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Abstract

A flexible elastic sheet overhangs from a corner. The deflection due
to its own weight depends on a parameter X which represents the relative

importance of overhang length to the bending length (EI/p)l/B.

Zusammenjassung

1t
Ein biegsames Blech ﬁberhangt eine Ecke. Die vom Eigengewicht verursachte

"
Abbiegung hangt von einem Parameter K ab der die relative Wichtigkeit

T
der Uberhangungslange zur Biegesteife darstellt.




Introduction and Formulation

‘ The overhang of a semi-infinite elastic sheet over a
corner is important in structural engineering and in the
textile and paper industries. Figure 1 shows such an
elastic sheet freely resting on a semi-infinite rigid
foundation at x' > 0. Due to the weight of the overhang, the
sheet is raised and separated from the foundation in the
saegment from the corner 0 to the pbint of contact at

%' i x; . We assume the eorner offers little frictional
resistance. The sheet is kept in equilibrium by the
horizontal force H' at x; . This hofizontal force may

be due to frictional resistance of the semi-infinite segment
of contact x' > x; .

Let s' be the arc length from 0 and £ be the length

of the overhang. The sheet can be divided into three segments:

the overhang from s' = -f£ to s' = 0, the raised segment f{rom
s' =0 tos'=k', and a contact segment s' > k' (where x' > x' ).
Since the force must be normal to the sheet at the point 0, the
vertical force there (F') is related to H' by
. .
tan " a = < , (1)



where o is the angle of inclinatien at 0. If p 1is the weight
per unit length, che vertical force G' at the point of contact

s' = k' is then
G' = (L+k")p - F'

A local balance of momentum (Figure 1) gives, for the overhang

segment,

m+dm=m- p(£ + s") cosé ds'

Here m is the local moment, and 6 is the local angle of
inclination. If the sheet is thin enough, the local moment

is proportional to the local curvature:

where EI is the flexural rigidity. We normalize all lengths

.by £ and drop primes. Egs. (3, 4) become

2

g‘%’ = -K(1 + s) cos®

‘ds

where K = p£3/EI represents the relative importance of density

and length to flexural rigidity. The boundary conditions are

- 48 oy =
6(0) = o, o (0) =2

ds _
ds -1 = 0

2y

(3)

(4)

(5)

(6)

(N



Similarly, the equation for the raised segment is

Q_g. = [F - K(1 + s)] cosf + F tan o sind (8)

Here all forces have been normalized by EI/EZ. The shape of

the sheet is given by
= = cosb , & - sin8 {9

with the boundary conditiomns

x(0) = y(0) = 0, 8(0) =a, So(0) =1 (10)
) = 80 = S (0 =0 | (1)

Given K, Egs. (5 - 1l1) are to be solved concurrently for the

unknowns o, X; F, k.

The solution for small K

Small K signifies low demsity, short length or large rigidity.

We expect ©, u, A, F to be small also. We expand
- 3 3 3
F-KF0+O(K) » 9=K80+0(K),y=Kyo+0(K) {(12)

a =Ko + 0 L =B+ 0 , k =k + 0(&%) (13)



Then Egs. (5, 6) can be approximated by

Similarly from Eqgs.

[¢]

2 3

tolm
!
-]

(7 - 11) we find

Q

dzao _ dy
2 =—(l+s)+Fo ,'d-s—*'
ds
68 (0 = a , %% w0 = 3
o o — 0
ds
8 (k)=0, dBo (k ) =
oo
ds

o]
o]
N o

is

=

(-1) =0 ’ 80(0) =

o a—
©) = A

(14)

(15)

(16)

(17)

(18)

(19)

(20)




From the boundary conditions the unknowns are found to be

3
Kk =72 , a = —— , F = - + 1 (21)
° © &2 ° 272
1 3
Therefore a = K + 0K (22)
6vV2 _
A o= - %K+0(K3) | (23)
3 3
F = ( + 1)K + 0(K) : (24)
22
H = Feana = —1— (—3— + 1)K +o0&YH @
6/2  2/2

Also from Eq. (20) we find the maximum height of the sheet is

9 3
¥ =y XK + ... = —— K + 0(7) (26)
max o 512 :
s = 1/2v 2

Using Eqs. (9, 15) the tip of the cantilever is at

1 1 2 4
x{(~1) = -1+ ( + ) K° + 0K (27)
63 4872
1 1 3
y(-1) = (5 + ) K + O(K) (28)
8 62



Numerical Integration

For general K the deflections are no longer small and

numerical integration is necessary. Define

v o= (a! A, F, k)

and let =x(s;v), y(s;v)}, 8(s3;v) be the solution to the initial
value problem Egs. (5, 8, 9) with the initial conditions Egs. (6,
10, 29). Then the original two-point boundary value problem is

equivalent to

£(v) = [y(k;v), 8(k;v), gg (k;v), gg-(-l;V)] = 0

Equation (30) was solved by a combination of gquasi-Newton and

homotopy methods similar to that described in [1, 2]. The algorithm

requires the Jacobian matrix Df(v) of £(v), and the partial
derivatives %% (v). These are computed as follows:
i

db 9X

Set z. = x, Zy T ¥s 24 = 9, z4 = 6. = — , z5 = v .

(29)

(30)




equat

ion

1

zl = oS g3
z, = sin Zq
23 = 24
24 = -K({(1 + s) cos 23 + F(cos 2, + tan o
2g = -z, sin Zq
zg = z, cos zg
277 %
2g = K(1 + s) z, sin 24 + T-
where
T = N tF (cos z, + tan o sin z.))
Bvi 3 3
has a different form depending on .vi. For w
conditions are
z(0) = (Os 0, o, 'A’.Os 0, 1, 0);
for v, = by
Z(O) = (09 o, o, A, o, o, 0, 1);
for v3 f F
2(0) = (0, 0, o, As 0, Os o, 0);
for v4 =Lk
z(0) = (0, 0, a, X, 0, 0, O, 0).

sin-z3)

= a,

the initial

(31)

(32)

(33)

(34)

(35)

(36)




Thus solving the initial value problem given by Egs. (31) and (33)
produces, e.g., gﬁ (k), which is the (1, 1) entry in the Jacobian
matrix Df(v). Using the differential Eq. (31) with T = 0 and
initial conditions Eq. (33) or Eq. (34) produces the partials of
é(—l), where tHe initial value problem is solved backwards from

8§ =0 to s=-1. Since the differential equation for s < 0

does not depend on F or k,

» L]

26 _o3 |
w (D o= 5 (D o= o (37)

These initial value problems were sﬁlved by a variable step,
variable ordér ODE code [ 3] which is accurate, efficient, and
robust. The combination of a quasi-Newton method [ 1], a globally
convergent homotopy method [2, 4], and a sophisticated_ODE

method [ 3 ] Proved to be very successful.




Results and Discussion

Fig. 2 shows the computed a, A, Fand H as a fuﬁction
of K. Also shown in the figure are our approximations for small K.
All these parameters increase with K monotonically. Fig, 3 shows
the geometric parameters yﬁax’ x(-1), y(-1), x, and k. As
K. *+ ®, all these parameters approach zero except w(-1) - 1.
. Note that Y nax is gfeatest (= 0.4338) _when K = 8.25. We keep
in mind that all lengths have been normalized by the length of
the cantilever segment.
Fig. 4 shows the shapes of the elastic sheet, for given overhang
length £, as p/El is varied. Fig. 5 shows the situation when
a given flexible sheet is gradually pushed off the corner (p/ﬁI
is fixed, while £ wvaries).

The present paper is related to the clamped céntilever
studied by Bickley [ 5]. In his case, the governing equations
are much simpler: Egs. (5 -~ 7) with a = 0. The single unknown
A may be obtained by shooting and does not require the quasi-Newton
and homotopy methods used in this study. Bickley integrated the
shape of the cantilever for K < 14.51. For the same K our

problem shows larger deflection since the sheet is not clamped flat

at the corner.
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Figure Captions

Fig 1 The coordinate system.

Fig 2 Computed parameters as a function of K. Dashed
' lines are approximations.

Fig 3 Geometric parameters as a function of K.

Fig 4 Shapes of the elastic sheet for given overhang length
and various K.

Fig 5 A given elastic sheet slowly pushed off a corner.




\HG 1 Whtsen _s\ssm



20

Fro 2 W sor- S\n:m



\ 10Yrme -x(-1)

0 _ * 7 _
) 5 10 - 15 20

h.l..% 3 S\ﬁ&h&d Y\QSIQ



ﬁ....w 4 F\men‘:; .Y\&:%



(El/p)s

Fig 5 Wafson - r\mﬁsw



