CS81017-R

ON THE COMPUTATION OF MINIMUM ENCASING
RECTANGLES AND SET DIAMETERS

D.C.S. Allison
M.T. Noga

- Departmant of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 240861

Key Words: Computational geometry, convex hull, applied computational
complexity.

Abstract Two new algorithms are described for the following
problems: given a set of N points in the plane determine (i) the
rectangle of minimum area which will completely cover (or encase) the
set and (ii) the two points that are farthest apart (diameter of the
set). Both algorithms have O(NlogN) time complexity and are based
upon. a similar strategy. ‘

7. INTRODUCTION

In the field of computational geometry two problems of recent inter-
est are: given a set of N points in the plane determine {i) the rectan-
gle of minimum area which will completely cover (or encase} the set and
(ii) the diameter of the set (the two points that are farthest apart).
We show here that these two problems may be solved by algorithms
which employ a common technique. Throughout, we will refer to this
technique as the HIGHPOINT strategy. As we shall - see, the
HIGHPOINT s'trategy leads to efficient algorithms for both of these
“problems because all highest points can be found in QO(N) time. We

formally prove this result in the next section.

2. HIGHPOINT STRATEGY
The highest points problem is the following: given a convex poly-
gon determine the vertex point (points) which has (have) the greatest

perpendicular distance above each edge; Fig. 1.

5 A edge highpoint(s)
/ 12 4,5
23 5
6 3 34 1
45 1,2
56 3
> * 61 3
1 2 . TTETmmommEmmmmmmmmmmmET
Fig. 1.

Assuming that no three vertex points on the polygon are collinear, each
edge can have no more than two highpoints. We define these points to

be the left and right highpoints. The left highpoint is the counter-

3

clockwise successor of the right highpoint along the polygonal boun-
dary. It is also possible for several adjacent edges to have the same
highpoint. An algorithm to determine all highest points follows in which
we make use of the scaiar-produc‘c [13,14]:

Sp = xplyt - v§) * Yo (x5 - xt) * yixi - YiX, M
where the magnitude of Sy is directly proportional to the height of a

point (xp,yp) above the line ij with coordinates (xi,y1) and (x3,¥j).

HIGHEST _POINTS

Input: A doubly linked-list containing a convex polygon
in standard form. (A polygon is in standard form if its
vertices occur in counterclockwise order beginning with the

~ vertex that has least y-coordinate. All vertices must be
dfstinct with no three consecutive vertices collinear [11.)

Output: All edges and their highest point(s).

Step 1: Locate the highest point{s) above an initial edge
ifj of the polygon. This can be carried out by scan_ning
counterclockwise examining each pair of successive vertices
A and B until the condition Sz < S, holds, Fig. 2. The

scan starts with A = cclock(j), B = cclock(A). If §; = Sg

then output both A and B as the highpointﬁ {A is the right
highpoint, B is the left highpoint); otherwise output A as
the lone highpoint.

Step 2: (HIGHPOINT strategy) Move to the next edge.
tet i = j, j = cc[ock(i)., and find its highest point(s).

Start the scan at the highpoint from the previous edge (or

left highpoint if there are two), examining successive pairs
of vertices A and B until Sg < S4. Output the highpoint(s)
(as in Step /1}). Repeat Step 2 until all edges have been

traversed.

-
—
T
-

7

. ~ /

.

~ counter-

~ clockwise

Fig. 2.

Theorem 1: Algorithm HIGHEST_POINTS produces the highest points
above each edge of an N-vertex polygon in O{N) time.

Proof: Step 1 requires N/2 scalar product éalcu!ations on the average,
but never more than N. We can start the scan for the highest point of
a new edge at the previous highpoint because all points between the
new edge and the oid highboint are perpendicu]arly less distant than
the old highpoint, Fig. 3. (Only points in the shaded area can be on
the polygon vet not be the previous highpoint.) As each edge is trav-
ersed the scan for highpoints commences in a counterclockwise direc-
tion, never clockwise. Furthermore, the scan for highpoints can never

reach the edge presently being traversed. Since in Step 2, N-1 eadges

5

are traversed it follows that never more than O(N) vertices of the po-
lygon are examined as possible highpoints. The actual number of scalar

product calculations is approximately 3N-3. ¢

previous highpoint

/

previous edge
Fig. 3.

3. THE MINIMUM ENCASING RECTANGLE OF A SET OF POINTS
Theorem 2. (Freeman and Shapira [2]) The minimum area encasing

rectangle (MER) of a convex polygon must have one side collinear with

an edge of the pofygon.

The theorem suggests the following algorithm to compute the MER of a

set of points.

MER
Input: A set of N points expressed in cartesian form.

Output: The area of the smallest encasing rectangle of

the set.

Step 7: Compute the convex hull of the set.

Step 2: Compute the encasing rectangle collinear to
each edge and take the smallest of these as the MER.

The convex hull is the minimum area convex polygon containing the
set of planar points. Several algorithms with O(NlogN) worst-case time
complexity [3,4,5] are available for the computation of this polygon.
We show that Step 2 can be computed in O(N)} operations using the
HIGHPOINT strategy. Step 1 will thus dominate, leading to an
O(NlogN) algorithm for the determination of the MER of a set of N
points. For worst-case analysis we assume that all N points are 'on'
the hull and passed to Step 2.

We start at the bottommost edge ij of the hull. (We assume that
our hull algorithm computes the convex hull in standard form.) As in
Step 1 of algorithm HIGHEST POINTS, we scan counterclockwise apply-
ing the scalar product formula (1) to each pair of adjacent vertices A
and B until SB < SA, Fig. 4. The perpendicular distance from A to line
ij may then be computed by solving the following set of simultaneous
equations to determine the point C where a perpendicular [ine from A
crosses ij:

Ye = ¥y © m(XC - XiJ,

Yo - ¥a T -(xg - x,)/m,
where m = (yj ~yi)/('xj -%;) s the slope of line ij. The Euciideén dis-
tance formula can be used to calculate the distance % between points A
and C, Fig. 4. Note that ¢ is the length of one side of the encasing

rectangle collinear to edge ij.

C j
Fig. 4.

[N

The length of the other side of the rectangle may be computed in a
manner analagous to the procedure above. Starting at vertex j, scan
counterclockwise to find the point D highest above line AC, and similar-
ly scan counterclockwise starting at A to find the vertex point E high-
est above CA, Fi_g. 4. Perpendicular lines emanating from D and E may
then be dropped onto AC and CA, and their lengths, wy and w,, com-
puted by again solving the appropriate set of simultaneous equations
and abplying the Euclidean distance formula. The sum of these lengths
is the overall width of the encasing rectangle. Thus, the area AREA of
the encasing rectangle collinear to edge ij is g # (Wl twy).

We then move to the next edge, and let i = j, j = cclock(j). To
determine the area of the encasing rectangle with one side collinear to
this line, we employ the HIGHPOINT strategy. To find new highpoints
A, D and E we use the previousiy determined highpoints as the starting |
points for the new highpoint scans. Once these points are found the
area of the new rectangle NEWAREA can be computed by solving 3 sets
of simultaneous equations and applyirng the Euclidean distance formula in

each case. |If NEWAREA < AREA the value of AREA is replaced by

NEWAREA. This process may be applied iteratively to determine each
successive encasing rectangle. When all edges have been traversed
AREA will contain the area of the s.maiiest encasing rectangle.

Theorem 3: The MER of a convex polygon can be found in O(N) time.
Proof: For each rectangle, as a result of the HIGHPOINT strategy, we
can compute A, D and E in an average of k. operations, wherel k is a
fixed constant.-. And, for each rectangle, we must solve 3 sets of sim-
uitanéous equations and apply the Euclidean distance formula. This re-
quires s c operations, where again c is some fixed constant. Therefore
the total time required is (k *+ c)N = O(N). o

Be;ause the HIGHPOINT strategy can be used to enumerate all enc-
asing rectangles we have the following:

Theorem 4: The MER of a set of N points can be found in O(NlogN)
time.

Also, the convex hull of a simple polygon can be found in O(N) time
[6]. Thus, we have: |

Theorem 5: The MER of an N-sided simple polygon can be found in
O(N) time.

(A polygon is simple if and only if nonconsecutive sides do not inter-
sect and consecutive sides intersect only at a single point.)

The MER algorithm was coded in FORTRAN and tested on an [BM -
3032 (FORTX,0OPT=2). Uniform random variates were generated on the
boundary of an ellipse and passed to a modified Graham convex hull al-
gorithm [3,7,8]. For all sample sizes all points remained on the huil
and were passed via a doublyrcirr.;ul-ar linked-list to a subprogram which

computed the MER of a convex polygon. In Table 1 we give the time

9
taken by this subprogram. 5 realizations of 100 runs were made for
each sample size. Average times are in seconds and appear in the table

along with the standard deaviations.

Table 1

N MER/convex polygon
125 3.556 (.0114)

250 7.098 (.0344)

200 14.184 (.0532)
1000 28.116 (.0729)

L R i .

As expected, the results indicate that the MER/convex polygon subpro-

gram exhibits AO(N) time complexity.

4. DIAMETER OF A SET

The problem here is: given N points in the plane, find the two
that are farthest apart. At least two algofithms exist for the détermi-
nation of these points. One is a naive, but completely straightforward
algorithm, which examines the distance between all possible pairs of
points.. Since there are (g) = N(N-1)/2 such pairs, this algorithm
runs in Q(N?%) time. Ancther is a clever O(NlogN) algorithm due to
M.1. Shamos [9] based upon the following two theorems:
Theorem 6: (Hocking ['1-0_]) The diameter of a set must be realized by
two points on its convex hull.
Theorem 7: (Yaglom [11]) The diameter of a convex polygon is the
greatest distance between paralle! lines of support,
(A line of support L of a polygon P meets the boundary of P and P lies

entirely on one side of L.) As Shamos realized, the following algorithm

suggests itself:

10

DIAM
Input: A set of N points expressed in cartesian form.
Qutput: The endpoints and length of the diameter.
Step 1: Find the convex hull of the set.
Step 2: Enumerate all pairs of vertices for which parallel
lines of support exist (Shamos refers to these as 'antipodal’
pairs [9]), and take the pair separated by the largest dis-

tance,

-

o2 line of support
\

Fig. 5. Finding Antipodal Pairs

The complexity of Step 1 is O(NlogN). However, if all N points are
on the hull, Step 2 may be computed in O(N) time by using a data
structure suggested by Sh'arﬁos [97]. The idea is to treat the edges of
the convex hull as vectors and translate them to the origin, Fig. 5. In

this transformation, edges go to vectors, and vertices to sectors. All

11

antipodal pairs may then be found by extending an infinite line L
through the origin and rotating it couhter‘c!ockwise. The antipodal pair
does not change until L passes through some new vector of the dia-
gram. In Fig. 5, pair 3,6 turns into 4,6 as L passes through vector
34, .4,6 turns inte 4,1 and so on. [t is clear that, for each vector
passed, a new antipodal pair is determined. (If two vectors are simul-
taneously encountered 4 new antipodal bairs resuit.) Because there aré
N vectors to pass, it follows that by scanning sequentially around the
diagram (swinging line L through at least 180 degrees; Fig. 5), O(N)
time is required to compute all antipodal pairs. As a consequence we
have:

Theorem 8: The diameter of a set of N points can be found in
O(N{ogN) time.

Theorem 9: The diameter of a convex polygon can be found in O{N}
time.

Theorem 10: The diameter of a simple polygon can be found in O(N}
time.

We now show that there is another method by which the antipodal
pairs may be found. In Fig. 6, AB and BC are two lines of support of
the convex hull passing through vertex point B. Let the highest
points above these two lines be H; and H,, respectively. (H1 is the
right highpoint of AB if AB has two highpoints and correspondingly H2
is the left highpoint of BC if BC has two highpoints.)} Because of the
convexity property of the hull, parallel lines of support to AB and BC
can pass through points H1 and H2. Thus, (B’Hl) and (B,Hz) are an-

tipodal pairs.

12

Fig. 8.

Furthermore, only the chain of points on the convex hull between Hy
and Hy will admit to parallel lines of support in conjunction with point
B; Fig. 6 (shaded area). This result is valid for any 3 consecutive
points on the hull and th_us‘ we have proved:

Theorem 11: For any vertex point B on a convex polygon, the antipo-
"~ dal pairs corresponding to B are the sequence (B,Hl). . -.(B,HZJ,
where H, and H, are the vertices that are the highest points above
each of the edges adjoining B.

Applying Theorem 11 and the HIGHPOINT strategy leads to the follow-

ing algorithm:

LARGEST_ANTIPODAL PAIR
Input: A convex polygon in standard form.
QOutput: The endpoints of the diameter and its length.
Step 1: Start with the bottommost point i on the hull and
its two common edges. Find the highest peoint above each
edge (these points could possibly be the same). Label

these points H; and H2' Compute the interpoint distances

13
between i and all vertices in the chain Hy ... Ho Keep
only the largest of these distances LP and its corresponding
antipodal pair (A A5}, Let INiT_F’OINTl= Hy.

Step 2: Let i = cclock(i). Find the highest point above
each edge adjoining i. Set H, = H2 (or H, = clock(Hz) if
two highpoints) and use the HIGHPOINT strategy to find
HZ' Compute distances between | and all verticés in the
chain Hl ... Hsy. As these values are computed, compare
with the largest pair already in storage, and if necessary
reassign Lp and (AI'AZ)' Repeat Step 2 wuntil | =
INIT_POINT.

INIT_POINT prevents the algorithm from scanning entirely around
the polygon. This would be wasteful of time because each antipodal
pair would be produced twice. An analogy can be drawn between the
use of INIT_POINT and swinging the Iine. L through 180 degrees in the
Shamos algorithm. Also, when two edges of the hull are parallel we
must backtrack to produce an extra antipodal pair. This correspond.s
to the special c.ase in the Shamos algorithm when L passes two edges
simultaneously. It can easily be proved, using theorem 3, that algor-
ithm LARGEST_ANTIPODAL PAIR runs in O(N) time.

As in the case of the MER, we tested FORTRAN versions of both
the Shamos antipodal pair finder (DIAM) and the algorithm
LARGEST_ANT!PODAL_PAIR (LPAIR). Uniform random variates were
generated for two distributions: uniform on the boundary of an ellipse
and uniform on the boundary of a circle. Again, for each sample size,

all points remained on the hull. Five realizations of 100 runs were

14
made; average times and standard deviations (in seconds) appear in

Tables 2 and 3 below.

Table 2

(points generated on boundary of an ellipse)
N LPAIR DIAM

125 .466 (.0089) .698 (.0048)
250 .926 (.0152) 1.432 (.0164)
500 1.832 (.0130) 2.886 (.0207)
1000 3.644 (.0462) 5.810 (.0678)

2000 6.990 (.0914) 11.762 (.1180)

‘-q.-_..--—-..-__-.._..--_-_-..--..—--.'-.-_-..—._--_--_..-

Table 3

(points generated on boundary of a circle)
N LPAIR DIAM

125 .470 (.0100) 718 (.0084)

250 .908 (.0045) 1.430 {.0354)

500 1.802 (.0259) 2.854 (.0252)

1000 3.524 (.0528) 5.700 (.0781)

2000 6.890 (.0557) 11.304 (.08691)

Clearly, both ~ algorithms exhibit O(N) behavior.
LARGEST_ANTIPODAL PAIR is slightly faster than the Shamos algorithm
DIAM. One reason for this could be.that we used trigonometric func- -
tions to compute the angular displacement of each edge of the convex
polygon in DIAM. A gaiﬁ in speed might be accomplished by devising a
scheme to avéid the use of these functions. Machine architectures can
also affect the comparative speed of algorithms which are heavily com-

pute bound [12].

15

5. CONCLUDING REMARKS
We have demonstrated the usefulness of the HlGHPOINT strategy.
The technique is viable in two dimensions because the vertices of the
convex hull are in polar order about an interior point. Unfortunately,
the technique is not extendible to 3 coordinate space. This is not un-
common in computational geometry where often a new technique performs
spectacularly in 2 dimensfons, but not in 3 dimensions. Hence, the
problem of the minimum vo!.ume encasing box of a set of N points cannot
be solved by use of the HIGHPOINT strategy. Nevertheless, the tech-

nique is obviously a viable one for two dimensional covering problems.

REFERENCES

[1] Shamos, M.l. Computational Geometry, Ph.D. Thesis, Dept. of
Comp. Science, Yale University, 1978.

[2] Freeman, H. and Shapira, R. "Determining the minimum area
encasing rectangle for an arbitrary closed curve.” CACM 18, no.
7, 1975, pp. 409-413.

[3] Graham, R.L. "An efficient algorithm for determining the convex
hull of a finite planar set." Info. Proc. Lett. 1, no. 1, 1972, pp.
132-133.

[4] Bentley, J.L. and Shamos, M.!. "Divide and conquer for linear
expected time.” Info. Proc. Lett. 7, no. 2, 1978, pp. 87-91.

[5] Akl, S.G. and Toussaint, G.T. "A fast convex hull algerithm."
Info. Proc. Lett. 7, no. 5, 1978, pp. 219-222.

[6] McCallum, D and Avis, D. "A linear algorithm for finding the

convex hull of a simple polygon.” Info. Proc. Lett. 9, no. 5, 1979,

pp. 201-2086. .
{7] Anderson, K.R. "A reevaluation of an efficient algorithm for

determining the convex hull of a finite planar set.” Info. Proc.

Lett. 7, no. 1, 1978, pp. 353-35.

[8] Noga, M.T. Convex Hull Algorithms, Masters Thesis, Dept. of
Computer Science, Virginia Tech, 1981.

[9] Shamos, M.I. "Geometric Complexity.” Proc. Seventh Annual
ACM Symp. on Theory of Computing, May 1975, pp. 224-233.

[10] Hocking, J.G. and Young, G.S. Topology, Addison-Wesley, 13961.

[11] Yaglom, 1.M. and Boltyanskii, V.G. Convex Figures, Holt,
Rinehart, and Winston, 1961.

{12] van der Nat, M.. "A fast sorting algorithm, a hybrid of
distributive and merge sorting.” Info. Proc. Lett. 10, no. 3, 1880,
pp. 163-167.

[13] Sklansky, J. "Measuring concavity on a rectangular mosaic.”
IEEE Trans. on Computers, voi. C-21, no. 12, Dec. 1972, pp.
1355-1362.

- 16 -

[14] Bykat, A.
dimensions."

"Convex hull of a finite set of points in two
Info. Proc. Lett. 7, no. 6, 1978, pp. 297-298.

17

