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Abstract. The Chow-Yorke algorithm is a scheme for developing homotopy
methods that are globally cenvergent with probability one. Homotopy
maps leading to glebally convergent algorithms have been created for
Brouwer fixed point problems, certain classes of nonlinear systems of
eguations, the nonlinear complementarity probiem, some nonlinear two-
point boundary value problems, and convex optimization problems. The
Chow-Yorke algorithm has been successfully applied to a wide range of
engineering problems, particularly those for which quasi-Newton and
locally convergent iterative techniques are inadequate. Some of those
engineering applications are surveyed here.,
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1. Why homotopy methods?

A frecuently asked and Tegitimate cuestion is "Why do you need
& homotopy method?" Just because a hbmotopy method is theoretically:
elegant and can be proven globally convergent does not justify its
use if a simpler and more efficient method would suffice. The intent
of this paper is to present a 1ist of problems for which Newton and
guasi-Newton methods are either totally inadequate or much more ex-
pensive than a globally convergent homotopy method.

As a simple example, consider the prbb1em
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This is a one-dimensional case of a structural design prdbiem where t

is the material thickness and u is the displacement. . For this probiem,
Newton's method started from {t,u) = {(-2,-2) diverges. Very robust,
well programmed quasi-Newton methods also faiT.. For example, least
change secant update algorithms (sometimes erroneously called globally
convergent), started at (0,-1) fail because (0,-1) is a local minimum
for the norm of the function. This local minimum phenomenon is typical

of fluid dynamics and elastica problems. Lét
. A

[ 3
(=t £2u-1
uj s flx) = uz—T . and
p(3,x) = af(x) + {(1-2)¥{x-c).

ising the latter homotopy is also unsuccessTul since the zero curve of

o(x, x) does not reach A = 1 (see Figure 1).



However, the homotopy map

SOx) = 1) - () 3

does work. It is possible te prove that for almost ali (E\ £ El x (0,1}
sero curves of p(r.x) reaching a solution exist [ 57 1. \SéeFigure 2.
This example shows that there is probably not a "homotopy map for all
seasons”, but that some homotopy map, resulting in a globally convergent

algorithm, may exist.

2. The Chow-Yorke Algorithm
The theoretical foundation of the Chow-Yorke algorithm is given in
the following lemma [9,10,511:
Def. Let U, Vo E' be open sets and p:u x (0,1) x V= " be a C2 map.
» is said to be transversal to zero if the Jacobian matrix Dp has full rank

on p_-l (G).

Parameterized Sard's Theorem. If ola,r,x) is transversal to zero, then

for almost all a ¢ U the map
o (%) = ela,x,x)

is also transversal to zero; i.e., with probability one the Jacobian matrix

Dpa(k,x) has full rank on pah](O).
The geometric interpretation of this result is that the set

0. 71(0) = {0uX)[0 < A < Tu0, (X)) = 0)

of zeros of Py consists of smooth, diéjoint curves which have no endpoints
in (0,1) x V and have finite arc length in any compact subset of {0,1) x V.

This holds for almost all a, or, in other words, with probability one.

See Figure 3.



The recipe for a gToba?]y convergent algorithm is then:
1) Construct a homotopy map pla,r,x) such that

a) p is transversal td Zero;

b) pa(O,x) = (0 4s trivial to solve, and preferably has a unique

solution;

c) pa(i,x) = 0 is equivalent to the given problem.

2) Prove that the zero curves of oy emanating from X = 0 are bounded

(and monotone in X if pa(O,X) = 0 has more than one solution).

If 1) and 2) above have been accomplished, then for almost all a there
ex%StS a zerp curve v of Py along which the Jaccbian matrix Dpa(k,x)

has full rank, emanating from » = 0 and reaching a solution of the given
problem at A = 1 [30,57]. Thus a globally convergent algorithm consists

of tracking this zero curve v of o from. » = 0 until it reaches a = 1.
The "Chow-Yorke algorithm" refers to 1), 2), and any scheme for tracking
this zero curve v of the homotopy map pa(k,x).

There is some controversy over how to track this zero curve v. A
scheme is summarized here (see [51,52 ] for more details) which the author
has found to be accurate, easy to use, reliable, robust, and efficient for
practica] problems. Since the zero curve v is smooth, it can be parameterized

by arc length s. Thus x=a(s), x = x(s) along v and

o_(a(s), x{s}) =0 (1)

a
identically in s. Let v emanate from (O,XD). Then v 1is the trajectory

of the initial value problem



d . LAy
Fre pa(>(5)= x{s)) = Dp,(2(s), x{s)) as | 0,
| (2)
dx |
dS;f
S
fds i
A(0) = 0, x{0) = x_ (4)
Recall that {for almost all a) the Jacobian matrix
Do (A(s), x(s)) {5)

a
has full rank. Therefore, (5) has a one-dimensional kernel, and
(dr/ds, dx/ds) is uniquely determined by (2), (3), and continuity. The
kernel of the matrix {5) is determined in a numerically stable and accurate
way by factoring (5) with Householder reflections [7,51,56 1. Values of
{dr/ds, dx/ds) are used as input to an ODE solver which solves the initial
value problem (2-4). Since evaluation and factorization of the Jacobian
matrix (5) is expensive, an ODE solver which puts a premium on minimizing
the number of derivative evaluations seems appropriate. For example, the
subroutines STEP and INTRP of [ 22 ] work very well in this context. For
some practical considerations regarding the tracking of v and cbtaining

the solution at »=1,see[ 51 1, [ 52 J, [ 55 1, and [ 56 1.



3) FErgineering Applications
To give some idea of how-wideiy applicable the Chow-Yorke a1gorithm
is, a partial 1ist of problems sclved by the Chow-Yorke a}goriﬁhm is presented.
‘These problems range from fairly simple to extremely difficult, and Newton-
type methods either partially or totally failed on all of them.
1. Elliptic porous siider.
2. Sqgueezing of a viscous fluid between parallel plates.
3. Sgueezing of a viscous fluid between elliptic plates.
4. Viscous flow betwsen rotating discs with injection on the porous disc.
5. Deceleration of a rotating disc in a viscous Tluid.
6. Porous channel flow in a rotating system.
7. Optimal structural design {continuum mechanics).
8. Convex unconstrained eptimization.
9. Optimization with nonnegativity cohstraints.
10. Nonlinear complementarity prob1em.
11. Large deformation of an elastic rod.
12. lLarge deformation of C-clamps.
13. Llarge deformation of negator clips.
14, Fluid-Tiilled cylindrical membrane container.
15. Circular leaf spring.
16. Hanging elastic ring.
17. Equilibrium of heavy elastic cylindrical shells.
18. Ecuilibrium of reticulated shells.
19. Ccllapse of tethered blood vessels.

A few of these will now be discussed in more detail.



ELLIPTIC POROUS SLIDER
Consider an air-cushioned vehicle, supported by air-pressue irom air
forced down through its base, with an elliptic base. The important quantities
‘are 1ift, drag, and the most efficient direction in which to move the vehicle.
The fluid flow is described by the nondimensional equations [ 54 1:

I)2 Q+ hlli

H

RL(h (h + k}h"}

2
B_Q + klli

RE(K)Z - (h + Kk ]

R[FA' - (R + K)f'] £

R[gk' - (h + k}a'] = 9
h(0) = k{0)} = h'(0) = k'(0) = h' (1) =k'(1} = O
n(1) + k(1) = £(0) = g(0) = 1, (1) = g(1) = O

.~ where 8 1is the eccentricity of the elliptic base and f, g, h, k represent

velocities and pressures in some coordinate system. Let

fjlf: (O)\\ gg]!g \\“
y = 9, 0 CF) = R(1) 4 k(M) -1 ) . and
h (O) | h'(]) i
I k) /
\ \ Ji

pa(l,V) =% F(v) + {1 - »)(v - a) be the homotopy used to solve F(v) = 0,
which is equivalent to the two-point boundary value problem. This approach
worked very well. An interesting resu?t.is that the most efficient direction
in which to operate the slider is along its minor axis, 1.e., sideways.
SQUEEZING OF A VISCOUS FLUID BETWEEN PARALLEL PLATES
The governing eguations afe [ 44 1:

S(mftr 4 3F e - ) = £ =0,

F(O0) = f1(0) =0, (1) =1, (1) =0

This problem is similar to but much simpler than the next problem.



SQUEEZING OF A VISCOUS FLUID BETWEEN ELLIPTIC PLATES
The governing (nondimensional) eouations are [ 45 ]t

P K= S[2f b £ 4 2 £ £ (F + )]

i1 1 1 " [ I -l r
g + 8K = S[2g' +n g" + %-9 g9 -5 (f +g)l

where g 1is the eccentricity of the ellipses, S is & Reynolds number,

f and g describe the flow, and K is a censtant to be determined.

v, F(v), and pa(A,v) are defined analagously to the elliptic porous slider
problem. This problem displays extreme sensitivity for S > 20, and very
complicated behavior for S < 0. Figure 4 shows the complicated geometry of
the solution surfaces for a particular set of the parameters {note the multiple

sclutions and catastrophe at 8 = 1).
-POROUS CHANNEL FLOW IN A ROTATING SYSTEM

Lubrication in rotating machinery and flow under the polar ice cap are

examples of porous channel flow in a rotating system. The nondimensional

governing equations are [ 60 J:

Reeren - ey = f ) L e,
R(Fk - k') = K" - o,
R(gf' - fg') = g" + vh + B,

R(gk - fh') = h" - vag,



T, g, h, and k describe the flow and v, R, B, 8 are parameters. There are
bouncary layers at both 0 and 1 as well as internal boundary layers, which

makes this problem extremely difficult. For v and R small, the homotopy
o, (ov) = 2 F(v) + (1 - 2)(v - a) (6)

with F(v) defined by shooting was adequate to solve the problem. Newton

and quasi-Newton methods were compietely inadequate for this problem. For

v, R > 30, 8 <0, B=.5 shooting becomes impossible because of the sensitivity
of the problem, and F{v) defined by a finite difference approximation of the
two-point boundary value problem was used in the homotopy (6). This approach
was guite successful [ 61 J, although the resuiting F{v) is a high dimensional

nonlinear function.
OPTIMAL STRUCTURAL DESIGN

A ciass of problems in optimal structural design have the form

K{t)u = f (7)
utBiu=1,i=1, am
where_
m 2
K(t) = t. K.,
i=1 ' !

the K, are n xn positive semidefinite matrices, K(t) s positive definite
if £t > 0, the Bi are positive semidefinite matrices, and m < n. tT.2 is the
thickness of the ith element, and uj— is the dispTﬁcément of the jth node in
the structure. Given a load vector f, the problem is to find the material
thicknesses ti and the nodal displacements us such that the energy density
is uniform.

Quasi-Newton methods applied to {7) frequently fail because the norm

of the function has many iocal minima. Also, the homotopy (6) virtually always



fails with the zero curves going off to inTinity, where

K(thu -

t
u B]u -]

In { 57 ] it was proved that there is a globally convergent homotopy method

for

whe

map

{7) constructed as follows. Define
eiET % (0, )™ x [0, 1) x EMx E" o EPFD
w{a, b, 2, t, u) =
(DKt + (1 -2) diag (1,5 ..., t 8,
ut[AB + (1 - Alese t]u -1 -(1 - x)b
1 171 ] 1
t n _ t _
U [ABm - (1 k)emem Ju-1-0 - A)bm
re e, is the ith standard basis vector in E .

:!.J':Cnxcmx[o, 'i)mean - Cm+n

which in turn may be regarded as a real map

p:EZn + 2m x [0, 1) x E2m + 2n . E2m + 2n

The homotopy actually used is

pd(lsx) = p(d_sksx) )

by

Now regard y as a complex



and the theorem is that for almost all d the zero curves of oy are monotone
and bounded, and therefore reach a solution of (7)) at » = 1.

An interesting observation is that the quasi-Newton method applied to
“the complexification of (8),

G{x) =0 (10}

ghtained by converting {8) to complex form and then back to real again, a]way;
worked. Intuitively, !/ G{x)!l does not have the same Tocal minimé that i F{v)il does.
Undoubtedly some general theorems must hold regarding the effect of such

"complexification.

OPTIMIZATION
Given the generality of theorems for global convergence of the Chow-Yorke
algorithm, it is not surprising that globally convergent homotopy algorithms
exist Tor some optimization problems. Of course it is debatable whefher
homotopy methods are competitive with existing optimizétion techniques,
but homotopy methods are not a priori worse., Some sample theorems [ 58 ]

are presented here. Consider the problem

min f(x)
X (11)

Theorem. Let £:" = E be a C° convex map with a minimum at X, ||x|| < M.

Then for almost all a, || al] < M, there exists a zero curve v of the homotopy

map

pa(l,x) = Avf(x) + (1 - 2)}{x - a),

along which the Jacobian matrix Dpa has full rank, connecting (0,a) to (1, x ),

where X solves (11).

- 11 -



Say that f s uniformiy convex if its Hessian's smallest eigenvalue s

bounded away from zero. Consider the constrained problem

min f{x) such that x > 0 (12)

Theorem. Let f:E' - E be a C3 unitormly convex map. Then there exists
§ > 0 such that Tor almost all a > 0 with lia|l < & there exists a zero

curve v of the homotopy map
o (%) = aK(x) + (1 - 2)(x - a),
where

K. (x) = _g?f(x) . 3 5 af (%) E by 3 ’
1 : IX . , 14 g ax. ; 1
i 1 ' i 1 /

atong which the Jacobian matrix Dpa has full rank, connecting {C.a) to

{1, x), where X solves (12).

NONLINEAR COMPLEMENTARITY

CompTementarity problems, both Tinear and nonlinear, are important
and very widely studied. &iven L En, the nonlinear complementarity

problem is to find an x e E" such that
x>0, F(x) 20, x F(x)=0 (13)

Since cne normally tﬁinks of homotopy methods as solving nonlinear systems
of equations or computing fixed points, it is interesting that this problem
with inequalities can be solved. _SéveraT theorems which prove the existence
of a globally convergent homotopy method for (13) will be stated. Some
computational experience with these homotopies is in [53,58]. Define

n

G:E" - E by



Theorem (Mangasarian). z solves (13) if and only if

G{z) =0 . (14)
The homctopy used is

2y (h2) = 168(2) + (1< 2}z - a). (15)

Theorem. Let F:E" = E" be a C? map, and let the Jacobian matrix DG{(z)
be nonsingular at every zeroc of G(z). Suppose there exists r > 0 such
that z >0 and 7 = izl > r dmply Fk(z) > 0. Then for almost all

@ > 0 there exists a zero curve v of pa(A,z), on which the Jacobian
matrix Dga(x,z) has full rank, having finite arc Jength and connecting

(0,a) to (1.z), where z solves (13).

Theorem. Let F:E" = E" be a C2 map, and let the Jaccbian matrix DG(z) be
nonsingular at every zero of G{z). Suppose there exists r > 0 such that
z>0 and [zl = r imply Zka(Z) > 0 for some index k. Then there
exists § > 0 such that for almost all a > 0 with [la |l < & there exists
a zero curve v of ga(l,z), .g1ong which the Jacobian matrix Dpa(k,z) has
full rank, having finite arc length and connecting (0,a) to (1,z), where
z solves (13).

These two theorems subsume most linear cases (F(z) = Mz + q) of interest.
Note that such homotopy theorems simultaneously prove existence and provide

an algorithm for catculating the solution.



ELASTIC ROD

Consider a thin incompressible elastic rod c¢lamped at the origin and
acted on by forces G, P and torque M {see Figure 5}. The governing (non-

- dimensional) equations are:

gg— = 0S8 g%— = sin & , gg- = Qx - Py +M (16)
x(0) = y{0) = 8(0) = O (17)
x{(1}) =a, y(1) =b, (1) =c (18)

The cantilever beam problem, which has a closed form sclution in terms of
elliptic integrals, is to find the position {a,b) of the tip of the rod given
the Torces Q # 0 and P = 0. Consider the inverse problem, where the a, b, ¢
are specified, and Q, P, M are to be determined. For large c, ¢ = 10v for
example, the elastica is wound 1ike a coil spring and its shape is extremely
sensitive to small perturbaticons in Q, P, or M. For large deformations the
problem (16-18) is ferociously nonlinear, and Newton and quasi-Newton methods
generally fail [ 63 1.

The Chow-Yorke algorithm was completely successful on {16-18) using the
homotopy map
x{13v) - [ia + (1 - 2)d;]
y{lsv) = Db + (0 - 3)d, ]
o(13v) = Die + (1 = 2)dy]

R
—
o,

w
=
Lo

—

]

£ Q
where v o= L P and x(s3v), y(siv), e(s;v) are the
- M



solution to the initial value problem (16-17). In [ €3 7 numerous approaches
to this inverse elastica problem were considered, with a homotopy method using

the above homotopy map being the most successful. The homotopy

o, {0:v) = aF{v) + (T - x)(v - a)

g 410 0 (13v) - a
with v =P ., F(v) = 0 +] 0 y{l;v) - b
.M 0 0+ 5(1;v) - ¢

was unsuccessful on this problem for every sign combination.

C-CLAMP

Consider an elastic C~shaped clamp with natural curvature MO as shown
in Figure 6. The governing equations are similar to those of the elastic

rod, but the boundary conditiens are different. The equations are:

dx _ Y L o ds _
do = COS g , gs - sin 8 ., Fre -Fy + M] + MO s
x(0) = y(0) = 8(0) = 0,
x{1) = & §§{1) =M {M_ = natural curvature)
> ds 0 0 )

The solution details are similar to the elastic rod, and need not be repeated.

For a complete discussion, see [ 47 7.
NEGATOR CLIP

A related problem involves the negator c¢lip or so-called "constant force
spring". A spring with natural curvature Mo is wound into two coils of
equal length (see Figure 7). It has been claimed [ 48 ] that the force
exerted by the separated coils is independent of the separation of the coils.

This is in fact true asymptotically, but the force F is a nonlinear function



of Tateral displacement x(L), where L s the arc length O0A of the
unwound $pring, for moderate L/R ratics, where R is the natural radius

of the spring. The governing eguations are:

= = C0Ss 8, 4 - sin 8, Qﬁ_: M -M, +F
ds 0 1 y

e(L/R) = /2 , Fy(L/R) - M] 0,

where MO is the natural curvature, MT is the maximum moment occurring at
the point of symmetry, and s 1is a nondimensional variable. For a complete
discussion see [ 48 ].

LEAF SPRING

Another, but much more difficult, spring problem is the leaf spring [ 64 ]

(Figure 8). The governing equations

d_xz g_‘!_' : @_- _ L
as cos &, 4o - sin a8, 3s Mo M+ Fx
x(0) = y(0) = 8(0) = 0
Fx(1) -M =0, y(1) =1t (MO = natural curvature)

are very similar to those for the negator clip, but there are multiple
sofutions, turning points, and bifurcation points as shown in Figure 8.

The Chow-Yorke algorithm is not designed to handle bifurcation points, and the
bifurcation point shown in Figure 8 was obtained by trial and error. The
homotopy maps for all of these elas*ica problems are simi?af to the elastic
rod homotopy. See [ 64 ] for a complete discussion of the Teaf spring

preblem.



FLUID-FILLED CYLINDRICAL MEMBRANE CONTAINER

A rather different kind of elastica problem concerns a membrane
container filled with a fluid. Depending on the rigidity of the container
wall and the internal fluid pressure, the container sags making contact

with the ground (Figure 9). For Tow'pressures and rigidity, the cross-

sectional shape is obleng and the container has a small volume compared to-

a circular cylinder. For high internal pressures or very rigid material
the shape is almost circular. The interesting guestion is the trade off
between pressure and volume, since it is difficuit and expensive to cbtain

high internal pressures, yet Tow pressures waste container material since

the volume is comparatively small. The {nondimensional) governing egquations

are:

dx dy _ s de _ 1
4o = C0S 8, 3 sin 8, o= - (B8 - y)

x(1 -¢)=-¢, y(1 -¢)=0, 8(1 -¢)= 27,

where 8 s a given constant, c¢ 1is the unknown contact length, and o
a paramefer te be determined. What makes this problem different from the
previous ones is that the interval of integration 1 - ¢ is unknown, and
the boundary condition

x{1 - ¢c) = -¢c
is difficult to handle. Nevertheless, a straightforward homotopy was

successful [ 49 7.

]

is



HEAVY ELASTIC CYLINDER

Important construction problems in outer space and undersea
involve heavy elastic cylinders. Depending on the rigidity of the
elastic wall material, the cylinder may collapse under its own weight.
There are fTour distinct cases, governed by a nondimensional parameter B
(see Figure 10). Starting from a perfect cylinder (B = 0), as B increases
the point contact {Case 1) widens to a line contact (Case 2} then the top
sags until it touches the bottom for a point-iine contact (Case 3), then
ultimately the top also makes a Tine contact with the bottom. The governing

equations for all four cases are

dx dy _

s - cos 5, ac - sin 6 ,

2
g—%— = Asinsg + (C - Bs) cos 8.
ds

For Case 1, C = B and the boundary conditions are

For Case 2, C = B{1 - a) and the boundary conditions are

x(1 - a)=-a, 8{l -a)=nm.

For Cése 3, the boundary conditions are

x(0) = y(0) = 8(0) = é(_o) =0,



For Case 4, the boundary conditions are

For Cases 1 and 2, quasi-Newton methods are adeguate and efficient
if a good computer code is used. For Cases 3 and 4, where B is large,
quasi-Newton methods are feasible but very expensive because of their
small domain of practical appiication. If the starting point is too far
-away from the soclution, quasi-Newton codes such as HYBRJ from Argonne's
- MINPACK fail to make progress toward the solution and give an error return

[ 50 ‘]. The homotopy map
p (2sv) = 2F(v) + (1 - 2)(v - a),

where v consists of the appropriate initial conditions and parameters
(depending on the case) and F(v) is defined by shooting, works very well
for large B [ 50 J. This is a rare example of a problem on which guasi-
Newton methods do not totally fail, and yet the homotopy algorithm is more
efficient. Generally, quasi-Newton methods, when they work, are an order

of magnitude more efficient than homotopy methods.



4)  Conclusion

Differential geometry provides a solid theoretical foundation for the
Chow-Yorke algorithm [ 2,3 1, and homotopy maps producing globally convergent
algorithms have been constructed for a wide range of problems. Perhaps the
most spectacular successes have been for Brouwer fixed points [ 51 ] and
the nonlinear complementarity problem [ 53 ]. The numerous engineering
prob]ems_discussed here show that homotopy methods are frequently successtul
on problems to which the (known) theory is not applicable. The prospect
of a globally convergent algorithm, particularly on problems Tor which the
best quasi-Newton computer code { 37 7 fails, makes homotopy methods appealing
and promising for future development.

On the negative side, the supporting differential geometry theory reguires
at Teast CZ smoothness, which means the Chow-Yorke algorithm cannot handle
directly, e.qg., piecewise lTinear maps (see [ 4 1, though). Also, developing
a homotopy map whose zero curves are bounded is very difficuit, and, at presenf,
an art. Finally, homotopy methods are computationally expensive (at least
an order of magnitude worse than quasi-Newton methods), and there is general

agreement that they should cnly be used as a tast resort.
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