A DOMAIN FCR FUNCTIONAL PROGRAMMING SYSTEMS

by
Johannes J. Martin
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

March 18, 1981

Technical report No. CS81p04

KEYWORDS

Programming languages, functional programming languages, FP-systems,
domains, nondeterminism.

CR Categories: 4,22, 5.24

ABSTRACT

A domain for functional programming systems is proposed. This domain is
the powerset of a set of items where items are either atomic or ordered
pairs of items. The structure of the domain is determined by the relation
"is weaker than' and by three basic operations, wunder which the domain is
closed: Union, the cartesian product, and the operation of application.

This domain has several favorable properties.

1. The domain not only contains data objects and programs {(that is
descriptions of computations) but also functions (that is sets of
ordered pairs of items) as members. in fact, it turns out that
all objects and mappings needed for a programming language
(including the program forming operations) are members of the
domain.

2. 'The bottom symbol, which represents the 'undefined' condition, is
the empty set PHI. This leads to a rather natural intuitive
medel of computation. '

3. Functions are almost strict in the following sense. Since the
members of the domain are sets, functions map sets to sets. All
functions and functionals are of the form :

fU{c();eea,c(n)}
where £ is strict and the c(i) are constant.

4. Nondeterministic processes are naturally accommodated by the
domain.

5. Without introducing special cases, one can define application in
such a way that the *undefined' condition is always handled cor-
rectly. (i) It is impossible to construct a test for the bottom
symbol PHI. (ii) Expressions such as 'PHI v true' or 'PHI * @'
are evaluated to their proper values, namely ‘true' and '@', res-
pectively.

6. Though not treated in this paper, data types can be added in a
straightforward way. '

March 18, 1681 Johannes J. Martin

1. INTRODUCTION

Strachy observed [Strachy73] that a considerable amount is known about a
programming language once its value domain is defined. In [Backus79] Bac-
kus goes even further and asserts that the very concept of what a program

is, "is largely determined by the choice of the 'program domain' that
‘programs' map into itself.™ If the domain were conly an amorphous set of
objects that programs‘manipulate, then it would herdly have this signifi-
cance. But the domain must be viewed as an algebraic structure. This
structure consists of the set of computational objects, relations on this

set, and basic operations under which the set is closed.

Besides data objects such as numbers and characters, the domain should con-
tain all programs so that compilers, verifiers, and optimizers can be writ-
ten. Mbreover, for reascns that will become clearer as we proceed, all

desirable functions should be members of the domain.

NOTE: A function f: A -> B 1is a special type of subset of
A x B, whereas a program is the description of the
computation of & function. Since there may be many
computations that yield the same function, a function
is a more abstract object than a program.

Among the desirable functions; there are those that take functions as par—
ameters and compute functions as results. These are the operations needed
for the composition of programs (we refer to them-as functionals or func-
tional forms [Backus78,79]). The question arises whether one can indeed
combine all these seemingly rather different objects into one domain with-

out loosing simplicity and elegance.

March 18, 1981 1

That this is possible has been demonstrated in [Scott76] and [Plotkin76].
Here we apply some of these results to FP-type languages [Backus78]. The
fact that FP-functions have exactly one parameter makes it hecessary to
consider the empty set PHI an atomic object, for otherwise the set of per-

missable functions seems to be needlessly restricted.

The proposed domain is the powerset of the set of all items, where items

are atomic (including the empty set PHT) or ordered pairs of items.

This domain is partially ordered and it is closed under union and the
cartesian product. The third basic operation needed is the application of

a function to an object.

In the following we deal first with the domains of LISP and FP-systems,
then we describe some properties of the domain suggested. Thereafter we
show that all interesting functions and functionals are members of our
domain and that nondetefministic programs can be specified in a natural
way. PFinally we show how values of expressions such as 'true v undefined’
can be given their natural interpretation within the formalism of the sSys—

tem.
Most of the set terminology used is taken from [Hayden68]. The symbol '==!

denotes equality by definition; sometimes informal comments are offset from

formulas by '//".

March 18, 1981 2

2, THE DOMAINS D1, D2, AND D3

We start with the definitions of three domains. By 'A' we denote a counta-
ble set of atoms. These atoms may, for example, be objects such as num-
bers, character strings, T and F for 'true' and 'false', the null element
'nil' and other items that we do not care to analyze further. 7The domains

are defined as follows.

DEFINITION 2.1: Dl: 1. All elements of A including the null element 'nil!
are in DI1.

2. If X and y are in D1, then so is the ordered pair (x,v).

DEFINITION 2.2: D2: 1. All elements of A including the null element 'nil'
are in D2.
2. If x1,x2,...,%n are in D2,

then so is the n-tuple (%1,X2,;040,%0) .

DEFINITION 2,3: D3: D3 = P(D1), the powerset of Dl.

.Note that Dl contains D1 x Dl as a subset. In terms of LISP, D1 is the set
of all S-expressions. D2 has been used by Backus [Backus78] for his Fp-

systems.

March 18, 1981 3

In our discussion, we first assume that the set of atoms 'A' does not con—
tain PHI, the empty set, as a member, later we consider the conseguences of

permitting PHI as a member of 'A'.

Dl and D2 are equivalent

The domains D1 and D2 are equivalent in the sense that each one can be used

to model the other. In order to model D2 by D1 we may define

DEFINITICN 2,4: The null element 'nil' is the @-tuple. An n-tuple is an
ordered pair (x,z) where x is any element in D1 and z is an

(n-1)-tuple.

In order to model D1 by D2, we represent an ordered pair simply by a

2-tuple.

Nevertheless, practical considerations may induce one to prefer one domain
over the other. The discussion of such considerations is not in the scope

of this paper.

In this paper we use DIl knowing that we may use sequences if we need to.
By adding the bottom symbol BOT where BOT& x, and xS x for all x in b1,
Bl becomes a partially ordered set and thus gives rise to the flat lattice

IDl. Now partial functions on DI are defined to have the value BOT where

March 18, 1981 4

they do not have a value in DI and hence may be considered total on LD].

NOTE: The symbol 'S ' is read 'is weaker than'.

We will not go into any further detail of this matter but refer the reader

to [Manna73), [Scott76], [Scott77]1, and [Stoy77].

By means of suitable notational conventions, elements of ID1 can be made to
represent programs on LD1, Backus [Backus78] introduces a very elegant
mechanism, called metacomposition, and shows by way of example that it per-
mits one to define recursive functions without resorting to the usual
recursive definitions. Williams [Williams84] describes a general algorithm.
that permits one to express --— by metacomposition -- functions given by

mutually recursive equations.

The domain D1 does not contain functions

The elements of D1, which are atoms and pairs (or sequences) of other ele-
ments of D1, are single objects rather than sets. Hence D1 does not natur—
ally contain functions on D1 as elements, Identifying the members of DI
with the members of DI -> D1 does not work since the two set have different

cardinalities.

March 18, 1981 5

3. SOME PROPERTIES OF THE DOMAIN D3

The domain D3 is the powerset of DI1. The elements of D3 are sets (subsets
of Dl); D3, partially ordered by the subset relation, is a lattice. We
read this relation again as 'is weaker than'. The bottom of the lattice is
PHI, the empty set, the top is Dl. D3 is closed under set union. Since DI
contains D1 x D1, D3 is also closed under the cartesian product. We assume

that both operations are part of any programming system based on D3.

Relations on D1 induce functions on D3

Relations R on Dl are subsets of D1 x Dl. Therefore they are subsets of D1
and thus members of D3. Each such relation gives rise to a {total) func-
tion on D3. Let X be some member of D3, then the application of R to X is

defined by
DEFINITION 3.1: Application
RX) = {y | (y/x) in R for some x in X}.
NOTE: The usual notation for application (f(x)} and compo—
sition (f.q) implies that evaluation proceeds from
right to left. Therefore, a function is treated as a

set of pairs taken from the set (range x domain) and
not from the set {domain x range) .

March 18, 1981 6

Besides union and the cartesian product, application constitutes the third
and last basic operation on D3. From the definition of application, five

equivalences follow:

{3.1) (FUG(X) =F(X) U G(X)
(3.2) FXuwy) = F(X}) U F(Y)
(3.3) F(PHI) = PHI

(3.4) PHI(X) = PHI

{3.5) If X, ¥, and Z‘are singletons

then (Y x X)(Z) = if X=Z then Y else PHI.

Furthermore,

R(X) includes R(Y) if X includes ¥ and

for a given directed set LX, we obtain for the least upper bound (1.u.b.)

R(1.u.b(LX)) = l.u.b.(fR(X) | X in LX})

Hence, functions induced by relations R are both monotonic and continuous.

a

PHI denotes "undefined"

It also follows from the above that a partial function on D1 (that is a
special kind of a relation) that is not defined for some value X in D1,

gives rise to a function on D3 that assumes the value PHI for {x}. There-

March 18, 1981 7

fore, with functions on D3 that are induced by relations on D1, PHI is for

D3 what BOT is for IDI.

The set of pairs that represents a relation that gives rise to a function F
on D3 is called the representative set of F. F itself is said to be in D3
(as well as on D3). Deviating from [Scott76], we do not identify elements
of Dl with the finite elements of D3. This keeps the functions in D3 par-

ticularly simple as we shall see in the next subsection.,

Having the empty set represent the condition "undefined' leads to a quite
natural intuitive model. A process that computes a function produces a set
of results. While the process is running, the set is empty. Upon termina—
tion, the process adds one or more resilts to the set, Thus, if the pro-

Ccess never produces a result, then the set remains empty.

Not all functions are in D3

One might conjecture that all functions on D3 are also in D3. Although
this is correct, as we shall see, for all necessary functions and functioh*
als, below we give an example which shows that in general the conjecture is
false. However, the following theorem gives us a criterion to determine

whether or not a given function is in fact in D3.

March 18, 1981 8

THEOREM 3,1:

Assume that (1) F: D3 -> D3 is a function on D3 and

(2) F distributes over union, that is,

(For all X,Y in D3) FXUY)=F(X) U F(Y).

Then there is a relation R on Dl such that for all X in D3

F(X) = {y | yRe for some x in X}

Proof:

Let aRb iff (a in F({b}))

X= U {x}
x in X
> F(X) = U F{{x} /7 by (2) //
X in X
—> F{X) = {y | vy in F({x}) for some x in X}

<=> F(X) {y | yRx for some x in X} Q.E.D.

March 18, 1981 9

4. FUNCTIONAL FORMS

Functional forms or functionals, which are a special kind of function, map
functions and/or other members of D3 to functions. For functions that are

members of D3, a functional is a mapping of the form
FF: D3 x (D3 X (...)) = D3,

Since functions in D3 have the form F:D3 -> D3, most functional forms
{those with more than one parameter) are apparently not in D3. The trouble
is superficial because any n-tuple of members of D3 can be packaged into D3
by means of the cartesian product. For example, the functional
‘composition' computes a new function from two given ones. Using func-
tional (rather than infix) notation, we express this by

o

h = comp(£f,q).

Since pairs of sets are not members of D3, a pair of functions such as
(f,9) is not in D3, However, the cartesian product (£ x g) is. Therefore,
the modified composition function

h = comp(f x g)

is indeed a mapping from D3 to D3 and may thus be in D3,

By virtue of this packaging step, functionals become ordinary functions on

D3 except that some of them may not themselves be members of D3, We may

March 18, 1981 10

use our criterion to decide this question. By theorem 3.1, we know that a

function is in D3 if it distributes over union.

Using this result, we find that the functionals composition, construction,
if-then, and constant are in D3. Rather than proving this by applying
theorem 3.1 (which is straightforward), we give two definitions for each
functional:

(i) the interaction of the functional with ~the application

operator and

(i1) the representative set of the functional.

Both definitions have the same effect, but the second type can only be

given for members of D3.

A. Composition

(4.1) (i) (comp(F x G))(X) == F(G (X))

(11) comp == {((z,x), ((z,¥),(y,x))) | ¥X,¥,Z in D1}
B. Construction

(4.2) (1) (cnstr(F x G)) (X) == F{X) x G{X)

(11) enstr == {(((z,¥),%x), ((z,x),(y,x))) | X,¥,2z in D1}
C. Condition

(4.3) (1) (if (P x F))(X) == if P(X) then F(X) else PHI

March 18, 1981 11

(11) if == {((y,x), ((T,x),(v,x))) | X,¥ in D1}

NOTE: We have chosen the if-then conditional rather than
the wusual if-then-else form because the former is
strict while the later is not. A function is strict
if it maps PHI to PHI. If £ = PHI is a function,
then f(x) is PHI for all x. Thus, a strict func-
tional maps the function that is always PHI to
itself. Functions specified by the if-then-else con-
struct can be defined with the above if-then con-
struct by

if P then F else G == if(Px F) U if("P x G)

D. Constant

(4.4) (1) (const(¥)} (X) ==

(ii) {((Y:X)r y) | X,y in D1}

Notational conventions and primitive Functions

In order to improve the readability of the examples below, we write

f.g instead of comp (f x g) s
[£,9] " cnstr (£ x g),
if p then f " if(px f),
and if p then f else g " if(px £) U if("p x d) .

March 18, 1981 12

Further, we use infix notation for the usual arithmetic and logical opera-

tions by defining

f op g == op.[£, 4]

and apply the usual precedence rules.

In the examples below, the following functions are assumed to be given as

primitives, The definitions are subject to the distributive rule 3.2

F(XUY) =F(X) UF({).

For all x in D1:

id({x}) == {x} // the identity function //

hd({x}) == if (x = (a,b)) then {a} else PHI // head //

tl({x}) == if (x (a,b)) then {b} else PHI // tail //.

The functional "while" is not in D3

Next we give the promised example of a function (functional) not in D3.

while (P x F) == if P then id

March 18, 1981 i3

U if P then (while(P x F)).F

If 'while' were in D3, then it should be true that

while (P x (F U G)) = while (P x F) U while (P x G)

The following counter example shows that this is not always so. Suppose

F={(2,1}}, G={(3,2)}, and P={(true,l),(true,2),(false,3)}.

Then

while(P x (F U G}) ({1}) = {3}

whereas

(while(P x F) U while(P x G)) ({1}

= while(P x F) ({1}) U while(x G){fl}) = PHI

Thus, 'while' is a function on D3 that is not in D3,

There are three methods to specify a function

Functions may be specified

1. directly by enumerating their representative sets, for example

March_lB, 1981 14

Xor == (F.F(TIT))I (TI(TIF))I (T!(FrT))r (Fr(FrF))}r

2. by combining primitive functions (given a priori) and/or other-
wise specified functions by means of functional forms, for exam-

ple

abs == if id > const(#) then id else -.id,

3. Dby recursion, that is, by the least fixed point of a functional,

for example

* == if tl=const(@) then const (@)

else hd + *.[hd, (tl-const(1))].

Strict linear functionals are in D3

In [Backus79] Backus introduces the concept of linear functional forms.

These are defined as follows.

The functional E is linear if there is a functional El such that for all

functions p, £, and g:

E(if p then £ else g) = if El(p) then E(f) else E({(g)

March 18, 1981 15

The following relationship exists between linear forms and functionals in

D3.

Strict linear functionals are in D3.

The proof of this claim is given in [Martin8l].

Functionals in D3 are the only ones needed

Functionals such as 'while' and some others are not linear nor are they in
D3. However, the functions they compute are in D3 since they can be
expressed as fixed points of continuous functionals that are in D3. For
ekample, the fungtion while(p x f) is the least fixed point of the func-

tional t{w) defined by
t(w) == (if p then w.f) U (if "p then iq)
Therefore, the ususal constructs for 'while' etc. can be interpreted as

simple macro mechanisms that generate the required recursive definition for

the function denoted by the construct.

Nondeterministic processes can be specified

Suppose a value y is specified by

March 18, 1981 16

y = (£(1) U £(2)) ({x})

where one of the functions f1 or £2 may not terminate, that is yield PHI.
Here y assumes & non-PHI value if at least one of the functions yields a
non-PHI value. Thus vy is specified nondeterministically, More complex
nondeterminisms may be specified by larger expressions and by the involve-
ment of recursive definitions.
NOTE: For a successful implementation of such a device on a
one-processor computer system, it is necessary to let
alternate processes take turns of finite duration,

for otherwise a successfull process may never have a
‘chance to run.

5. D3 WITH THE ADDITIONAL ATCM PHI

The pairs in D1 contain as components only elements of D1; hence they never
contain PHI. If we add PHI to the set of atoms, then pairs of the form

(PHL,x) or (y,PHI) are possible,

Now the relation 'is weaker Ehan' must be redefined. First, since PHI, the
bottom of D3, is weaker than all other objects, D1 is now partially ordered
and by itself a lattice. Secondly, it 1is desirable that this lattice is
not flat but that ordered pairs with components that are PHI are weaker

than those without. For example,
(for all a,b) (a, PHI)E (a, b).

March 18, 1981 17

Before, 'weaker' was synonymous with 'subset of' defined by

X&SY iff (for all x in X there is a Y in Y) such that x=y,

Now we have

DEFINITION 5.1: "“is weaker than"

1, (for all x in D1) PHI & x
2. (for all x in D1) x € x
3. (u, v) E %, v) Iff (WS x) & (v &)

4. (for all X,Y in D3)

XEY iff (for all x in X there is a y in Y) such that xEy.

The atom PHI adds the following improvements to the system.

function ‘or', which @ay be defined by

or == {(T,(T,T), (T, (T/F)), (T,(F,T)), (F,(F,F))}
and consider the test

if (f=const (@)} or (a/f=const(1)) then ...

If we assume that f(x)=0 implies a/f{x)=PHI and

(a/f(x)=const(l))=PHI, then f£(x)=0 leads to

March 18, 1981 18

Consider the

consequently

if (T or PHI) then ...

The value of 'T or PHI' is undefined according to the definition given for

‘or', however, logically we would expect the value 'T' since, as soon as

one operand of 'or' has the value 'T', the value of the other one does not

matter anymore; the result is 'true' anyway. A simple modification of the

application operator accommodates cases of this kind.

DEFINITION 5.2: Application

Let F and X be elements of D3 and x, Y, and z elements of D1,

then

FX) = {y | (v,2) in F & 2& x for some x in X}.

To continue our example, we redefine 'or' as follows

or =_= {(TI(TIPHI))I (TI(PHIIT))I (FI(FIF))}'

Now 'or' applied to (T,T), (T,¥), (T,PHI), (F,T}, or (PHI,T) yields 'T',

applied to (F,F) it vyields F, and

applied to (F,PHI) or (PHI,F) it yields PHI.

Other logical functions can be specified in a similar fashion.

sider the constant function (some constant, PHI) and the

March 1B, 1981 19

Also con—

functional

const == {((y,PHI}, y) | y in D1}. Further, the projections 'hd' and 't1t,

if applied to an ordered pair of the form (x, PHI) or (PHI, x) give

hd(x, PHI) = x,

hd (PRI, x) =

1
g
jos
—

tl(x, PHI) = PHI,

1
=

t1(PHI, x)
With this, we can define, for example, multiplication by

* == {(¢,(0,PHI)), (B, (PHI,0))}

U (if t1 > const(#) then hd + *.[hd, tl-const(1)])

where '+' and '-' are assumed to compute PHI if one of their operands

equals PHI.

The fact that the definition of the application operator has been modified
does not alter the basic equivalences for ‘application' given by 3.1 - 3.5
except for 3.3. F(PHI) = PHI is no longer true, that is, functions are
not anymore necessarily strict., This is so because the representative set
of a function may now contain elements of the form.(y,PHI) yvielding v for

all values to which the function may be applied.
 Now we may assert that all functions have the form

£U{ed),eua,c(n)}

March 18, 1981 _ 20

where £ is strict and the c(i) are constant. The other properties of
domain D3 are unaffected. However, the new definition of application makes
it impossible to definé a function that could test a given value for equal-
ity with PHI although PHI, which is now an atom, may freely be used in
expressions. Suppose an attempt is made to construct a predicate 'eg' that
tests whether an item equals PHI by including the pair (T, (PHI,PHI)) into
the representative set of 'eq'. Of course, this 'eq' returns 'T' if
applied to (PHI,PHI). However, it also returns 'T' if applied to (a,b) for

any a and b.

This is a very desirable property. A test fof equality between a given
value and PHI must not be able to compute 'T' if X = PHI and 'F' otherwise
because such a test would azmount to a solution of the halting problem of
Tur ing machines. " On the other hand, if the result of a function does not
depend on a particular parameter, then the value of this parameter should

not matter at all even if it is undefined.

In order to facilitate the construction of ordered pairs that contain PHI,
the functional 'cnstr' must be modified for the following reason. Consider
the expression (f & g) (x) = &.[f,9] (®x). With the original definition of
‘cnstr', namely

{enstr(F x G)) (X) = F(X) x G(Xy,

f(x)=PHI or g(x)=PHI implies (f & g) (x)=PHI,

March 18, 1981 21

which is precisely what the addition of PHI to the set of atoms was to pre-

vent., The following definition of construction eliminates the problem:

{cnstr(F x G)) (X) = (F(X) U {PHI}) x (G(X) U {PHI}).

This corresponds to the representative set with the pairs

cnstr == {{((z,y) ,x), ((z,u),(y,v)) I (%,y,2 in D1) & (uEx) & (VEx)}

Note that this definition changes into 4.2 if PHI is removed from D1 and

consequently '&' becomes '='.

The representative set of 'condition! must be modified similarly to

£ == {(y:%) s ((T,w) ,(y,v})) |(x,y in D1) & (uCx) s (ve&x)}.

6. CONCLUSION

The domain D3 with PHI as an atom chosen over D1 as the domain for a (func-

tional) programming language has the following advantages.

March 18, 1981 22

l. Not only the denotations of functions but the functions (map-

pings) themselves are members of the domain.

2. Representing the 'undefined' cbndition by the empty set leads to

a very natural model of computational processes.

3. All functions and functional forms are strict or unions of strict

functions and constant functions.

4. Since all members of D3 are sets rather than single items, non-
deterministic processes can be specified in a natural way without

the creation of a new concept.

5. 'The application operator smoothly facilitates the proper evalua-
tion of expressions that involve the bottom PHI. No special rule
is necessary to forbid the test for PHI;' the test is impossible
to construct although the symbol PHI may be used freely, Also,
expressions such as (PHI v true) or (@ * PHI) are evaluated to
vield their proper results —— namely 'true' and 'p* respectively

-- and are not defined to be PHI.

6. Another advantage of the domain D3 is that it facilitates the
introduction of data types in a quite natural way. This issue

not treated here is discussed in some depth in [Marting81],

March 18, 1981 23

Acknwoledgments

I like to express my thanks to Charles Feustel, whao critically read the
paper and in many discussions helped me to eliminate several rough edges of
the mathematical presentation.

Further, I am very grateful to John Backus and John Williams, who after
reading an early version of [Martingl] were kind enough to spend two days
with me discussing a number of issues and patiently pointing out inconsis-
tencies and shortcomings. Their criticisms and help with [Martin81] had a

profound influence on this paper, too.
Finally, I thank Gyorgy Revesz, who has pointed out to me that some way

should be found to handle expressions of the form (g * PHI) properly.

March 18, 1981 24

REFERENCES

Backus78 Backus, John W. "Can programming be liberated from the von
Neumenn style? A functional style and its algebra of programs," CACM 21
8 (August, 1978)

Backus79 Backus, John W. "On extending the concept of program and
solving linear functional equations," IBM report, August, 1979

Hayden68 Hayden, S. and Kennison J.F. Zermelo-Fraenkel Set Theory:
Charles E. Merrill Publishing Company, Columbus, Ohio 1968

Manna?73 Manna, Zohar et al. "Inductive methods of proving properties of
programs," CACM 16 8 (August, 1973)

Marting8l Martin, Johannes J. "Typed functional programming systems,"”
- submitted to TOPLAS, ACM

Plotkin76 Plotkin, G.D. "“A powerdomain construction,™ SIAM J. Computing
5, No. 3 (1976)

Scott76 Scott, Dana S. '"Data types as lattices," s1am J. Computing 5,
No. 3 (1876)

Scott77 Scott, Dana S. "Iogic and programming languages," CACM 20 9
(September, 1977)

Stoy77 Stoy, Joseph E. Denotational semantics: the Scott-Strachy
approach to programming language theory, The MIT Press, Cambridge,
Massachusetts 1977 '

Strachy73 Strachy, Christopher "The varieties of programming languages,"
Proceedings of the International Computing Symposium, Cini Foundation,
Venice (18972)

Will iams8¢ Williams, John H. "Formal representations for recursively
defined functional programs,"” IBM report, July, 1980

March 18, 1981 25

