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ABSTRACT

This paper deals with the substantiation that a multivariate
response self- or trace-driven simulation model, Within its domain
of applicability, possesses a satisfactory range of accuracy consis-—
tent with the intended application of the model.

A methodology ié developed by using simultaneous confidence in-
tervals. to do this substantiation with respect to the mean behavior
of a simutation model that represents an observable system. A trade-
off analysis can be performed and judgement decisions.can be made as
to what data collection budget to allocate, what data collection
method to use, how many observations to collect on each of the model
and system response variables, and what confidence level to éhoose
for producing the range of accuracy with satisfactory lengths. The
methodolﬁgy is illustrated for self-driven steady-state and trace-

driven terminating simulations.



1. INTRODUCTION

One of the most important steps in the development of a simela—
tion model is determining whether the representation'of the compu-~
terized model has sufficient accuracy for the purpose for which the
model is to be used, "Substantiation that a computerized (simulation)
model within its domain of applicability possesses a satisfectory
range of accuracy consistent with the infended application of the

model” is usually referred to as (simulation) model validation [21]

and is the definition used in this paper,

The validity or the range of accuracy of a simulatien model
should be evaluated with regard to experimental frame(s) and this
evaluation should be made only in terms of the purpose for which the

model is developed. As defined by Zeigler [25], an experimental

frame "... characterizes a limited set of c1rcumstances under which

the real system (or the model) 1is to be observed or experimented
with." A model that is valid in one experimental frame may be com-
Pletely invalid in another. Therefore, the validity of a simulation
model should only be evaluated W1th respect to 4 set of experlmental
frames determlned by the purpose for which the model is intended, and
not with - respect to all p0331b1e experlmental frames (or all sets of

condltlons) [19, 20]. Sometimes, the model sponsor, model user, or

a third party wiil Specify an'acceptable range of accuracy which is
.thé amount of accﬁracy that is required for the simuletion model

to be valid under a given experimental frame. In this case,




the validity or the range of accuracy of the simulation model must
be evaluated with respect to the acceptable range of accuracy speci-
fied,

It is generally preferable to use some form of objective analy-

sis to substantiate that a computerized simulation model within its

domain of applicability possesses a satisfactory range of accuracy

consistent with the intended application of the model [3, 4, 20]. In

this paper; simultaneous confidence intervals.(s.c.i.), which is a
form of objective analysis, will be used to determine the wvalidity
of a multivariate response simulation model.

In using a statistical procedure for validation, one should con-
sider the type of thg simulation model with regard to the way it is
driven and with regard to the way its oufput is analyzed. There are
basically two types of Siﬁulatiqn ﬁodels ﬁith regard to the way they
are driven: self- and trace—driven simulation models. Self-driven

(distribution~-driven or probabilistic) simulation [11] is a technique

which uses random numbers in sampling from distributions or stochastic

processes. Trace-driven (or retrospective [17]) simulation is a tech-

nique which combines measurement and simulation by using the actual
data collected on the system as the model input [11, 23].

There are basically two types of simulation models with regard
to analysis of the output: steady-state and terminating simulation

models {7, 14}. A steady-state simulation "is ome for which the

quantity of interest is defined as a limit as the length of the simu-




lation goes to infinity" [14]. A terminating simulation "is one for
which any quantities of interest are defined relétive to the interf
val of simulateq time [O,TE], where TE’ a possibly degenéfate random
variable, is the time that a specified event E occufs" [14].

The validity or the range of accuracy of a multivariate response
gimulation model can be expreésed in terms of s,c.i. for the_differ~
ences between the corresponding model and system response variables,
A confidence interval (c.i.) constructed for the difference hetween
the jth model and system response variables can represent the range

of accuracy of the jth model response variable.  The length of the

¢c.i. then becomes the length of the range of accuracy.

It is usually desirable to have the length of the range of ac-
curacy as short as.possible. The length or the expected.length of
the c.i. can be decreased by either increasing the sample sizes of
observations or.by decreasing the confidence level. However, in- -
creasing the sample sizes will increase the cost of data colleétion.
Thus, a trade-off énalyéis may be necessary to determine appropriate
values fof.the sample sizes, confidence level(s),.and data collection
budget.

Schedules and graphs can be constructed to.show the relationships
among the sample sizes, confidence levels, estimates éf half lengths
of the range of accuracy of the simulation model, and cost of data
collection. These schedules and graphs can be uéed to make judge-

ment decisions regarding the trade-offs among the parameters of in-

terest.




The purpose of this paper is to give a methodology for validat- ]
ing a multivariate response simulation model with respect to its mean
behavior by using s.c.i. The methodology is given in section 2 and

the Bonferroni method for constructing the range of accuracy is dis-

cussed in section 3. Section 4 contains some examples that illus-

trate the metﬁodology by using the Bonferroni s.c.i. and section 5

contains the conclusions.

2. METHODOLOGY

The validity, with respect to the mean behavior, of a multivari-
ate response stochastic simulation model representing a.st0chastic
observable system can be evaluated by examining the differences be-
tween the population means of the corresponding model and system per-—
formance measures when the model is run with the "same' input data
that drive the real system. The model and system performance measures
are represented by the model and system response variables.

Assuming that there are k response variables from the model and oo
from the system, let (E?)' = [nT,u?,...,uZ] and (E?)' = [ui,ug,...,ui]
be the k dimensional vectors containing the population means of the
model and system response variables, respectively. -

The validity of a simulation model can be expressed as a range
of accuracy. The range of accuracy for the mean behavior of a multi-

variate response simulation model can be expressed in terms of s.c.i.




Basically, there are three approaches for constructing the s.c.i.
to express the ramge of accuracy for the mean behavior.

In the first approach, the range of accuracy is determined by
using a statistical procedure that gives the.lOO(i—y)Z s.c.i. for
i -

M~ as

(2,u] . (1)

where 2" = {21,22,...,2k] and u' = [ul,uz;...,uk]. We can be 100(1-v)%
confident that the true differences between the population means.of
the model and system response variables are simultaneocusly cqntained
within the range of accuraey of the simulationrmodel given by (1).

In the second approach, the lOO(l—Ym)% s.c.i. are first construct-

ed for H? as
[2",u™] (2)

M, _ . m m
where (L)' = [21,22,..
s

lOO(lnyS)% s.c.1. are constructed for u~ as

i m m m, -
.,Rk} and (E?)‘ = (ul,uz,...,uk]. Then, the

[2%,u°) | (3)

s 8
2,...,£k]

the range of accuracy of the simulation model is determined by the

where (&S)' = [2;,2 and (gs)' = [u;,u;,...,ui]. Finally,

following s.c.i. for_gmﬁgs with a confidence level of at least




(1=y"-y®) [10, p. 466]: E

[27-u®, u™2%]. (4)
. . .m s _ o m_ 8 _.m 8 . =
Letting vy = v + v, Ei = Ei ug and u, = oug - 21 for i = 1,2,...,k,

we can be at least lQO(l—Y)% confident that the true differences be-
tween the population means of the model and system response variables
are simultaneocusly contained within the range of accuracy given by i
[2,ul].

.In the third apbroééh, the model and system response variables
are observed in pairs and the range of accuracy is determined by the
100(1-v)% s.ec.i. for Eé, the population means of the differences of

paired observations, as E.
d .
(29,0 (5)

d .d d d d .
where (&g)' = [21,22,...,2i] and (u)' = [ui,uz,...,uk]. Letting
d

Li = Ei and u, = ug, for i =1,2,...,k, we can be 100(1-v)7% confident :
that the true population means of the differences of paired observa-
tions collected from the model and system response variables are
simultanéously contained within the range of accuraey of the simula-
tion model given by [&,u].

The approach for constructing the s.c.i. to express the range of

accuracy of a simulation model should be chosen with respect to the



way the simulation model is driven and the statistical procedure
used in constructing the s.c¢.i. The range of accufacy is deter-
mined by the s.c.i. comnstructed by using the observations that are
collected from the model and system response variables by running
the simulation model with the "same" input data that drive the rea}
system. If the simulation model is self-driven, then the "same" in-
dicétes tﬁat the model input data are coming independently'from.the
same populations or stochastic pProcess of the.system input data.
Since the model and system input data are independent'frqm each
other, but coming from the same populations or stochastic process,
then.the model and system output data are expected to be identical
and independent from each other. Hence, the'range of accuracy of
a multivariate response self-driven simulatiocn ﬁodel can be deter-—
mined by the s.c.l. that are constructed by using one of the afore-
mentioned three approaches. If the simulation model is trace-driven,
then the "same" indicates that the modél.iﬁput data are exactly the
same as the system input data. In this case; the modél and system
output data are ekpected to be dépendent and identical to each other.
Therefore, the third aforementioned approach should be used for coﬁ—
structing'the s.c.i, to determine the range of accuracy of a multi-
variate response trace—driven simulation model.

Sometimes, the model sponsor, model user, or a third party

will specify an acceptable fange of accuracy for a specific simula-



tion model. This specification can be made for the mean behavior

of a stochastic simulation model as

where L._and U, are the lower and upper bounds of the acceptable dif-
ference between the population means of the jth model and system re-
sponse variables. In this case, the range of accuracy of the simu-
lation model should be checked if it satisfies the acceptable range
of accuracy given.

Tt is desirable to construct the range of accuracy with half
lengths as short as possible. The shorter the half lengths, the
mbre meaningful the specification of the range of acﬁuracy will be.,
The half lengths are affected by the values of confidence level(s),
variances of the model and system response variables, and sample
sizes of observations. The half lengths can be shortened by decreas-
ing the confidence level(s). Variance reduction techniques [6] can
be used, in some cases when collecting observations from a simula-
tion model, to decréase the wvariability of the observations and
thus obtain a shorter range of accuracy. The half lengths can also
be shortened by increasing the sample sizeé of observations. How-
ever, increasing the sample sizes of observations will increase the
cost of data collection. In those cases where the cost of data
collection is high and is an important fac;or to consider, a trade-

off analysis should be performed to choose appropriate values for

<U,, 3=121...,k (6)

T




the sample sizes, confidence level(s), and data collection budget.
For a real system represented by a simulation model with k
. 1 L
response variables, let n [nl,nz,...,nk} and N '[Nl’N2""’Nk]
be the k dimensional vectors containing the sample sizes of obser-
vations on the model and system response variables, respectively.

1 = [ m . P
Let ¢ {e ""’Ck] and C [Cl,Cz,...,Ck] be the k dimensional

c
1’72
vectors containing the unit costs of collecting one observation from
the model and system response variables, respectively. Let 36 =

C

] and COk] be the k dimensional

[egrscops e+ cox € = [Co1sChps-+s
vectors containing the overhead data collection costs for the model
and system response variables, respectively. Totai cost.of data
collection on the model (Tc) and on the system (TC) can usually be
evaluated as a linear function of the sample sizes and overhead costs
and can be stated as follows by assuming that the collection of ob;

servations on one response variable is done independently from the

collection of observations on ancther response variable:

Te=c¢'l+ c'n, (7)
=t 1

¢ = C}1 + C'N, and (8)

CDC = Tc + TC 9

where 1 is a k dimensional vector of omes and CDC is the total cost



of data collection on the model and system.

The equations (7) and (8) are used to determine the cost of
data collected for validation only and are stated in general assum=-
ing unequal sample sizes. Usually, however, cne would simultanecus-
ly collect observations from a simulation model with equal‘samﬁle

sizes., In this case, Tc would be evaluated as

Te = . + cn (10)

where c, = ¢} and ¢ = c'l. In those cases where the real system
is observed simultaneously with equal sample sizes, TC would be

evaluated as

TC

Il

C, + CN | (11)

1 = !
cil and C_ = C'L.

The unit and overhead data collection costs should be estimated

where Ct =

with respect to the data collecﬁion method employed. There may be
alternative values of the model and system unit and overhead costs
corresponding to alternative methods of data collection. The analyst
may wish_to make a trade—off analysis with respect to alternative
methods of data collection and upon this analysis conclude which

data collection method to employ in validation.

10




For a given . data collection budget B, it is possible to select
different values for the sample sizes of observations n and N, (Un-
equal sample sizes are considered for the purpose of generality.)

It is desirable to select the sample sizes in such a way that the

- length of the range of accuracy of the simulation model ﬁill be mini-
mized for the given data collection budget...A function, f(nj,Nj;

j =1,...,k), can be determined in terms of the sample sizes from_
the half lengths (Hj’ J=1,...,%) of the s.c.i. Fhat determine the
lengths of the range of accuracy. This function should be determined
in such a way that the half lengths or the expected half lengths of
the s.c.i. decrease as the value of this function decreases. Thus,
the sample sizes n and N can be selected, to produce the range of
accuracy of the simulation model with minimum lengths for a given

data collection budget, by soiving the following optimization problem.

Minimize: f(nj,Nj; i=1,...,k)

k- k k
Subject to: Len, + LCN, + % (c,,+C..) <B

ISR BT i R} 03 0j

k k

In, + IN, >q

j=1 7 g=1 |

(12)
nj >r, i=1,...,k
N>R, i=1,....k

nj,Nj integer i=1,...,k

11
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where ¢ is the minimum total sample size requirement and r and R
are the minimum sample size requirements for the statistical proce-
dure used. in constructing the s.c.i.; and the other parameters are

used as defined before.

* %
The optimal sample sizes n and N that are determined by solv-

[
L

ing (12) and the estimates of variances of the response variables

that are obtained from a pilot run or data are both used in estimat-

ing the half lengths of the 100(1-y)% s.c.i. that determine the
range of accuracy of the simulation model. The expected half lengths
orrthe half lengths of the s.c.i. which are estimated by using E% and
Ef will be the shortesﬁ among all possible values of the half lengths
that are obtained from all possible values of n and N for a given
data collection budget B. Since the half lengths of the‘s.c.i. de-
termine the half lengths of the range of accuracy of the simulation
model, we will be concerned with the half length estimates rather
than the expected half lengths. Hj, j=1,...,k, will represent the
half lengths of the range of accuracy that are minimum in length be-
cause of the use of Ef and E% for a given data collection budget.
Schedules and graphs can be constructed to show the relation-
ships among the unit and overhea& data collection costs (c, C, [ EO)’
data collection budget (B), optimal sample sizes of observations (Ef,
E%), total cost of data collection (CDC), confidence level (1-y), and
estimates of minimum half lengfhs_of the range of accuracy of the

%
gimulation model (Hj, j=1,...,k). The objective function and the




constraints of the optimization problem (12) should be determined
specifically for the statistical procedure used in constrpcting the
range of accuracy and witH respect to the assumption uﬁderlyiﬁg.the
equality of the sample sizes. Construction of the schedules should_
be based upon the approach chosen for determining the fangé of ac~
curacy and upon the assumption underlying the equality of the sample
sizes,

If approach I for developing the range of accuracy is chosen
and it is assumed or required that.nj =n, Nj % Ny, 3=1,...,k, then
the schedules in Table 1 afe constructed for "a" values of Chs Cpo
c ., and Ct; for "b" values of B; and for "e" values of y. (In Table 1,

€" means 'contained in".)

If approach.II is chosen and it is assumed or required that nj =
n, Nd =N, j=1,...,k, then the schedules in Table 2 are constructed.
In Table 2, H?* gnd Hj*, J=1,...,k, represent the estimates of
the half lengths of the s.c.i. that are minimum in 1ength.because of
the use of the optimal sample sizes n* and N* for the givenhdata col-
lection budget on the model (Bm) and on the system (BS), respectively.
B and B® are speéified to cover the cost of data collection on the
model (Tc = c. + émn*) and on the system (TIC = Ct + CSN*), respective~-
ly. The specificatiﬁns of g™ and.Bs and the collection of observations
on the model and on the System are done independently and the s.c.i.

for the model and for the system response variables are constructed

Separately with joint confidence levels of l—Ym and l—YS, respectively.

13




TABLE 1. Schedules. {(u™-p%) ¢ [2,u]; ny = A, Nj

= N, j=1,...,k}

14
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TABLE 2, Schedules; {Ems[gm,gm]; HSeIES,P_S]; H;= H?*+ .Hi*, nj=n, NJ=N’ j=1;...,k}
m * m m* ! m* s .'* g s* s¥
G |8 n [l [ '[ N CorCe  [B° N fre [v® [ md™ L. e
Vi HTLJ . Hﬁu M .‘Hiiu X Hi;u
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Y:‘:l l'Iil:lc e Hrl::lc YcS: H;;lc ) Hglc
) DG L el begeg s el [T
’ Ao o HE:bl B H;:bl
| ™o | To1p D)o R B]S.I; Vlrel 1| [ I |
'_Y-n(:J _HI.“:Ibc " .. H’]::l;bc | . _- | ] Y: }_Iiibc: e Hlsc;bc
i LT H;]:n _*i .Hi:ll HEZH
B “:1 Teg| ]l - B:_l N; Tca.l SR A A |
YI: Ht3!.:11: H'llf:lé : : YcS: ' Hi:lc .H}s(:lc o !
cac I RN R R A - IR I It I R O
16 HT:bl e H::bl _ | s A1 Hi:bl Hii:bl
B | Tw| P| G e | 1 e ] T
L Tﬂc:l H?:bc et H.‘E:bcl 1 ) . .Yrs: 'Hi:b.c e HIS(:bC
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Notice that the minimum estimates of half lengths of the range of -
®
accuracy of the simulation model (Hj’ j=1,...,k) are equal to

* * . . .
B+ H? , ¥ =1,...,k, respectively. The schedules in Table 2 are

]

constructed for "a" values of s Cps CS, and Ct; for "b" values of
B" and BS; and for "c" values of Ym-ano YS. Although.the values. of
"a", "b", ‘and "e¢" that are chosen for the model can be different'

" from the values chosen for the sYstem, they are sﬁown to be the same
in Table 2 for the purpose of simpiicity. In a similar way, schedules
can be constructed for approach ITE with equal and unequal sample
sizes and for approach I and II with unequal sample sizes [2].

The model sponsor, model user, and model buildor, individually
or togerher, can perform a trade-off analysis by using the schedules
and/or the graphs of the data contained in the schedules as will be
illustrated later in section 4. _Ihe trade-~offs among the cost of
data collection, sample sizes of observations, confidence levels,
and estimates of minimum half lengths of the range of accuracy of
the simulation model can be examined and judgement decisions can de
made to determine aopropriate vaiues for the.data coliection budget,
sample sizes of observations, and confideoce levels to produoe the
range of éccuracy with satisfoctory half lengths.

Next, the methodology for validating'ﬁultivariate response
simulation models with respect to the mean behavior by using s.c.i.
will be presented.

1. Determine the experimental frame under which the validity

of the simulation model is going to be tested. Go to 2.




Specify the acceptable range of accuracy, if there exists
one, for the population means with respect to the intended

application of the model as

where Lj and Uj are the lower and upper bounds of the
acceptable difference between the population means of
the jth model and system response variables. Go to 3.
If the simulation model is self-driven, go to 4; other-
wise, 1f it is trace-driven, go to 5.

Choose one of the three approaches for constructing the
S.c.1, that determine the range of accuracy of the simu-
lation model and determine an appropriate statistical’
procedure for constructing the sfc.i. with respect to the
approach chosen., Go to 6.,

Determine an appropriate statistical procedure, with re-
spect to the third approach, for constructing the s.c.i.
that determine the range of accuracy of the simulation
model. Go to 6.

If a trade-off analysis among cost of data collection,

 sample sizes, confidence levels, acceptable range of

accuracy, and. estimates of minimum half lengths of the
range of accuracy of the simulation model is desired, go

to 7; otherwise go to 9.




10.

11.

12.

Construct the schedules and graphs with reapect to the
statistical approach and procedure chosen by using the
optimal sample sizes. Go to 8.

Fxamine the trade-offs among the parameters by studying
the schedules and/or the graphs of the data contained in

the schedules. Make judgement decisions to determine

appropriate values for the data collection budget, sample

sizes of observations, and confidence level(é) to produce
satisfactory half lengths of the range of accuracy. The
estimates of minimum half lengths of the s.c.i. that deter-
mine the range of accuracy of the simulation model should
be chosen to be less than or equal to the half lengths of
the acceptable range of accuracy if there is ome specified.
Go to 10.

Determine the sample sizes of observations and confidence
level(s). Go to 10.

Coilect data from the real sﬁétem'and from the simulation
model by running the simulation model with the "same"-in—
put data that drive the real system. Go to 11.

Determine the range of accuracy of the simulation model

by constructing the 100(1-v)7% s.c.i. [Z,u1] using the s.c.l.
approach and statistical procedure gselected. Go to 12.

If an acceptable rangée of accuracy is ‘specified, go to

13; otherwise go to 16.

18
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13.

14,

15,

16.

19

Determine if [Z2,u] € [L,U]. If yes, g0 to l4; otherwise

g0 to 15,

We are at least 100(l-vy)Z confident that the true ﬁiffer*
ences between the populatlon means of the model and system
response varlables dre contained within the acceptable
range of accuracy [L,U]. Thus, the model is valid with
respeét to the acceptable range of accuracy under the ex—
perimental frame and the validity of the model is given by
the range of accuracy [2,u} at a ¢confidence level of (at
léast) 100{1-v%. Te:minate.

At least one of the response variables' range of accuracy
is not contained within its acceptable range of accuracy.
If this incompatibility is believed to be created because
of the vaiués chosen for the sample sizes, confidence leﬁels,
and/or the estimated parameters, then go back to 6 and choose
new values; otherwise revise the model aﬁd g0 to 6.

If the (at least) 100(1~y)% range of accuiacy for the mean
behavior of the simulation model is ‘satisfactory, conclude
that the model is valid under the experimental frame and
the validity of the model is given by the range of accuracy
[£,u] at a confidence iével of (at least) 100(1-vy)% and

terminate; otherwise, if the range of accuracy is beliewved

to be unsatisfactory because of the values chosen for the

sample sizes, confidence level, and/or the estimated para—
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meters, then go back to 6 to choose new values; otherwise

revise the model and go to 6.

3,  BONFERRONI METHOD FOR CONSTRUCTING THE RANGE OF ACCURACY

Suppose that.[zw,u?] is a 100(1—7?)% c.i. for u? and [l?,u?},
i3 J | |
j=1,...,k, may be dependent., Then, using the Bonferroni inequality

(10, 16}, the probability that all k c¢.i.'s simultaneously contain

their true population means is given by

Pr{u? € [l?,u?] for all. j = 1,.,.,k} > 1- I v,. (13)

Thus, the S.é.i. for-ET are stated as [&P,E?] with a joint confidence
level that is greater than or equal to 1- ; Y?.

. 4=1 J

Any parametric or nomparametric [8, 15] statistical procedure can

be used to conmstruct the c.i.'s with respect to one of the three
approaches given in section 2 and then the Bonferroni inequality can
be used to make a simultaneous inference.. The range of accuracy of
the simulation model can thus be stated with a minimum overall level
of confidence. TFor example, one of the five methods that have been
suggested in the simulation literatuxe can be used for constructing
a c.i. for the population mean of a model response variable and, in

a similar manner, for the population mean of a system response vari-~

able. These methods are: (1) the method of replications, {(2) batch
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means methods, (3} regenerative methdds, (4) time series methods, and
(5) spectral analysis methods. (See [5, 6, 9, 10, 12, 13, 14, 18, 22]
for descriptions and details of these methods, )

The Bonferroni method of constructing thelrange of accuracy will
allow either equal or unequal confidence levels of the various response
variables to be used in COnstructing the joint or overall model confi-
dence level as can readily be seen from (13). For the sake of simpldi=~
city, equal confidence levels will be used in this paper. (The use
of unequél confidence levels, if their.use is so desiréd; is straight-
forward.)

In this section, classical statistical procedures with the Bon-
ferroni method will be considered for constructing the range of accur-
acy of a multivariate response self- or trace-driven simulation model

With respect to each one of the three approaches of section 2.

Approach I

In' this approach, the range of accuracy for the mean behavior
of the simulation model is determined by the s.c.i. (1).

Let n be the sample size of independent observations from the
model response variableg Xl""’xk that are normally distributed with

) m m . 2 .

unknown population means ul,...,uk and variances Ul,...,ck, respective~
ly. Let N be the sample size of independent observations from the
system response variables yl,...,yk that are normally distributed

. . s 5 , 2z
with unknown population means ul,...,uk and variances oi,...,ok, re-
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spectively. (The variances of the model response variables are as- i
sumed to be equal to the variances of the corresponding system re-
sponse variables,) The xj's may or may not be independent. Similarly,

the yj's may or may not be independent. Then, the c.i.'s for u?mui,

j=1,...,k, each with a confidence level of l—Yj, are given [24] as

- - /I 1 . a
&gy jt:tyj/z,nm-?.sj ntye 3T Lk (14) B
where
_ n
x, = (1/n) Z x,,, i = 1,i..,k 15
= ¢ )i=1 ji =1, (15)
— N . '
.= (1/B) Ly, ., : i = 1,...,k 16)
Vs )i=1y31 j (
2 o — 2 ,
§°, = [1/(n-1)] I (x,.~x.,)", j=1,...,k (7
m-] : i=l JJ‘ J
2 N — .2
$C, = [1/(N-1)] & (y,.-v.) > = 1,...,k (18)
8] _ j=1 AT 3
) '(n-l)sij + (Nul)sgj
Sj = ST s j=1,0.0uk (19)
i
and th/Z,n+N—2 is the upper Yj/2 percegtage point of the t distri-

bution with degrees of freedom n+N-2.
Thus, according to the Bonferroni inequality [10, 16], the prob-

ability that all k c.i.'s given by (14) simultaneously contain the
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true differences between the population means of the model and system
response variables is greater than or equal to the joint confidence
% .
level of 1-y = 1- % v,.
j=1 -
Noting that the half lengths of (14) can be shortened in terms of
the sample sizes by minimizing (1/n + 1/N), the objective function and

the constraints of the optimization problem (12) are determined for

the method of constructing (14) as follows:

Minimize: (n+N)/nN

Subject to: cn+CN+e +C <B
m S [ -

t

n>1 | (20)

n,N integer
.>‘= & .
The optimal sample sizes n and N that are used in constructing the
schedules in Table 1 are obtained by selving (20). A solution al-

gorithm for (20) is given in [47.




Approach 1T

In this approach, the range of accuracy for the mean behavior of
the simulation model is determined by the s.c.i. (4) that are produced
from the s.c.i. (2) and (3) by using the Bonferroni method.

Let n be the sample size of independent observations from the
model response variables XysennsXp that are normally distributed with
unknown population means um ...'ﬁm and variances 02 RN 02 respec-

1’ 7k ml?® > mk?
tively. Let N be the sample size of_independent observations from
the system response variables FysveesVy that are normally distributed
with unknown population means 5 ® and variances 02 02
pp Ll.l""’Uk sl"", Sk’
respectively. The xj's may or may not be independent. Similarly,

the yj‘s may or may not be independent, Then, the c.i.'s for u?,

j=1,...,k, each with a confidence level of l—Y?, are given [24] as
o, 3= 1,...4,.k, (21)

where 53 and Sij are given by (15) and (17). Thus, the probability
that all k c¢.i.'s given by (21) simultaneously contain the true popu-

lation means of the model response variables is greater than or equal
k

1- % Y?. Similarly, the
j=1

c.i.'s for u?, i =1,...,k, each with a confidence level of l—y?, are

to the joint confidence level of l—ym

given as

y, +t se. /N, j=1,...,k (22)

24
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where ;5 and Sij are given by (16) and (18). The probability that
all k c.i.'s given by (22) simultaneously contain the true pobulation
means of the system response variables is greatér than or-equal to-
the joint confidence level of l—ys = 1- g Y?.

Finally, the s.c.i. (4) with a congzgence level of at least
(l—Ym—YS) are obtained by using the interval limits of (21) and (22)
as |

s r, e S0 e o
R v3/2,m1" ™ VIR =ML
] 3 :

Noting that the half leﬁgths of (21) can be shortened in terms

of the sample size by minimizing 1/n, the objective function and the

constraints of the optimization problem (12) are determined for the

method of constructing (21) as follows:

Minimize: 1/n

Subject to: c n+ ¢ < BT
m t —

(24)

n integer

Denoting the largest integer less than or equal to x By ij, the
. Lo . * m . m .
optimal solution to (24) is n = L(B wct)/cmj_lf L(B —ct)/ch > 2;
*
otherwise (24) is infeasible. Similarly, N can be found and used

%
with n  in constructing the schedules in Table 2.
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Approach IIX

In this approach, the range of accuracy for the mean behavior of
the simulation model is determined by the s.c.i. (5).
Let N be the sample size of independent observations from the -

model response variables XysoeesXy with unknown population means

m m . 2 2 .
Hisreestyos and variances Oml""’dmk' Let N also be the sample size
of independent obsexrvations from the system response variables Fyseres ' e

o . [ s . 2 P
yk with unknown populat}on means ui,...,uk, andrvarlances Gsl""’ask'
Let in and yji be the ith paired observations on the jth model and
system response variables., In this case, the observations in and

yji occur in pairs so that the two observations are related.

Let dji = xji - yji’ i=1,...,Nand j = 1,...,k. Assuming that

dji’ i=1,...,N are normally distributed for each j = 1,...,k, the

c.i.'s for u?(= p

J

of l—yj, are given [24] as

/sEow o, 3

- u?), i=1,...,k, each with a confidence level

a * thl,z,N_l oy =1,...,k (25)
where ;
J— N ;
d. = (1/N) Ld,., = 1,...,k 26
3 ( )i=l 31 3 (26)
and
2 N — .2
ST, = [1/{(N-1) £ (d4..-d.)", i = 1,...,k & 27
dj [1/¢ )' ( 3 J) i (27)

i=1
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Thus, according to the Bonferroni inequality, the probability
that all k c.i.'s given by (25) simultaneously contain the true ?opu—
lation means of the differences between the paired observations is

. k
- greater than or equal to the joint confidence level of 1-y = 1- 3 vy, ,

: J
. j=1
Noting that the half lengths of (25) can be shortened in terms
of the sample size by minizing 1/N, the objectiﬁe function and the

constraints of the optimization problem (12) are determined for the

method of constructing (25) as follows:

Minimize: 1/N

Subject to: (cm + CS)N + €, + C
N> 2 | (28)
N integer

%

The optimal sample size N is obtained by solving (28) and is used
in constructing the schedules similar to the ones in Table 1. Denot-
ing the largest integer less than or equal to x by tgj » the optimal

] 8) is N = |, / i /(e +c)] > 2
solgtlon to (28) is N = (B—ct-Ct) (Cm+cs)J i L(B—ct-Ct (cm Cs J > 23
otherwise (28) is infeasible. . '

The Roy-Bose method of constructing s.c.i. [16] can also be used
with respect to each one of the three apﬁroaches to determine the range
of accuracy of the simulation model with an overall level of confi-

dence [2]. However, when the precisions of the Bonferroni and Roy-
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Bose s.c.l. are compared in terms of their expectéd lengths, it is

found that when constructing an interval for each of the k response
variables, the Bonferroni intervals are shorter for the same number
of observations, especially when the number of response variables is

large [2, 16].

4. EXAMPLES

In this section, the methodology of éection 2 and the statistical
procedures of section 3 are illustrated for two cases: (1) self-driven
steady-state simulation, and (2) trace—driven terminating simulation.

In the first case, a multivariate response seif—driven simula-
tion model representing an M/M/1l queueing system is consi&ered. The
simulation model is represented by a computerized self-driven model
of M/M/1 with an arrival rate (ar) of 1 and a service rate (s ) of
1/0.76. Similarly, the real system is represented by a computerized
self-driven model of M/M/1 with a = 1 and s, = 1/0.75.

In the second case, a multivariate response trace-driven simula-

~ tion model representing an Ez/Ez/l queueing system is considered. The

simulation model 1s represented by a computerized trace-driven model
of E2/E2/l with a_ = 0.7 and s = 0.99. The real system is represent-
ed by a computerized model of Ez/Ezll with a_ = 0.7 and s_ = 1. The
model and system response variables are observed in pairs by running’
the simulation model with the same trace-data that drive the real

system. The trace-driven simulation is obtained by using the same
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Sequence of random numbers to generate the same arrival pattern to
the model and ro the system and by u51ng another sequence of random
numbers to generate the same pattern of service times in the mode]l
and in the.system.

The random vartate generation is done on an IBM 370 by using the
Inverse Transform Method [6] and the multiplicative congruential ran-

31~l). In each of the simula-

dom number generator Wﬁ = 75Wn_l(mod 2
tions in this section, the initial (starting) conditions are assumed

to be an empty system and the first arrival takes place at time zero.

4.1 SELF-DRIVEN STEADY-STATE SIMULATION

A multivariate response self-driven simulation model (M/M/1,

. = L $. = 1/0.76) representing an M/M/1 queueing system (af =1,

a

=3

, = 1/0.75) has two response variables (performance measures) of

interest, uemely, the utlllzatlon of the server (response varlable 1),
and the- average waltlng tlme of eustomers 1n the system (response
variable 2) The steps of the methodology of sectlon 2 w1ll be fol-
lowed for determlnlng the range of accuracy of the 81mulat10n model
_w1th respect to its mean behavror.

The experlmental fraﬁe under uhlch the valldlty of the Slmula—
tron model is 301ng to be tested is determlned by the P01sson arrlval
process w1th rate ar, exponentlal servrce tlmes w1th rate Sr’ and the

flrst -come flrst—served queue dlsc1p11ne. Assumlng that the 1ntended
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application of the model is to analyze the mean behavior of the sys-~
tem with respect to the performance measures chosen, the acceptable

range of accuracy for the population means is specified as

-0.035 < uj - uy < 0,035
(29)

~0.450 <

In Step 4 of the methodology, approach II is chosen to deter-
mine the range of accuracy and the statistical procedure of section
3 for approach II is chosen to be used assuming that the underlying
assumptions will be satisfied. Supposing that a trade-off analysis
is desired, we go to Step 7 to construct the schedules in Table 2.

Estimates of variances of the model and'sfstem response vari-
ables are needed to construct therschedules. In a pilot run of
the simulation model, five independent observations (batches) are
obtained in steady-state (after deleting the transient period of
the first 10,000 customers) from each of thé model response vari-
ables by ﬁsing the method of batch means with a batch size of 5,000
customers. Similarly, five independent observations are obtaingd

from the system and the estimates of the variances are found to be

2 _ 2 2 2
Sml = (,00058, sz = (3.093834, Ssl = 0,000311, and S82 = 0.071064.
Assuming that ¢, = $150, Ct = $250, c, = $6, and CS = $8, and

* C %k o
obtaining n and N from (24) for several different values of B"

and BS, the schedules in Table 2 are constructed. Using the data




contained in the schedules, Figures 1, 2, 3, and 4 are developed
In Figure 1, the relationships among the minimum half length esti-
mates of the c.i. for the pPopulation mean of the flrst model re-
sponse variable, significance levels, and the data collection €OoSst
are shown. Similarly, Figures 2, 3, and 4 show the relationships
for the second model response variaﬁle, the first and the second
eystem response variable, respectively.

The trade-offs among the parameters can now be examined by

studying the graphs and/or the Schedules It is desirable to choose

 the confidence level and the sample sizes (number of batches), at a
reasonable cost, in such a way that the range of accuracy of the |
simulation model that Wlll be determlned will have half lengths that
are no longer than the half lengths of the acceptable range of
accuracy specified. As a result of a judgemental analysis of the
trade-~offs among the parameters, let us assume that the following
have been found satisfactory for the inteﬁded application of the
model: n" = 25, T¢ = $300, v™ = 0.05, HT* = 0.0117, H§* = 0.1483,

*

g g% g%
N =20, TC = $410, v = 0.05, H1 = 0.0097, and H2 = (),1469.

In Step 10 of the methodology, the simulation model and the
system are run'for 25 and 20 batches in steady-state, respectively,
for 5, 000 customers in each batch after deleting the first 10 ,000
customers in the transient period. The following results are ob-

. . _ = 2 2z
telned. Xy = 0.7626, X, = 3.1767, Sml = 0.00028, sz = [.05546,

~ 2 2
yp = 0.7504, ¥, = 3.0401, 85, = 0.00021, and 8o = 0.05922. The

univariate normality of the observations collected on the model

31
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and system response variables is tested by using the Box-Cox trans-—
formation test [1]. The univariate normality is accepted for_§1,
Xys i and Yoo with approximate significance levels of 0.66, 0.65,

0.78, and 0.86, respectively.

In Step 11, the range of accuracy of the simulation model is
constructed for several values of joint confidence level by using
(23) and is presented in Table 3. Since the 80%, 90%, and 95% range

of accuracy-is completely contained within the acceptable one (29},

TABLE 3. Range of Accuracy of the Self—Driveﬁ
_Steady—State Simulation Model.

*
M/M/1 Model (ar =1, s, = 1/0.76, n = 25)
%
M/M/1 System (ar =1, s, = 1/0.75, N = 20)
(uT;ui) e [-0.0015, 0.0259]
> 80% .
(uz—uz) e [-0.0745, 0.3477]
(uT-ui) e [-0,0039, 0.0283] {
> 90% mn s 7 g
(W-u3) e [-0.1115, 0.3847]
(uT-u;) e [-0.0059, 0.0303]
> 95% -
(Wy-u3) & [-0.1428, 0.4160]
(uT-ui) e [~0.0118, 0.0362]
> 99% o s
(uz—uz) g [~0.2344, 0.5076]
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it is concluded, in Step 14, that we are at least 95% confident that

the true differences between the population means of the model and

System response variables are contalned within the acceptable range

of accuracy (29) Thus, the model ig valid with respect to the

at a joint confidence level of at least 957%,

4.2 TRACE—DRIVEN TERMINATING SIMULATION

A multivariate response trace-driven simulation model (E /E /1,

(respounse Varlable 2). The steps of the methodology will he followad
for validating the mode] with respect to its mean behavior,

The experimental frame is determined by the Erlang-2 arrival
process with rate a. Erlang~2 service timas with rate S, and the
first-come first-served queue discipline. It is assumed that there
is no acceptable range of accuracy Spec1f1cat10n made. The statig—
tical procedure of section 3 for approach III is chosen in Step 35,
assuming that the underlying assumptions will be satisfied. Suppos~
ing that a trade-off analysis ig desired, we go to Step 7 to éonstruct

the schedules similar to the ones in Table 1. ? &
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Pilot runs are made to estimate the variances and ten indepen-
dent observations are obtained in pairs by using the method of repli-
cations and the same sequences of random numbers for the model and
the system., Then, the variances of differences of the paired obser- ?T
vations are estimated to be Sgl = 0,090315 and Siz = 0.192665.

Assuming that c, = §200, Ct = §1,400, c, = $10, and CS = $§35, fat
and obtaining N* from (28) for several different values of B, the
schedules are constructed and Figures 5 and 6 are developed. Since
there is no acceptable range of accuracy specified, we desire to
choose the confidence level and the sample size, at a reasonable
cost, in such a way that the half lengths of the range of accuracy
will be as short as possible. Let us assume that, as a result of
a judgemental analysis, tﬁe following parameter values have been
foupd satisfactory: N* = 30, GDC = $2950, v = 0.1, H; = 0.1122,
and Hy = 0.16388.

In Step 10, the simulation model and the system are replicated
30 times, for 500 customers in each replication, by using the same
sequences of random numbers for the model and the systém. The follow—

ing results are obtained: d1 = 0.0820, d2 = 0.1255, Ssl = (0.09699,

and Siz = 0.20161. The univariate normality of the differences be-
tween the paired observations is tested by using the Box~Cox trans-—

formation test, The univariate normality is accepted for gi and QQ'

with approximate significance jevels of 0.35 and 0.45, respectively.
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In Step 11, the range of accuracy is constructed for several gg
values of 301nt confidence level by using (25) and is presented in
Table 4. Assuming that the range of accuracy for the mean behavior

of the simulation model with 97.5% confidence is satisfactory, it

is concluded, in Step 16, that the model is valid under the experi-
mental frame and the validity of the model is given by the range of £

accuracy in Table 4 at a joint confidence level of at least 97.5%.

TABLE 4. Range of Accuracy of the Trace~Driven
Terminating Simulation Model.

*
Ez/Ezll Model (ar =1, s, =0.99, N8 = 30)
: %
E2/E2/1 System (ar =1, s, = 1.00, ¥ = 30)
d .
u] & [-0.0343, 0.1983]
> 90% d
My e [-0.0422, 0.2932]
d
1 e [-0.0540, 0,2180]
> 95% p
¥, € [-0.0706, 0.3216]
d
ul e [-0.0705, 0.2345]
> 97.5% d
W) e [-0.0944, 0.3454]
d
¥y g [-0.1175, 0.2815]
> 99.5% P
K, € [-0.1621, 0.4131]
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5. CONCLUSIONS
S oV Ne

A methodology using s.c,i, ig presented for validating a mulei-
variate response self- O trace-driven simulation model of an observ-
able system. The methodology provides three approaches for construct-
ing the s.c.i. to express the range of accuracy of a 51mulat10n model
with respect to its mean behavior, Any statistical Procedure can be
used to construct the range of accuracy with respect to one of the
three approaches. The methodology is illustrated by using the Bon-

. ferroni inequality to make a simultaneous inforence and state the
range of accuracy of the simulation model with a mlnlmum overall
levol of confldenoe.

The methodology includes the use of schedules and graphs to
show the relationships'among the sample sizes of observations, cost
of data collection, confidence levels, and estimates of minimum
half lengths of the s.c.i, thatr determine the range of accuracy
of the simulation model. The model sponsor, model user, and mode] §
builder, individﬁally or together can perform a trade-off analysis |
by using the schedules and/or graphs and can make Judgement decisions
as to what data collection budget to allocate, what data collection |
method to use, how many observations to collect on each of the model
and system response variables, and what confidence level to choose
to produce the range of accuféoy with satisfactory half lengths.

The methodology using the Bonferroni S.c.i. is illustrated for

validating self-driven Steady-state and trace-driven terminating simu-

lation madels.

H
HES
i
H
{
i
|
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