CS81@12-R
USCRT: AN EFFICIENT HYBRID OF DISTRIBUTIVE PARTITIONING SORTING

D.C.5. Allison
M.T. Noga
Department of Computer Science :
Virginia Polytechnic Institute and State University
" Blacksburyg, Virginia 24061

ABSTRACT

A new hybrid of Distributive Partitioning Sorting is described and
tested against Quicksort on uniformly distributed items. Pointer sort
versions of both algorithms are also tested.

Key Words: Sorting, distributive partitioning, quicksort.

1, INTRODUCTICN

Distributive Partitioning Sorting (DPS) has received a good deal of
attention in the literature lately. The evidence so far indicates that DPS
is in many cases the fastest known sorting technique. For example, tests
by Kowalik and Yoo [1] show this technique to ke roughly 7@% faster than
two efficient versions of Quicksort [2], [3] on an Amdahl V/6 computer for
uniform and normally distributed inputs. One drawback of DPS is the space
required to sort. In most implementations 3n-4n storage locations are
needed for input strings of size n. Fortunately, most modern "mainframes”
have several megabytes of storage, thus making DPS practical for inputs of
length 194,080 or more.

Presently, there exist at least four different distributive sorting
algorithms. The original methed [4] is recursive and relies on median
calculation for sorting. The remaining three methods [5]1, [6], [1l] avoid
expensive median calculation and thus are somewhat faster thén the original
method. Unfortunately,.these hybrids have all been tested on different
hardware. Thus, as of yet, no empirical evidence exists which would be of
help in determining the differences in speed amongst the three methods.

The purpose of this study is to present another computétionally |
efficient hybrid of the original method. We have coded this new method in
FORTRAN and tested its performance against Sedgewick's Quicksort [2]. In
addition, peinter sort versions of the new method and Sedgewick's Quicksort

have also been implemented and compared.

2. THE METHOD

The sort, which we label Usort, because it performs most efficiently on ?
uniform distributions of items, requires three passes, first a distributive
pass and then two comparison based passes. InAthe first pass the n items
are partially sorted into ln/m]! boxes, an item A; being placed into box j
according to the formula

j:=| (A;-min)/ (max-min) * ([n/mj-e) + 1l. ()
The quantity e (taken to be very small relative to the size of n) is needed
to insure that the maximum item is placed into box Ln/m) instead of box
(Ln/m]} + 1) [71. The contents of two consecutive boxes are such that all
the items in the first one are guaranteed to pe smaller than all the times
in the second one. |

Por the second pass each box which contains k or more items is
partitioned by Sedgewick’s "nedian-of-three" Qﬁicksort until all partitions
are of size k-1 or smaller. The value chosen for k should bé about 9,
although any value between & and 2@ may best optimize performance on any
particular machine. The third pass consists of a single Insertion sort
(see (8] for a description of Inéertion_sorting) over the entire vector.

_ In this way the stacking overhead associated with an Insertion sort on each
hox or partition can be avoided. Sedgewick {2] has already used this
technique with good success in conjunction with Quicksort.

haves
1 «l is the greatest integer smaller or equal to X.

3. IMPLEMENTATION AND STORAGE REQUIREMENTS

The elements are not moved during the first pass. Instead, a singly
linked-list is uséd to represent the items of each box. The linked-list
requires a total of |n/m] + n storage locations: |n/m! for the list heads
and n locations for the links. Assuming that the items are in array A,
efficient psuedo-code for distributing the items into [n/2] boxes would be

 ndiv2 = n/2;
FOR i:= 1 TO ndiv2 DO (*initialize list heads¥*)
list head [i]:=g;
constant:= (ndivz - -091)/(Almax] - Almin]); (*e has the value BE1*)
FOR i:= 1 TO n DO
BEGIN -
j:= (A[i] - Almin]) * constant + 1.3; (*the result is truncated*)
link [i]:= list head [j];
list head [§]:=1
END
As a result of this computation each empty list will have a list head equal
to zero and each non~-empty list will have a terminating zero-~link. By
making one pass through all the lists, the contents of the boxes may be
quickly rearranged into a destination array B where passes two and three
may be efficiently carried out. The total array storage required is

(3n + | n/m|) .

4. WORST~CASE AND AVERAGE-CASE TIME COMPLEXITY

The worst-case complexity will occur in the unlikely event that the
value of the items follow a factorial distribution. All of the items with
the exception of the largest will fall into the first box and Quicksort
will have to be applied to (n~1) elements. Since the wofst—case time

3 ' g

complexity of Quicksort is O(nz) for groups of size n (8], it follows that
the worst-case complexity of Usort is also O(nz).

We analyze the expected-case time complexity under the assumption that
the input sequence-consists of uniformly distributed numbers. It takes
0(n) time to find A(min), A(max), initialize the list heads, diétribute the
items into the created intervals, aﬁd rearrange £he items into a form
suitable for the second and third passes of the algorithm. For the second
pasé the time to sort a single box consisting of i items will be
proportional to ilogzi, the expected-case of Quicksort [8]. Since the
input is uniformly distributed the probability that an item belongs to a
given group is 1/(n/m)=m/n. The probability that a single box will consist

of i items is a binomial distribution
i n-j
sy _ Ny M m
P()=(HE (-0
The expected time to sort a single box of k or more items is

n i n-i
. s Ny M m
£ ilog,i(5)(T) (1-7)
i=k '
The time to sort all the boxes is, therefore,
=

n/m E ilog,i (?)(%) G-%%)"'i

k n-K K+1 n-k-1
= /nlKlog k() (M) (-5 + (kt)og, (k) (0@ () 4 ...
- k -k
- n/nlktogyk 2l 0D B (YT (1100, (k1) M) neki?)

k1
T (-

-k . k] -
klogok)mK n{n-1)..,{n=k+1),; my"™%_ (k+1)10gs (k+1m""" n(n-1)...(n-k+2)
/npLgRkI 1oL -+ Tke1)T ey
(1-§}”"’<“+ 0]

, k . . k+1 '
n/m[(k1ogk§k)m (-I} + (k+1)1or(r§£!1<4)-1:)m (-I) + ”.]

A

4

R}Qggk SR (k+1)]og?(k+1)

e I e Tt]
mom m mom m
g2k logp(kel) g (1)

The sum inside the brackets converges for small m. ‘Thus equation (1)
is O(n). After the second‘pass all partitions and boxes will have
k—i or less items. For Inserticn sort the worst-case will be when there
are n/k-1 of these groups, each of size k=1. The time to order all these
groupé is

() (k=1)% = n(k=1) = 0(n),
since k will be small and fixed for any implementation of Usort. Summing
over all steps the total time taken is 0Q(n).

In practical sitwations distributions which ére uniform do not occur
very frequehtly. However, many "real" applications involve the ordering of
data which exhibit near uniform behavior. With regard to Usort, this means
that after the first pass g(n) boxes will contain at least one item, but
with low probability no single box will overload (become too populous) .

For distributions meeting these requirements Usort will be very fast. 1In
the event that several boxes contain a significant number of items (with
respect to the size of the input vector), tﬁe time to sort will be
reasonable because of Quicksort's O(nlogzn) expected-case time complexity.
Pass two is a "fail-safe" mechanism which insures against all but the most

pathelogical cases.

5. MODIFICATIONS FOR POINTER SORTING

Usort is easily modified for pointer sorting [3]. After the first pass
an array of length n is needed to initialize the pointers. The auxiliary
array B referred to in section 3 is not needed. The storage requirements
are therefore identical to the "straight-exchange of keys"'version. Qf
course, in passes two and three, comparisons will take the form

 Alpointer[i]] < Alpointer[]]
with the pointers being exchanged depending upon the outcomé of the test.
This indirect reference causes more overhead because of the extra data
movement; however, the expécted~case time complexitylof Usert with pointers

is still QO(n).

6. RESULTS AND DISCUSSION

The two algorithms described above, Usort (USORT) and Usort with
pointers (UPSORT) were coded in FORTRAN and run on an IBM 3832
(FORTX,OPT=2}.' These were tested against FORTRAN implementations of
Sedgewick's Quicksort (QSORT) and Quicksort with pointers (QPSORT) [2].
Psuedo-random variates were generated over the interval (3,1) by IMSL
uniform random number generator GGUBS [9]. 5 realizations of 189 runs were
made on all sample sizes. The timings taken were averaged and are
summarized in Table I. Variances were calculated for each set of 5 test
runs and appear in the parentheses at the right.

We experimented with different m and.k before choosing values 2 and 8.

As mentioned previously these values are not critical. For example with

m=3 and k=18 the total time was only about 2% higher. However, we did find
that Usort ran much slower when m=l. Cne reason for this behavior is that

many of the lists were empty and maintenance of empty lists incurs extra

overhead.,

L n 1 QSORT l USORT f QPSORT | UPSORT l
L25@ 1 39.4 (.24 l 28.6 (.24) 1 58.8 (.16) | 42.8 (.16) IT
Lsse 1 87.4 (.64) | 57.8 (.16) r 130.2 (.26) | 86.6 (.24) I
Jf_lmae ! 191.9 (3.20) i 114.8 (.96) I 286.2 (1.36) I 175.4 (3.44) |
| 2600 t 416.0 (.48) | 233.4 (.64) 1 629.2 (18.16) | 359.8 (3.76) i
j:zmﬂm"i 894.9 (16.4@)i 472.9 (2@.89})!' 1366.6 (184.24)| 7g2.4 (46.64)![

Table I. Sorting time (average of 5 realizations of 109
runs in hundredths of a second) .

The results indicate that Usort is a very fast Sorting method; 5@-9¢%
faster than Quicksort on the Sample sizes used in the test. We would
expect the performance to be even better on machines with fast floating
point hardware such as the CIC Cyber Series [5]. Our results compare
favorably with Kowalik and Yoo's. However, they used sample sizes of 5gaa,
19008, and 500680 items [1]. Besides Speed, the advantages of Usort include
its ease of implementation, avoidance of median calculation, and its three
pass hierarchy.

Devroye and Klincsek [19] have shown that other distributions which
have exponentially dominating tails can also be sorted in O(n} time by
distributive pPartitioning. Among these are the normal, experimental gamma,

beta, chi-sguare, and rectangular densities, plus all bounded densities

7

with compact support. Some authors have downplayed the significance of
distributive sorting methods [11] [12]. However, our results indicate to
the contrary. We believe that any significant increase in the sorting of

internal files (say on the order of 5% or more) is of major importance to

the computing community.

~ REFERENCES

(1]

(2]

[3]

(4]

(5]

(6]

(7]

[8]

(91

(18]

(11]

[12]

Kowalik, J.S. and Y.B. Yoo. "Implementing a distributive sort
program." Journal of Information and Optimization Sciences 2, no. 1,
1981, pp. 28-33.

Se&gewick, R. "Implementing quicksort programs.” CACM 21, no. 14,
1978, pp. 847-856.

Loeser, R. B"Some performance tests of 'Quicksort' and descendents."
CAMM 17, nol” 1974, pp. 143-152.

Dobosiewicz, W. "Sorting by distributive partitioning.” Info. Proc.
Lett. 8, no. 4, 1979, pp. 168-169.

Van der Nat, M. "A fast sorting algorithm, a hybrid of distributive
and merge sorting." Info. Proc. Lett. 18, no. 3, 198@, pp. 163-167.

Meijer, H. and S.G. Akl. "The design an analysis of a new hybrid
sorting algorithm." Info. Proc. Lett. 18, no. 4-5, 1988, pp. 213-218.

Allisonf D.C.S5. and M.T, Noga. "Selection by distributive
partitioning.” Info. Proc. Lett, 11, no. 1, 1981, pp 7-8.

Wirth, N. Algorithms + Data Structures = Programs. Prentice-Hall,
1976,

International Mathematical and Statistics Library, Edition 8, June
1984,

Devroye, L. and T, Klincsek. "Average time behavior of distributive
sorting algorithms," Computing 26, no. 1, 1981, pp. 1-7.

Baase, S. Computer Algorithms: Introduction to Design and Analysis.
Addison-Wesley, 1978,

Huits, M. and V. Kumar. "The practical significance of distributive
partitioning sort." Info. Proc. Lett. 8, no. 4, 1979, pp. 168-169.

