CNT is now less than one. When the system
needs more space, it will take turns trying to remove the 1least
recently used relation and least recently used SDS from internal sto-
rage. It is interesting to observe that in the experiments we have
done so far, our memory hanagement scheme always performs better than
the VAX/VMS virtual memory management scheme. One such test ran five
times faster with our memory mahagement scheme. The extra time had

been due to page faults.

IVv. THE QUERY LANGUAGE INTERPRETER

Most relational database systems include a relational query lan-
guage through which a user can interact with the database. For exam-

pPle, in the SEQUEL language (Chamberlin and Boyce, 1974 [3]1), a user

michPEr crmammid Frr b o o e o -

20

SELECT SUPPLIER_NUMBER, STATUS

FROM SUPPLIER RELATION
WHERE CITY = “BLACKSBURG"
AND STATUS > 20.

This command instructs the system to go to the relation whose name
is SUPPLIER_RELATION, find those tuples having 'BLACKSBURG® in the
CITY component and a number > 28 in the STATUS component, and con-
struct a - new relation consisting of the SUPPLIER NUMBER and STATUS

components of the selected tuples.

Because our system is entity-oriented rather than relation-or-
iented, 1languages 1like SEQUEL are only indirectly applicable. We
envision, 1in the future, an intelligent system with natural language

query facilities so that a user might make the request:

FIND ALL RIVERS
WITHIN 208 MILES OF ROANOKE,
LONGER THAN 5f MILES, AND

CROSSED BY INTERSTATE 81.

The intélligent system, using knowledge of the prototypes of the
spatial data structures and the semantics of the various tuple compo-
nents, would invoke a deduction system that would determine the best
sequence of relational operations fequired'to extract this information
from the database. Part of our work involves the design of this

~intelligent component.

21

IV.l Low-Level Operations

The current experimental database system uses a stack-oriented
query language similar to the FORTH language (Moore, 1974 [19]).
Users can define constants, variables, and arrays and perform arith-
metic operations or database operations using control structﬁres; New
commands can be defined via a simple macro-definition facility. The
system itself is viewed as a calculator with a large stack, which
operates with numbers, relations, or spatial data structures. The
arguments of all operations'are performed on the top entry or top n
entries of the stack, where n depends on the particular operation.
Results are returned to the stack. To give the reader a feel for the
power of the query language, we will briefly describe the primitive

operations and give an example of their use.

The query language interpreter supports the high-level datatypes

integer, boolean, character-string, point, spatial data structure, and

relation. Standard arithmetic and relational operations are provided.
The type of the top stack element (TO0S) can be determined by.test com-
mands. The stack elements can be manipulated, regardless of content,
by sucﬁ operations as SWAP (exchange TOS with next element in stack)
DROP (remove TOS), DUP (duplicate TO0S), ROT (rotate top three stack
eléments), -ROT (reverse rotéte top three stack elements), and other

similar operations.

The stack-oriented query language program control primitives
include the IF-ELSE-THEN construct for conditional execution and the

DO-+LOOP construct and REPEAT-UNTIL construct for iteration. The

22
vocabulary manipulation primitives 1include the DEFINE-END_DEF con-
struct for defining new commands, the CONSTANT and VARIABLE commands
for defining new constants and variables, the FETCH and STORE commands
for adding to and removing from the stack selected vocabulary entries,
and the ALLOCATE and FORGET commands for requesting and freeing voca-

bulary space.

The database manipulation primitives ALLOC_RDS and ALLOC_BEL allow
the user to allocate and catalog new spatial data structures and rela-
tions. The command FIND allows the user to locate structures by
alphanumeric name. The commands LIST RDS, LIST REL, XLIST RDS, and
XLIST REL allow the headers and contents of spatial data structures

and relations to be listed.

The primitives NTﬂATfACH and REL_ATTACH allow the user to add
N-tuples of data from the stack to a relation and add a relation to a
spatial data structure, respectively. The command INRELA? allows the
user to check whether a specified N-tuple is in a given relation. The
commands tNAME], [TYPE], [DIMEN], [LENGTH], and [USE CNT] allow the
user to request that certain attributes of a spatial data structure or
relation be retufned to the stack. The command [STRUCT] returns to
the stack a pointer to the beginning of a structure, and the command
[LINK] allows Ehe user to advance the pointer through the structure,

while the command [DATA] returns the data from the record pointed to.

The user can also request the loading and wunloading (DB_LOAD and

DB_UNLOAD) of the database, input and output from files (INPUT> and

23
>0UTPUT), or print a portion of the vocabulary (DUMP). The session is

terminated by the command DONE.

A short example will illustrate the use of the query language;
The example session creates a new binary relation A/V_Region X,
inserts N-tuples into 1it, and attaches that relation to an existing
spatial data structure Region X uSing the query language commands

which are marked by asterisks here.

Input by the User Explanation and Action Taken

2 The dimension of the relation to be
' created is going to be the integer 2,

2 The type of the relation is going to
' ' be the integer 2.
LY
" A/V_REGION X" The name of the relation is going to
ve A/V_REGION X..
CHAR A/V _REGION X
INT 2 Contents of Stack
INT 2

*ALLOC REL Allocates a relation header with the
- name A/V REGION X, dimension two, and
type two, and puts a pointer to it on

the top of the stack.

| REL] . i Contents of Stack

Header of A/V _REGION X

" AREAM An attribute to be part of the A/V
. relation. :

12345 The value of the attribute.

*ROT Bring the ©pointer to the relation to

the top of the stack,

REL . ——>Header of A/V_REGION_X
INT 12345

CHAR | AREA Contents of Stack

24

*NT_ATTACH Attach the N-tuple consisting of
attribute and value to the relation.
The stack becomes empty.

" A/V_REGION_ X" Restore pointer to the rela-
*FIND tion A/V REGION X to the top
*DROP of the stack, and drop status

indicator,

" REGION X" Name of the spatial data structure to
which the relation is to be attached.

*FIND Search the dictionary for the given
spatial data structure name and put a
pointer to it on the stack.

*DROP Drop the top of the stack which indi-
cated the status of the search.

SDS } o —->Header of REGION X
REL [o =————1t——>SHeader of A/V_REGION_X
Contents of Stack

*REL_ATTACH : Attach the relation to the spatial
data structure.

IV.2 Higher Level Operations

The Query Language Interpreter currently recognizes commands that
perform simple, low-level operations on spatial data structures, rela-
tions, system didtionaries, and the stack. 1In order to understand the
architectural needs of the system, we need to look at these and the
higher-level operations that must be performed to answer a query,
Consider the following 1list of sample queries, which can all be

answered using the information in the current experimental system.

Ql) How many rivers {perrineal streams) are there in region
X’D

Q2) How many streams of any kind are in region X?

@3) What afe the names of the three longest rivers (perri-
neal streams) in region X?

25
Q4) What is the length of river Y?
Q5) What cities (labels) are in region X7

Q6) What cities (labels) are within distance D of stream Y
in region X?

Q7) What cities (labels) are within distance D of every
stream in region X?

Q8) What regions does stream X flow through?
Q9) What regions does road X pas through?
Q10) What regions are adjacent to region X?

Q1l) What points do stream X and stream Y have in common?

Some of these queries involve quick look-up operations, and others
involve more complex gsearching. We can group the operations required
to process these sample queries into three kinds: 1) low-level
access and manipulation functions, 2) high-level relational opera-

tors, and 3) geometric or distance operations.
The low-level functions include

1) accessing a SDS from its name,

2) accessing a named relation of a given SDS,

3) creating new relations or SDS's,

4) creating tuples,

5) adding tuples to relations or relations to SDS's,

6) accessing the name, type, dimension, or length of a SDS
or relation, and

7) accessing the value of a given attribute for a given
SDS.

These are all already provided by the Query Language Interpreter.

26

The higher-level relational operations involved in answering these

sample qu

1)
2)
3)

4)

5)

These
dard rela
mation sy
Vtion.
predicate

binary re

Projectio

PROJ (R;£f)

Selection

SEL(R;P)

eries include

extracting information from .SDBS's referenced by each
tuple of a given relation,

selecting tuples of a relation that satisfy a dynami-
cally changing constraint,

joining pairs of tuples from two relations if the pair
satisfies a contraint,

projecting a relation onto certain columns, and

selecting tuples of a relation that satisfy a constraint
with respect to every tuple of a second relation.

operations suggest that generalized forms of the now stan-

tional database operators will be wuseful in a spatial infor-

stem. Let R be an N-ary relation and S be an M-ary rela-

Let P Dbe an N-ary predicate and Q be an (N+M)-ary

. Let I be the set of positive integers and f£

lation over I. We propose the following general forms.
n

= {(cl,...,cK) | for some (al,...,aN) € R,

(i,3) € £ implies a; = cj},

= {(al,...,aN) € R | P(ajssecsay) = truel.

be a

27

Join

JOIN(R,S;Q) = {(al'-.e,aN’bl'oucbe)l
(al,e..,aN) e R'(bl"°°’bM) e S,

and Q(a1’°°"aN’b1'°°"bM) = true}.

Divisgion
DIV(R,S;Q) = {(al’°°"aN) € R | for every

(bl,.u.,bM) € s, Q(al,...,aN,bl,...,bM) = fruel.

Finally the geometric or distance functions required for the sam-

ple queries are

1) intersection of chain with chain,
2) intersection of chain with polygon, and

3) distance from a point to a chain.

Of course a larger special purpose system will have its own set of

geometric functions as required by the users of the system.

28

V. ARCHITECTURAL IMPLICATIONS

V.l General Implications

The architectural implications of the general spatial data struc-
ture and the operations we want the architecture to perform on such
structures are influenced by two facts:

1) the use of an arbitrary predicate in the select, join,
and division operations, and

2) the assumption that many'tasks are going to require
sequencing through all the tuples of a relation to
obtain an answer.

To some extent, fact (1) implies fact (2) since the use of an arbi-
trary predicate means that the usual database mass storage organiza-
tions with dictionaries, hash tables, or inverted files may not be
adequate, Because the general operation takes the form: find all
tuples satisfying a given condition, where the condition may be a con-
stant one or where the condition may depend on the tuples currently
being examined in a related relation,.there can be a natural parallel-
ism. ~Divide the tuples of the relation into mutually exclusive sub-
sets and have one CPU responsible for processing the tuples in the

subset assigned to it. After this kind of processing collect the

results together and output them when appropriate.

Another consequence of the use of an arbitrary predigate is that
on the average, the time taken to process a tuple can easily be
greater than the time taken by a smart controller with mémory to ret-
rieve it from the mass storége device. Thus, the general flow of con-

trol is to access the mass storage device in an anticipatory manner,

29
and store these read ahead tuples in the memory of the input CPU.
This input CPU with its‘memory acts 1like a queue, always making sure
that it has the tuples which are going to be requested. Its smart
algorithm for doing the input in the anticipatory manner based on cur-
rent disk head and disk pack positions juét reduces the average time

to retrieve a block of data.

Ordinarily, we Ehink of the tuple as the logical entity to be read
and manipulated. Thus, blocks on the mass storage device are sets of
tuples. However, this is not an efficent way to retrieve data when
not all components of the tuple are required for processing. We sug-
gest a data organization in which each block of data contains one com-
ponent from a set of tuples. In this manner, with a random file’
organization, only the components of tuplés required for an operation

need be accessed,

Connected to the input CPU is an inpﬁt selection CPU to which are
connected the number crunching CPU's. These in turn are connected to
an output selection CPU which is connected to an output CPU. The out-
put CPU.acts like an output queue to the mass storage devise. - Figure
6 illustrates a block diagram of the.architecture in which the mass
storage device can be an entire disk,. For faster processing, this
architecture can be replicated, one replication per disk head. In the
remainder of this section, we briefly sketch the multiprocessor algor-
ithms for executing the projection, selection, join, and division

coperations on the architecture of Figure 6.

MASS STORAGE DEVICE

MEMORY

INPYT - CPU MEMORY
INPUT SELECTION CPU MEMORY
I
CPU i MEMORY CPU MEMORY CPU
t l l
!
QUTPUT SELECTION CPU MEMORY

MASS STORAGE DEVICE

Figure 6 illustrates a block diagram of the multiprocessor.

39

V.2 Projection

Projection is conceptually simple. Sequentially go through all
tuples accessing only those components desired. Then throw away all

duplicate tuples which might have been generated.

The difficulty in the multiprocessor version of the algorithm is
with the duplicates. To keep the number crunching CPU's from communi-
cating with each other, the algorithm has to guarantee that two pro-
jected tuples which are identical get processed by the same number
crunching CPU. One way of handling this is for the input CPU to hand
off a partially projected tuple to a selection CPU whose job is to do
a simple lexicographic or hash calculation to decide which number
crunching CPU will handle the task. Each number crunching CPU checks
to see if the tuple it gets has already been seen. If so it ignores
the tuple. If not, it adds the tuple to its table of tuples seen and
hands the tuple to the output selection CPU which hands it to the out-

put CPU to be stored on the mass storage device.

Problems arise 1if not all projected tuples can be stored in the
memories of the number crunching CPU's, In this case, the selection
CPU must not select all tuples to be given to the number crunching
CPU's. Those not selected are selected in subsequent rereads of the

relation.

31

V.3 Selection

Selection works in a similar way to projection. Tuples are read
by the input CPU. Each tuple is handed to the selectioh CPU who
decides which number crunching CPU will process it. Upon receiving a
tuple, the number c¢runching CPU evaluates the predicate. If true, the
tuple is sent to the output selection CPU which simply hands it to the
output CPU for storage to an output file, and the next tuple is

requested.

V.4 Join

To accomplish the join, every tuple of one relation has to be
paired or concatenated with every tuple of the second relation. The
concatenated tuple then has to be evaluated by the joining predicate.

If the predicate is true the concatenated tuple is written out.

To increase the efficiency of this task, the join predicate can be
analyzed ahead of time to determine what simple predicate on the
tuples from the first relation must be true whenever the Jjoin predi-
cate is true on the concatenated tuple and what simple predicate on
the tuples from the second relation must be true whenever the join
predicate is true on the concatenated tuple. These simple predicates
can be used by the input selction CPU to ignore tuples having no

chance of being joined.

To minimize the number of times the relation files have to be

32
read, each number crunching CPU has to store in memory as many tuples
passing the selection test from the sméller relation as it can. Of
course, different number crunching CPU's store mutually exclusive
groups of tuples. Then the large relation is read. Tuples which pass
their selection test are handed off to any available number crunching

CEU.

If not all the tuples péssing the selection test from the smaller
relation can be collectively held in the memory of the number crunch-

ing CPU's, repeated passes over the relations must be made,
V.5 Division

Division works like join except, of course, that for a tuple to be
output its concatenation with every tuple from the second relation
must evaluate to true. To execute division, the number crunching
CPU's load 1in as many tuples from the second relation as possible.
Then the first relation must be read tuple by tuple. Each tuple which
passes the selection test is handed offhto all number crunching CPU's
simultaneously. These CPU's evaluate the division predicate of the
tuple concatenated with all tuples it has from the second relation.
If the predicate evaluates true, the tuple is handed off to the output
selection CPU whose job is to determine if all number crunching CPU's
indicate that the tuple has passed all predicate evaluations. If not
the output selection CPU ignores the tuple. If all number crunching
"CPU's indicate the tuple has passed, then it sends the tuple to the

output CPU to be put as the output file on the mass storage device.

33

VI. CONCLUSIONS AND FUTURE WORK

We have déscribed an experimental spatial information sysﬁem whose
building block is the general spatial data étructure. This system
demonstrates the feasibility of using such structures to store spatial
infprmation. The query language interpretér provides a simple, but
powerful interface for reseérche;s working with'the experimental sys-
tem, The low-level operations supported by the interpreter plus the
high-level relational operations defined in this paper and a set of
suitable geometric operations should provide all the support functions
necessary for answering high-level user queries. An intelligent front
end which can translate a user query into a sequence or even a progranm

of such operations is needed to complete the design.

The system designed here allows queries involving arbitrary, pos~
sibly dynamically changing predicates. The architectural implications
of this use of arbitrary predicates suggest that traditional ordering
schemes or secondary_indices will not be wuseful in the kind of system
we envision. We have suggested storing relations by column instead of
by tuple and use of parallel processors to help speed up the process-
ing of these generalized queries. Future work includes the implemen-
tation of the high-level operations on our present system, implementa-=
tion of a second version using only secondary storage for SDS's and
relations, designing a specific architecture for spatial information

systems, and designing the intelligent front end processor.

19.

11.

12,

34

REFERENCES

Barrow, H. G. and J. M Tenenbaum, "Recovering Intricsic Scene
Characteristics from Images", in Computer Vision Systems, A. Hanp-
son and E. Riseman, Eds., Academic Press, New York, 1978. :

Carlson, E. D., J. L. Benett, G. M. Gidding, and P. E. Mantey,
“The Design and Evaluation of an Interactive Geo-Data Analysis and
Display System", Proceedings of IFIP Congress 1974, North Holand
Publishing Company, Amsterdam, 1974.

Chamberlin, D. D., R. F, Boyce, "SEQUEL: A Structured English
Query Language”, Proceedings of 1974 ACM SIGMOD Workshop on Data
Description, Accesses, and Control.

Chang, N. S. and K. S. Fu, "Query-By-Pictorial-Example", IEEE
Transactions on Software Engineering, Vvol. SE-6, No. 6, November
1980.

Chang, S. K., B. S. Lin, and R. Walser, "A Generalized Zooming

‘Technique for Pictorial Database Systems", National Computer Con-—

ference, 1979, p. 147-156.

Chang, 8. K., J. Reuss, and B. H. McCormick, "Design Considera-
tions of A Pictorial Database System", Policy Analysis and Infor-
mation Systems.

Codd, E. F., "A Relational Model'of Data for Large Shared Data-
bases", Communications of ACM, Vol. 13, No. 6, June 1978, pp.
377-389, :

Date, C. J., An Introducation to Database Systems, 2nd Edition,
Addison Wesley, New York, New York, 1977.

Edwards, R. L., R. Durfee, and P. Coleman, "Definition of a Hier-
archical Polygonal Data Structure and the Associated Conversion of
a Geographic Base File from Boundary Segment Format", An Advanced
Study Symposium on Topological Data Structures for “Geographic
Information Systems, Harvard University, Cambridge, Massachusetts,
October 1977.

Go, A., M. Stonebraker, andg C. Williams, An Approach to Implement-
ing a Geo-Data System, Memoc No. ERL-M529, Electronics Research

Laboratory, College of Engineering, University of California at
Berkeley, 1975,

Gold, C., "Triangular Element Data Structures", Users Applications
Symposium Proceedings Services, Edmonton, Alberta, Canada, 1976.

Hagan, P. J., A Network Data Model for Cartographic Features, Doc-
tor of Science Dissertation, Sever Institute of Technology, Wash-
ington University, Saint Louis, Missouri, May 1984.

l3ﬂ

14.

15.

16,

17.

18.

i9.

249,

21.

22.

230

24,

25.

26,

35

Hanson, A. R. and E. M. Riseman, "VISIONS: A Computer System for
Interpreting Scenes", in Computer Vision Systems, A. Hanson and E.
Riseman, eds., Academic Press, New York, 1978,

Horowitz E. and S. Sahni, Fundamentals of Data Structures, Compu-
ter Science Press, Inc., Potomac Maryland 2¢852, 1977.

Jensen, K. and Wirth N., PASCAL User Manuaul and Report, Second
Edition, Springer-Verlag, New York, 1974,

Laboratory for Computer Graphics, POLYURT: A Program to Convert
Geographic Base Files, Harvard Universty, Cambridge, Mass. 19074.

Marr, D., "Representing Visual Information - A Computational
Approach", in Computer Vision Systems, A. Hanson and E. Riseman,
eds., Academic Press, New York, 1978.

Modeleski, M., Topology for INGRES An Approach to Enhance Graph
Property Recognition by GEOQUEL, Geograpphic Database Coordinator,
Associlation of Bay Area Governments, Berkeley, California 94785,
1977.

Moore, C. H., "FORTH, A New Way tb Program A Computer", Astronony
and Astrphysics Supplement, 1974, No. 15, pp. 497-511.

Pequet, D. J., "A Raster Mode Algorithm for Interactive Modifica-
tion of Line Drawing Data", Computer Graphics and Image Process-
ing, Vol. 14, 1979, pp. 142-158.

Peucher, T. K. and N. Chrisman, "Cartographic Data Structures",
The American Cartographer, Vol. 2, No. 1, April 1975, pp. 55-69.

Shapiro, L. G. and R. M. Haralick, "A Spatial Data Structure",
Geo-Processing, 1, 1980, pp. 313-337.

Switzer, W. A., "The Canada Geographic Information System", Auto-
mation in Cartography, eds. J. M. Wilford-Brickwood, R. Bertland,
and L. Van Zuylen, International Cartographic Association, The
Netherlands, 1975.

TomlinSOn,'R. F., H. W. Calkins, and D. F. Marble, Computer Han-
dling of Geographical Data, Paris: UNESCO Press, 197a.

U.S5. Bureau of the Census, Census Use Study: The DIME Geocoding
System, Report No.4, Washington, D.C., 197@.

Wagle, 8. G., Issues in the Design of a Geographical Data Process-
ing System: A Case Study, PH. D. Dissertation, the University of
Nebraska, Lincoln, 1978.

36

27. Weber, W., "Three Types of Map Data Structures, Their ANDs and
NOTs, and a Possible OR", Proceedings of the First International
Advanced Study Symposium on Topological Data Structures for Geo-
graphic Information Systems, Harvard University, Cambridge, Massa-
chusetts, 1978.

28. Wiederhold, G., Database Design, McGraw-Hill, New York, 1977.

