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Abstract

Beginning with a brief review and classification of model
development approaches, we characterize the simulation model life cycle
-as comprised of seven phases: the conceptual model, the communicative
model, the programmed model, the experimental model, model results, use
of the model for integrated decision support, and the modification ang
extension of of the model. This characterization places severe
requirements on the task of model management (creation, acceptance, use,
revision or extension, and reuse) . The Conical Methodology has been
developed in response to the needs that predominate the model
development phases (from  conceptual medel to model results).
'Definitions used in the Conical Methodology are explained, and the
approach is illustrated with a machine repairman example. 2n incomplete

critique of the result and the approach concludes the paper.




I. Simulation Model Development

Simulation model development is the process by which a modeler
(or modeling team) organizes a conceptual model for solving .some'
problem, transfers it into a commnicative form that admits to solution
using simulation, and uses the model results, albeit with medifications
to the original mcdel, for useful problem-solving purposes. The term
"model developmént" as used herein encompasses the creation, testing
(with validation and verification), and use (or implementation) of a
model. While “"simulation" has different reanings, we view the term as

encompassing three related problem-solving techniques:

Monte Carle simulation — problem solution by subjecting
a model to a repetition of statistical trials, which are
analyzed primarily by classical statistical technicues
(assuming independent, identically distributed
outcomes), '

continuous simulation - experimentation with a model
that progresses from state to state continuously without
explicit  state recognition (or discontinuities),
typically represented as a set of differential
equations, and

discrete event simulation - experimentation with a model
that progresses explicitly from state to state in uneven

time increments {(discontinuously), typically exemplified
by queueing models.

Closely related to simulation are the areas of gaming (or
"operational gaming"), in which a simulation model serves to create an
artificial environment interacting with a human, and emulation, in which

basic attributes of the model.are possessed by the computer system on




which the model is placed, i.e. the computer system itself assumes an
essential modeling role. Note that simulation does not mandate the use
of a digital computer, but the practical problems of today can ecnly be

solved in this way.

While fundamental similarities exist among the three simulation
techniques, the differences are not inconsequential. In particular, the
role of differential equations as a general model representation
language for contingous models has no counterpart in the discrete event
domain. This paper addresses the development of discrete event models,
recognizing that the concepts and approach have validity andvutility for
the other domains as well. However at this juncture the creation of a
methodology for discrete evént simulation, and its recognition and
acceptance by that community} appears sufficientiy challenging without

struggling with the resolution of "pathological” distinctions.
The objectives of this paper are:

(1) to review the work in simulation model development,

categorizing it by approach,

(2) to explain the need met by the Conical Methodology (CM) by
comparing its objectives with those of other simulation

model development approaches,



(3) to describe the Conical Methodology (M) and present the

definitions forming its foundation,

(4) to illustrate the use of M in developing a model of a

machine repairman problem,

(5) to critique, al though incompletely, both the M and the

model representation produced by it, and

(6) to relate the role of model development, and the M.

approach to model development, to the model life cycle.

A summary, noting some implications of the (M for simulation
model development, concludes the paper. The organization of the papér

parallels the division of the objectives.

I.1 Importance of the Development Process

Surveys of the use of problem-solving techniques in operations
research show that simulation persists as *a highly used technique -
[SHANR70, SHANRBO]. Yet, simulation shares the same problems, and
conSequently the same criticisms, applicable to other technigques
requiring thé creation of large software Systems. The dramatic increase
in  computational capabilities has stimulated ever-increasing

requirements for simulation studies. The creation, validation,




verification, experimentation, 'maintenance, and modification of
simulation models is now a costly, time-consuming effort. One estimate
for a large defense project, which is not to be named, places the cost

of simulation software at ten million dollars over a six year pericd.

In 1976 the GAO cited several problems that led to high costs
and limited utility of "computerized models® in the Ffederal government
{USGAO76}. Studies Sponsored by the National Rureau of. Standards during
the same time frame were investigating the feasibility of model

‘documentation standards for computerized models in general [CONTA77,
ROTHP?B] and simulation models in particular [NANQB??b]. A model
evaluation project by the Department of Commerce sought to establish
guidelines by which computerized models could be assessed as to their

acceptability.

On the international scene a workshop hela in September, 1979
explored the issues of standardization of simulatiqn languages.
Although.located in St. . 2gata, Italy (near Sorrento), the workship was
labeled SWISSL' (the Sorrento Workshop on International Standardization
of Simulation Langquages). Several vieﬁs were put forth, and an
organizing .body, the Committee for International Standardizatién of
Model Oriented Languages (CISMOL), was formed.  Also ‘on the
international scene, the Technical Committee on Simulation Software
(TCB)' of the International Association fbrVMathematics and Cbmputeés in
Simulation (IMACS) is addressing the issue of includihg discrete event
and combined models in the revision of its language standard for

continuous models, adopted initially in 1967 [SCICS67].



The large investment represented by a simulation model and the
breadth of concern for improvements in the application of simulation

attest to the significance of simulation model development. However,

the suggestion of standardization as a solution route has drawn.

cautionary responses [NANCR79, SOLOS80]. Recently, we have argued that
a major contributor to the high cost of simulation is the absence of
fundamental principles, caused in part by a theery/interpretation
inversion induced by the focus on simulation programming languages
(SPLs) [NANCR81].  oOnly by establishing an orderly base — a set of
sound, consistent definitions — can a broadly applicable, more
axiomatic model development methodology be created. This "retreat to
first principles” is a precursor to the development of meaningful and

useful guidelines, if not standards, for simulation model develorment.

I.2 Related Work

An early attempt to generalize simulation model representation
is the calculus of change concept, proposed'by Lackner [LACKM62,
LACKM64a, IACKM64b]. = An explanation of this work and a conjecture
regarding its inability to influence model reéfesentation are given in a

previous paper [NANCR79] .

In reviewing the ongoing work in simulation model development,
we have organized the efforts into four categories:

£l

(1) the extension of software development tools,

._WL_._l__..



(2} program generators,
(3) simulatin theory, and

{4) systems specification languages.

I.2.1 'The Extension of Software Development Tools

A concern for inadequate and inconsistent model documentation
caused McLeod to construct a programmer's checklist [MCLEJ70, MCLEJ73].
McLeod's objective was not simply to ease the documentation task but to
establish some uniformity and completéness in the documented
information. Earlier efforts to ease the documentation task, e.g. the
automatic production of GPSS flow diagrams from the program, proved of
little benefit. More recent aids such as programs for variable cross
referencing in SIMSCRIPT 1II.5 and the recognition of all class

attributes in SIMULA [VISOG79] offer more assistance in model creation.

A more inclusive appfoach to model development through the
extension of software design tools is the Software Design and
Documentation Language. (SDDL) creéted by Kleine [KLEIH77a]. SIDL is.a'n
interactive system which assists in the design of SIMSCRIPT programs.
The utility of SDDL for simulation program development, especially the
production of complete documentation; is described in a subsequent paper
[KLEIH77D] . The recent paper by Richerson [RICEM80] also contains

helpful development suggestions for large FCRTRAN simulation efforts.



In contrast with SDDL and the ad hoc, although quite helpful,
techniéues of Richerson, both of which initiated from program design and
development, the cellular simulation project of the Centre in Simulation
at the University of Lancaster began as a structured approach to
developing large simulation mcdels. The approach pértitions a model

into cells, which commmnicate by message transmissions. The relative

independence of cells permits their parallsl design and creation’

[DECART76]. Recent extensions of the cellular Structure propose that
each cell can be viewed as a further cellular partition based on
different aspects. For example, a cellular partition of a machine shop
could be viewed as comprised of an ﬁoperational“ cell (all machines
running as normally expected) and a "degraded mode” cell (the optional
structure of the shop if one or more machines are not operating
normally). These cellular medels of differenﬁ system aspects could be

developed almost independently as are the original partitions. The

hierarchical structuring of the cellular partitioning also enables an

efficient handling of the activity-based timing mechanism by a

modification to the common three-phased approach [CRO0JS0].

I.2.2 Program Generators

A program generator is a program that produces a program in a
simulation programming language (SPL) from a simple input description.
Tie program generator functions as a preprocessor facilitating the

production of a skeletal structure of the model programmed in a "target”




SPL. Program generators can be designed as pedagogical tools as well,
permitting relatively unsophisticated users {(of SPLs) to produce
simulation programs that can illustrate modeling design and analysis

concepts [MATHS80].

The first program generator was the "Programming by
Questionnaire™ (PBQ) System developed at RAND [OLDFPES, OLDFP67].
}Qwever, the concept of interactive Program generators for simulation
models was first expressed by Clementson [CLEMA73]. Other than the work
of Heidorn [HEIDG74], ‘.;*hich souwght to enable the natural language
description of GPSS models, research and development of simulation
Program generaters has been concentrated in Europe: CAPS/ECSL  at
Birmingham by Clementson [CLEMA73], DRAFT at Imperial College by
Methewson [MATHS74, MATHSTS], S4 at Sheffield by Lafferty [LAFFHT3),
MISDES by Davies at Portsmouth (now at Munich) [DAVIN76], and GASSNOL at

Université Paul Sabatier by Vidallon [VIDACR80].

A common feature of all the simulation pPregram generators
developed in‘ the UK is the reliaﬁce on the entity cycle '(of activity .
cycle) diagram, originated as the "wheel chart" by Tocher [TOCHK64] and
popularized in HOCUS [HILIR9), as the input language. (A good
explanation of entity cycle diagrams is given 1in [POOLT77].) The
simplicity of t’nese diagrams, which use only four symbols, makes them
easy to teach, and students quickly master the approach. The GASSNOL
systems uses the Network Oriented CAD Input Language (NOCADIL), which is
a command language désigﬁed around the description of nodes and arcs

comprising a network.




I.2.3 sSimulation Theory

The calculus of change concept cited above represents an attempt
to derive fundamental modeling abstractions for discrete event
simulation. Other attempts to identify some general concepts for model
representation are found in [BLUNG67, NANCR72, and ETSCM72]. However,
the most extensive formulation of a theory has utilized the concepts of

general systems theory.

Zeigler's book [ZEIGB76], which draws together previous results
published_ in several papers, presents a formalism that maintains a
separation of static and dynamic model description. Model components
are characterized by descriptive variables, and d components interaction
section prescribes the dynamic relationships through an informal
description. Additional dynamic description is furnished by "influencer
diagrams™ and "model trajectories." At the nucleus of the model
representation is a finite state machine describtion. Recently,
Zeigler's formalism and his elaborated development of the theory of
: éxperimental frames have permitted somé important characterizations of

models and the relations between models and systems [ORENT79].

Another systems~theoretic approachrto simulation theory is given
in a series of papers by Kindler [KINDE76, KINDE77, KINDE79]. Kindler's
treatment also separates the static and dynamic aspects, producing a
theoretical structure through a convergence from the static
relationships among systems and mcdels to the dynamic one. His approach

has also been used to develop a classification of SPLs (KINDE78].
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A different path to simulation theory has been followed by Harry‘
Markowitz, one of the founders of SIMSCRIPT. In a lengthy and very
interesfing report, Markowitz reexamines the entity, attribute, and set
(EAS)  status view of SIMSCRIPT, noting its applicability as a
generalizing description, applicable to simulation modeling and data
base management systems [MARKH77]. Some definitional changes in
SIMSCRIPT I1 are required to accommodate the EAS view, and Markowitz
identifies them as well as explaiﬁing the original intent for seven
levels of the 1anguage (only five are defined in [KIVIP73]) and the
utility of the added levels. The generality of the EAS status view is
also proposed as sufficient for its use as a standard for simulation
model representation in a subsequent report presented at the SWISSL,

mentioned above [MARKH79].

I.2.4 Systems Specification Languages

A systems specification language (SSL) contans elements of the
objectives of a program generator. However, a SSL includes the function
of the input language (the eﬁtity cycle diagram of the Program
generators) and seeks to proauce- a complete ~executable system
specification (rathér than a skeleton). - The DELTA Project, a joint
effort of the Norwegian Computing Center and the University of Aarhus
(Sweden), is Producing a SSL for discrete event simulation applications
[HOLBA77]. (This is the lone SSL effort in simulation, although,

Heidorn's natural language specification of GPSS models, now inactive,
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shares similar objectives.) A SSL should pérmit a user from a known
applicaﬁion domain to construct an executable simulation program using
the terminology common to that application domain. The structure of
DELTA reflects the SIMULA influence, which is to be expected. It also

exhibits proper top-down design with stepwise refinement.

Beginning as a system development tool only, DELTA is now
intended to produce executable code and a model specification in throe
related language forms: DELTA, BETA, and GAMMA. To date we are not

aware of an application of DELTA to develop an actual simulation model.

1.3 Summary

Each of the above research and development areas influences the
task of developing simulation medels, While systems theory provides a.
descriptive theory of simulation experimentation, program generators
demonstrate a utilitarian "proof by example." Software development
tools are supported for model development by their acceptance in the
programming community. Systems specification languages represent an
- ambitious extension of the current limited ability of the program

generators,
Each area has its Proponents, and each can rightfully claim

successes in reducing the magnitude of the model development task.

However, none appears to be a supportive tool throughout all phases of

11




model development. None offers both a descriptive and instructive
approach to simulation medel development. The foundation promeoting an
axiomatic structure supporting the entire model life cycle, remains to

be established [NANCRE81].

The remainder of this paper describes the Conical Methodology
(M) - a conceptual tool for model development. We begin with defining
the context in which large simulation models are created and used so as
to explain the objectives of the M (Section II). In Section III
crucial definitions are presented and illustrated with a machine
repalirman exgpple. Applicétion of the methodology is described in
Sectioﬁ IV. Section V contains an incomplete critique of the M; termed
“incom?lete" because this conceptual tocol can be evaluated conly through

an implementation test.

IT. The Conical Methodology: Needs and Objectives

IT.1  Phases in the Development of a Simulation Model

We perceive the use of a simulation hodel, its life cycle in the
software development terminology, to consist of seven rhases, These
phases begin with a conceptual model, derived from the modeler's
knowledge and assuﬁptions about the modeled system and conclude with a

phase in which the results of multiple experiments are categorized and

12



analyzed so as to permit knowledge-based experimentation. These phase
definitions and the relationships among phases are presented in Figure

l-
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THE SYSTEM

Fither physical or rea2l, the system and the study objectives provide the
reference for the model and the modeling task.

PHASE 1: CONCEPTUAL MODEL

The conceptual model is that model which exists in the mind of the
modeler. The form of the conceptual model is infleenced by the system,
the perceptions of the system held by the modeler (which are affected by
the modeler's background and experience and those external factors
affecting the particular modeling task), and the objectives of the
study.

FHASE 2: COMUNICATIVE MODEL

A model representation which can be communicated to other humans can be
judged or compared against the system and the study objectives by more
than one human. Several commmnicative models could be constructed
during a study, each derived from 2 preceding commmnicative model
{following the first} or different conceptual models. Entity cycle
diagrams are examples of commmicative models.

PHASE 3: PROGRAMMED MCDEL

A prograrmed model is a model representation that admits execution by a
computer to produce simulation results. It is 2 comunicative model
from which experimental results are obtained. SIMSCRIFPT or SIMULA
programs are examples of programmed models.

FHASE 4: EXPERIMENTAL MCDEL

The programmed model and the executable description of the test
enviromment (the experimental frame of Zeigler [ZEIGB76]) form the
experimental model.

PHASE 5: MODEL RESULTS

The results phase inclodes the outcome from a single execution of the
experimental model or those results produced o satisfy a single test
scenarioc, which might require several model executions with different
input value specifications, structural changes, ete.

PHASE 6: INTEGRATED DECISION SUPPORT

Integrated decision support extends the experimental domain to multipie
scenaric executions, indexed and accessible either by automatic, manual,
or combined analysis so as to permit the recognition of behavioral
features or trends-unspecified in the individual tests, The recognition
of untested but interesting test scenaries is possible. Analysis
permits the extrapolation or prediction of intested scenaries based on
prior resulis.

PHASE 7: MODIFIED MODEL
Modification represents a significant change in the model definition and
specification from the original. The change might be caused by an

extension of function of the model or restatement of the study
objectives.

Figure 1. The Phases of Simulation Model Development
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While many simulation models have ‘been developed without
.explicity recognitiqn of all of these seven phases, we believe that most
successful models and modeling projects have experienced the first five
phases, As the complexity and size of the model (and project)
increases, the greatér the necessity for explicitly recognizing each
phase. The six and seventh phases could be applicable only to those
projects in which a model is expected to have an extended 1life and be
subjected to progressive experimentation with probable modifications.
The programmed model (third phase) is wha£ Lehman [LEEMMB0, p. 4-8] has

described as a P-program (real world problem solution):

The problem statement can now, in general, no longer be
precise. It is a model of an abstraction of a real-
world situvation, containing uncertainties, unknowns,
arbitrary criteria, continuous variables. To some
extent it must reflect the personal viewpoint of the
analyst. Both the problem statement and its solution
‘approximate the real world situation.

Lehman's comments on the life of a P-program could he applied verbétim

to that of a large complex simulation model {LEBMM80, p. 81.

Dissatisfaction will arise not only because information
received from the program is incomplete or incorrect, or
because the original model was less than perfect. These
are imperfections that can be overcome given time and
care. But the world too changes and such changes result
in additional change. Thus P-programs are very likely
to undergo never-ending change or to become steadily
less and less effective and cost—effective.

i5




These observations also support the existence of phases six and seven of

the model life cycle.

One final comment on the simulation life cycle "involves
documentation, both program and model documentation. All tbo often
documentation is perceived as an intervening phase between three and
four, i.e. completion of the programmed model 1s followed by production

of the "documented model®™ illustrated in Figure 2.

Program documentation is not to be done as an "after the fact®
completion task. The proper role of program documentation is presented
in numerous books and papers on software engineering. We take the
position that model dociumentation demands far more than simply program
dochmentation.A Further, proper model documentation initiates with the
first commumnicative model and contipues thrqugh sucéeeding model

. development phases. This position and the relationship between model
specification and documentation are detailed lin previous papers

[NANCR77b, MANCR79].

16



THE .SYS'IEM
CONCEPTUAL MCDEL
COMMUNICATIVE MQDEL
FROGRAMMED MODEL

\

CQVPLETED (DOCUMENTED) MODEL

The completed model includes the necessary documentation, both internal

to the program and as external documents, in order to use the pProgram
for experimental purposes,

EXPERIMENTAL MODEL
MCDEL RESULTS
INTEGRATED DECISION SUPPORT

MODIFIED MCDEL

Figure 2. Common and Incorrect Perception of the Documentation Role
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I1.2 Model Development Needs

Oren and Zeigler [ORENT79] have identified concepts needed for
coping with the large complex_ simulation models of today.. The
inadequacies of current tools are identified by referring to the
functional elements of a simulation program. We find much in Ehis work
that reinforces our own observations, and the experimental frame
concept, originally presented in [ZEIGB76], provides an instructive
guide for validation and verification. However, we do not share the
authors' conviction that simulation programming languages based on

systems theory can provide the form for most convenient expression

{ORENT73, p. 70].

Récently, Oren has described Computer-aided Modeling Systems
(CAMS), which takes a broad view of model development, similar in
breadth to our own [ORENT80]. He categorizes the needs for computer-
assistance in the mgdeling process as: (1) model generation/referencing,
{2) model acceptability, (3) model processing, and (4) behavior
processing. Oren's categories span the first five phases specified
above, and his inclusion of adaptive'or learning systems as part of
behavior processing could also inclﬁde the last two phases. However, we
have difficulty in integrating his four categories into the requirements
of model life cycle support or the more limited scope of model

development.
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.Section I reviews several approaches to simolation model
development. The contributions of current simulation model development
-approaches to each of the seven phases is subjectively assessed in
Figure 3. Each reader must reach a conclusion regarding the accuracy of
these assessments. However, we believe that the relative judgments are

explainable and defensibie,
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TS provide a sketchy explanation, we offer the opinion that:

SPLs provide less toward guiding the construction of a
communicative tool than a software development tool
because they are limited by the syntax and semantics of
the language's world view as well as potential
implementation restrictions. However, the SPL provides
access to model results using system—defined varizbles
for instance that cannot be matched by other approaches.

The experiment generators extend the objectives of the
program  ¢generators to the entire experimental
environment. In so doing they should assist the user in
formulating the experimental design, constructing the
test scenarios, and formatting the model results.

Markowitz's EAS approach contributes more than software
development tools to the conceptual model, but its
restriction to an event scheduling world view restricts
the programmed and experimental models more than the
pProgram generators approach.

The dotted line segment separating the systems theory
contributions is intended to represent the indirect and
uncertain contributions to  the communicative and
programmed models. This assessment is based on the
required knowledge of systems theory (set theory and
functional notation) to comprehend the communicative
model ., Production of a programmed model from the
commmnicative model is not accomplished as simply as
with program generators for example. The experimental
frame concept contributes significantly to the
experimental model, and the systems theory approach
provides the only linkage between system and conceptual
model (all others presume a suitable conceptual model as
an initial condition).

The most apparent observation to be made from Figure 3 1is the
.absence of contributions to the integrated decision support and the
modified model. These two phases do not represent the fundamental
challenges of model representation but do place crucial demands on the

preceding phases of the model life cycle.



1I.3  Objectives of the Conical Methodology

The Conical Methodology is a model development approach. It is
not intended to érovide abstract or concrete definitions of general
éystems. Moreover, it is limited to dealing with the relationships
among medels or, more Precisely, wmodel representations. It does not
provide a solution to the very important problem of model validation —-
accepting ‘the model as a "truthful® representation of the system
considering the objectives of the study. The M is intended to
contribute toward model Qerification — the assurance that a model meets
the stipulated requirements,i i.e. the accurate translation from one

representation to another.

With regard to the model 1ife cycle, the Conical Methodology is
intended to contribute to the first through the Ffifth Phases -—- the
Fhases that relate to the model development. Specifically, the M has

the following objectives:

(1) assist the modeler in structuring and- organizing the

conceptual model,

(2) impose an axiomatic development within an apparently free

and unrestrictive model creation system,

(3) utilize medel diagnostics to assess measures such as
completeness and consistency for verification purposes and

relative model complexity for planning purposes,
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(4) produce major model documentation throughout the model
development as an essential byproduct of definition and
specification but permitting the modeler to expand the

descriptions as deemed necessary, and

(5) promote an organized experimental design and monitor the

realization of that design in the experimental model.

These objectives are quite ambitious, but the simulation applications of

today, not to mention those of tomorrow, demand no less.

111, A Limited View of Simulation Model Development

| The development of a2 model is a translation effort. Any
translation effort can be characterized simply as a process that, for
some input, produces an Qutput. The- output of model development is a
model representation that permits communication of the model
characteristics and experimentation with behavior believed to describe
the behavior of the modeled system. The inputs for model development -
could take various forms for example_biock diagrams, flowcharts, entity
cycle diagrams, or a mental perceptioﬁ of the model. We take the view
that model development can lead to.several evolutionary representations,
but the mental perception is the initial representation for every

component.,




Model development begins with a set of definitions that permit
an accurate, unambiguous, and complete description consonant with the
objectivés of the simulation study. Also required is a structure by
ﬁhich the parts of a model can be related, i.e. model development tools
should provide a discipline for model composition and decomposition. We
contend that the development task should provide a large part of the
medel documentation and that diagnostic assistance to the modeler should
proceed throughout the model development. The objective of this paper
Is to deal with the first and most basic element of simulation model

development: an adequate, descriptive, and conducive set of definitions.

We presume that the motivating purpose for model development is
in order to experiment with the model. This experimentation is
accomplished through model execution or, most 1likely, repeated
executions of the model. Implementation of experimental results is
assumed to extend over a lengthly period so that modifications and

extensions to the model are quite likely.

III.1 The Machine Repairman Example

To assist in  the explanation of ‘definitions, we use the

classical machine repairman model (see, for example, [PALMD47, COXDR62].

A single repairman is assigned to ‘service a group of
semiautomatic machines which fail at randem points in
time. The repairman can service a failed machine in a
time period that is assumed to be negative exponentially
distributed with parameter MU. On completing a machine
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service, the repairman determines if any machines are’
failed; if so, a falled machine is selected for repair.
If all machines are operating at the conclusion of a
repair, the repairman walks to a designated neutral
location to await the next failure. The walk times, to
machines and to the neutral location, are functionally
determined by the identifiers of the two locations, The
machine failures are assumed to £follow a Poisson
distribution with parameter LAMBDA.

Note that the selection of & machine to be repaired, 1if more than one
are failed, Iis intentionally left undefined. The repair selection
distinguishes among three variations of the problem; the first
failed/first repaired (first come/first served) discipline is used in a

following section.

IIT1.2 The Definitions

We utilize two conventions in'presenting the definitions: (1)
_the use of indentation to reflect subordination among terms, and (2) the
underscoring of a term used in the definition which is subsequently to
be defined. References to the machine repairman example are included at

various points for clarification.

A model of a system is -comprised of objects and the
. relationships among objects.

An object is anything that can be characterized by one
or more attributes to which values are assigned.

Attributes are object descriptors of two types:
indicative and relational.



The machine repairman medel

machines, and the neutral location as objects.

Indicative attributes describe an aspect of the
object; i.e. provide some knowledge about the
object.

Relational attributes relate the object to one

or more other objects; 1i.e. describe the
relationships among objects,

- some unique identifier, perhaps a number, that is an

attribute.

The repairman would have a Jlocation as a

includes the repairman,

the

Each machine would have

indicative

relational

attribute to relate the repairman to a machine or the neutral location.

Indicative attributes can be clas
transiticnal.

A permanent indicative attribute can be assigned
& value once, and only once, during model
execution, :

A transitional indicative attribute can be
assigned a value more than once during model
execution.

A status  transitiocnal indicative
attribute can be assigned a value from a
finite set of possible values.

A temporal | transitional indicative
attribute is assigned a value which is a
function of time, i.e. the expression
evaluated to assign a value to a
transitional indicative attribute either
contains sytem time or a temporal
transitional indicative attribute.

The machine identifiers are examples of permanent

attributes.

As an example of a status transitional
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attribute, each machihe would also have an explicit or implicit
attribute designating it as "failed"™ or "operating."l Examples of
temporal traﬁsitional indicative attributes are the globai clock for the
model (called "system time" above) and the attribute giving the failure

time of a machine.

Relational attributes can be classified as hierarchical
or coordinate.

An hierarchical relational attribute establishes
a subordination of one object to another,
implying that all characteristics of the
subordinate object are descriptive of the
superior object.

A coordinate relational attribute establishes a
bond or commeonality between two objects based
on: (1) the value(s) of one or more attributes,
or (2) the appearance of one {or more)
attribute(s) of one object in the expression for
value assignment to one {or more) attributes of
the other object.

The only hierarchical relationship in the machine repairman
example is created possibly by the use of a "set," i.e. for example, an
object representing all the machines. The set object is discussed more
fully below. A coordinate relational attribute establishes the relation
between the repairman location and a failed machine under repair, i.e.
the repair of a machine reqpifés the attribute for the repairman'é

loction to take on the value of the machine identifier.

1 Implicit attributes are undefined descriptors whose values can be
determined by the evaluation of expressions containing explicit
attributes.
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- The relationships among cbjects, established by the relational
attributes, can be used to characterize model structure. Of particular
interest are the "bonds™ between objects that seem distantly removed in

a top-down model definition.

A relational attribute is intermodular if it establishes
a relation between two objects whose only common
submodel is at the model level, Otherwiie, a relational
attribute is classified as intramodular.

Relations among objects often are described by modelers through
the use of "sets.” We view the set relationships as specific instancés
of the more general classification presented above. For example, a
coordinate attribute would describe the relation among set members;
while the relation between the set object and any member would be
described as hierarchical. However, the concept of "set" is extremely

useful because of its descriptive capability.

A set is .an object that can be classified as either a
primitive set {p-set) or defined-set {d-set).

A  primitive set (p-set) is an object
representing a collection of objects all of
which have identically the same attributes.

A defined set (d-set) 1is an object representing
a collection of objects, not necessarily having
the same attributes, defined by an expression
evaluation during model execution. - -

2 The degree of "bonding” can be described in more detail by an
‘association measure, but the utility of this level of detail remains
to be established.
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The Importance in distinguishing between p-sets and d-sets lies
in the fact that membérs of p-sets can be characterized (completely
“described) and enumerated prior to model execution. The property of set
membership is static. This static property does not hold for d-sets.
Again, using the machine repairmén example, the machines and their
attributes can be recognized and such matters as storage -allocation
accomplished, at the initiation of model execution, but the number of

machines failed at some point in time is known only then. In mere

complicated models, membership in d-sets, and the consaquent effects,
can be much more unpredictable. For example, a specification of "all
vehicles with more than two axles, but not in tow, traveling in the left
lane between mile markers 114 and 116® fequires an expression evaluation
invelving several attributes, and the number of objects comprising the

set might be difficult to estimate prior to the evaluation.

A value can be typed (defined) as numeric, logical, or
string.

The value types are.so typical.of those found in genérai purpose
programming langpages that their definition here is unnecessary.
Relying again on the machine repairman e%amplej each machine could have
an attribute "operable" (az status transitional indicative attribute)
which can be assigned the values "true® ("operational®™) or "false"
("failed"). A logical vaue ("true"™ or "false") would result frém the
evaluation of the expression: operable (machine 1) AND operable {machine

2). Note that more complicated descriptions can be created by resorting
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to multi-valued logical éttributes; for example, machine status: "failed

under repair,” "failed waiting repair,"” and "operational.”

Every model must have an indexing attribute. While the indexing
attribute commonly is "system time" or "time,” the use of "space" is
also plausible, Pertaining to the indexing attribute, we define terms’
that imply temporal relations linking the states of objects. Although a
plausible argument can be made for "space" as an indexing attribute
(with the consequence that spatial relations link the model states), we
believe that the overwhelming usage of time justifies the reference to
"system time" as the indexing attribute., Fundamentally, no limitation

is imposed by this choice.

An instant is a value of system time at which the value
of at least one attribute of an object can be assigned
(altered).

Keep in mind that a éubmodel or the entire model is an object,
just as is a machine or the set of machines in the machine repairman
example. Also, the definition of "instant" describes typical contiﬁuous
simulation procedures, in which model states are updated on a fixed
incremental basis (delta t). and system time is the single attribute

whose value always changes.

The state of an object is the  enumeration of all
attribute values of that object at a particular instant.

(Consequently,) the state of a model is the exhaustive

enumeration of the values of all attributes (of all
objects} at a particular instant.
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The state chronclogy (tl, t2) of an object is the

enumeration of all attribute values of that object

ordered by system time in the duration tl to t2. (Note

’ that £1 < t2 and the duration includes all instants,

- rather than only those where an attribute of the object
changes value.)

Durations of time are represented as intervals and spans.

An interval is the duration between two successive
instants.

A span is the contiguwus succession of one or more
intervals.

The representations of time and state are cbupled in the customary
terms: event, activity, and process; but with the consequence that no

ambiguity exists in the relation of one term to the others.

An activity is the state of an object over an interval,

An event is a change in object state, occurring at an
instant, that initiates an activity precluded prior to
that instant.

An event is determined if the only condition on
event occurrence can be expressad strictly as a
function of system time. Otherwise, the event
is contingent.

An object activity is the state of an object between two
events describing successive state changes for that
_ object.

A process is the succession of states of an object over

a span (or the contiguous succession of one or more
object activities).
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The benefits of the clarification of time and state relationships

achieved with these definitions are explained in [NANCRS81].

With respect to the machine repairman example, a machine -
(object) experiences an invariant pattern of behavior: an operational
activity folloﬁed by an activity of failed awaiting repair which is
succeeded by the activity of failed under repair, and this pattern
repeats throughout simulation time. The process description of a
machine focuses on thé necessary conditions that permit one activity to
terminate and its successor to begin. .Note that the event of machine
failure is determined (only a function of time), but the event of
initiating repair is contingent on the location of the repairman at a

failed machine. One further distinction remains among events.

A simple event is a change in object state resulting
from the change in value of a single attribute of an
ocbiject.

A compound event is comprised of two or more simple
~ events.

This terminology, corresponding to the usage found in probability theory
{for. example, see [BHATU72, p. 333]), is useful in realizing a model
representatibn that ‘avoids the pathological issue of * "zero time

-activity" (see [KIVIP73, p. 282-287]) and race conditions {PARNDGS] .
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I1I.3 .Cperations

Attributes of objects are the essential ingredients in
simulation model representation. The categorization of attributes above
is an attempt to describe the dynamic relations among objects.3
Essentially, the value of an attribute is determined by an expression
evaluation that includes the values of one or more other attributes

combined with one or more operations. This section describes the

necessary operations (and operators) for model representation.

I1I.3.1 Arithmetic and Logical Operations

The usual arithmetic and logical opérations of a general purpese
language are included: addifion {+), subtraction (~-), multiplication
(*), division (/), conjunction (OR), disjunction (AND}, and negation
(NOT). The left arrow (<--) is the assignment operator. . For the
present we avoid the details of operator precedence and expression

evaluation.

The reader must appreciate that at this level of detail we are
treading a fine line between the recognition of necessary capabilities
for applying the Conical Methodology and the stipulation of requirements

for a Simulation Model Specification and Documentation Language (SMSDL)

3 The description of dynamic relations using a static representation

mechanism is a problem confounding several research areas in computer
science.
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that would achieve the implementation. Consequently, we view the
listing of operations above as examples only and possibly incomplete.
In all likelihood, a requirement of a SMSDL would be extensibility in

both the operator set and data structures.

III.3.2 Object and Set Operations

The creation of an object requires the association (definition)
of one or more attributes with that object, and the removal of all

associations accomplishes the deletion of an object.

Cbject creation is the definition of one or more
attributes describing an object.

Object deletion is the removal of all attributes
defining an object.

Operations for set creation and set deletion establish or remove the

relation(s) among set members.

Set creation defines a set object ("header") having one
or more relational attributes that provide access to the
attribute values of all member objects.

Set deletion removes the relationship established by at
least one relational attribute,

The descriptive use of "sets" in the simulation context must be

recognized as more specific than in the conventional mathematical usa e,
g



where objects can be declared as set members without defining an
explicit relationship. Simulation mcdel representation requires that
the relationship(s) be explicitly defined, but noté that this
requirement does not prevent the conceptual use of "set" without the

explicit representation.

Further treatment of "sets" treads close to the domain of the
SMSDL, which is beyond the scope of this paper. At this point we are
content to consider a set as an object distinguishable from its member
objects and characterized by one or more relatiocnal attributes and one

or more value attributes.

I11.4 Summary

The definitions above contribute to'a structured, disciplined
approach to model development. The term "Conical Methodology™ is

derived from the two stages in model development:

{1} Model definition 7through a "fan out" approach in
identifying subsystems at increasingly lower levels until,
given the input(s)' and.the objective(s}; no further
division into subsystems is warranted. This lowest object

level is called the "base level.”
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(2) Model specification by the determination of value
assignments to model attributes as objects are integrated
into their defined submodels (which are objects) and
submodels into higher level submodels (also objects) until

the model level is reached.

The Conical Methodology is illustrated in the following section albeit
without  the benefit of a Simulation Model Specificétion and
Documentation Language (SMSDL), which we have asserted to be the
critical 1ink between the modeler's conceptual abilities and model

realization [NANCR77a, NANCR79] (see also {FRANES0]).

The definitions above also furnish the foundation for a more
axiomatic approach to simulation model development, The three
contrasting simulation "world views" — event scheduling, activity scan,
and process interaction (following the Kiviat/Lackner categorization
[KIViPG?, IACKM62]) — can be precisely defined. Further, we believe
that analyses of model representations can contribute to the creation of

less costly and more accurate models.

Iv. An Example Application of the Conical Methodology
The machine repairman problem introduced in the previous section

is used to demonstrate an application of the Conical Methodology. The

outline format of the M, modified from its original presentation
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(NANCR772, p. 16], 1is shown in Figure 4. Application of the OM is
illustrated by the construction of a specific outline corresponding to

'Figure 4 for the machine repairman problem.

The reader is cautioned that the application ‘without the SMSDL
(Simulation Model .Specification and Documentation Language) lacks the
vehicle for smooth, relatively simple model creation. Furthermore,
without the prompting and assistance of the interactive enviromment
containing the MSDL, the iteratively converging nature of the model

development task cannot be fully appreciated.
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I. Statement of Study Cbjectives

A. Definitions
B. Assumptions regarding objectives

II.  Modeling Envirenment
A. Modeling effort

1. Organization creating mocdel, dates, individuals, etc.
2. Scope of effort in time and money

B. Model assumptions

1. Boundaries
2. Interaction with envircnment

(a) Input description
(b) Assumptions on model/environment feedback or cross effscts
(c) Output and format decisions

3, Initial state definition
4. Simulation termination conditions

III. Model Definition and Specification
A. Model

1. Sers
2. Indicative attributes
3. Relational attributes

B. Submodels
1. Submodel at the first level

(a) Sets
(b} Indicative attributes
{c) Relational attributes

((1)) Submodel at the second le\_rel

({a)) Sets
{{b)) Indicative attributes
{{c})} Relational attributes

(++2(1l}...) Object at level n

{eas(a)...) Sets
(eee(®)eaa) Indicative attributes
(ees(C) ...} Relational attributes

2. Submodel at the first level

IV. Model Validation and Verification Procedures

A. Validation tests
B. Verification criteria and tests

V. Model Experimentation

A, Hypotheses to be tested
B. Experimental design

VI. Implementation Regquirements

Figure 4. The Conical Methodology Approach to Model
Definition - Outline Illustration
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iv.l Model Definition

Completion of the outline of Figure 4 for the machine repairman

problem follows below.

I. Statement of Study Objectives

To determine the system utilization for an assignment of a
variable number of machines to a single repairman.

&.

|w

Definitions
N = number of machines

system utilization = the ratio of operational time to
the total possible operational time for all machines

total machine downtime = sum of machine downtime
(machine 1, ... ,machine N)

machine downtime = the wait time for repairman plus
the machine repair time, for each machine failure

wait time for repairman = the time which the machine
waits for repair, measured from its instant of failure
to the beginning of repair on that machine

machine repair time = the time taken by the repairman
to return a failed machine to the operational state

total repair time = sum of machine repair time, for
each machine failure

Assumptions regarding objectives

1. No need to consider multiple repairmen — only the
single repairman case is of interest.

2. The number of machines (N) could assume a value
: ranging from 2 to 50, specified by input.

3. A machine failure is immediately recognized by the
repairman. .

4. Individual machine downti.mes should be recorded to

permit possible consideration of differences among
machines,

39




5-

-

A total repair time is recorded in the event that
operator utilization becomes of interest.

II. Modeling Environment

A.

Modeling effort

l.

Organization creating model, dates, etec.

Model created to illustrate the (Conical
Methodology by R. Nance on 8 August, 1979.

Scope of the effort in time and money

Model created in one staff-day and only to provide
an example.

Model assumptions

1.

|00
L]

Boundaries

Machines are arranged circularly so that the
distances between adjacent machines are equal.
Also, an equal distance separates the neutral
location from any machine.

Interaction with environment

a. Input description

The number of machines (N) is specified as
input as are: the distance between adjacent
machines and the distance £from any machine to
the neutral 1location (both are given as time
values — intransit time from/to the neutral
leocation and  intransit time from/to a2
machine) .

The machine repair times follow a negative
exponential distribution with the mean repair
time (MU) -specified by input. The machine
failures occur according to a Poisson process
with the mean time between failures (LAMBDA)
specified as input.

The standard negative exponential
distribution, designated by EXP, is provided
50 that only the single parameter
specification is required.



I1I.

S
L]

b. Assumptions on ‘model/environment feedback or
cross effects :

Only the states of "at location j" (a machine
or the neutral location), travel to machines
or travel to the neutral location
("intransit") are possible for the repairman.
No rest breaks are represented.

Only the states of "operational," "failed
awaiting repair,® and "failed under repair"
are possible for the machines. No dependency
exists among machines (the failure events are
independent) .

No changes in input value specification during
a run are permitted,

c. Output and format decisions

The values of the number of machines, mean
repair time between failures (LAMBDA), and
system utilization, with designating titles,
are given as output.

Initial state definition

The initial state is defined as ail machines in
operation and the repairman at the neutral
location. Thus, a time until failure must be
assigned to all machines at system time set to
ZEero.

Simulation termination conditions

For simplicity, a run is terminated when system
time exceeds maxtime, a value prescribed by input.

Model Definition

A. Model

1.

Iy

Sets

No sets are defined at the model level.

Indicative attributes

System time is 2 temporal transitional indicative
attribute,
Units: minutes.
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System utilization is 2 permanent indicative
attribute, with value assignment at system time =
maxtime.

Units: proportion (minutes/minutes).

Maxtime is a permanent indicative attribute, with
value assignment at system time = zero.
Units: hours.

3. Relational attributes

None.

B. Submodels

1. Machine submodel

d. Sets

The machine submodel is based on the set of
machines as a primitive set (p-set). The set
"header™ contains the number of machines (N)
as an attribute.

The set of failed machines is a defined subset
(d-set) of the set of machines. The set
"header® contains the number of failed
machines and the mechanism for referencing set
members (as mentioned alse under relaticnal
attributes).

I

Indicative attributes

Total machine downtime is a permanent
indicative attribute.
Units: minutes.

The number of machines (N) is a permanent
indicative attribute (that is contained in the
set "header" of the set of machines).

Units: machines (integer with range 2 ... 50).

. The time between failures for every machine
follows a negative exponential distribution
with mean L[AMBDA, a permanent indicative
attribute.

Units: minutes.

c. Relational attributes

A reference mechanism is necessary for the set
of failed machines. {Note: this statement is
implied by the definition of the set of failed
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machines; every d-set must have a reference
mechanism.)

(1) Base 1evel_9£ the machine submodel

Each machine is an object.

{2) Sets

Machines are members of the set of
machines and can be members of the
set of failed machines.

(b) Indicative attributes

Each machine  has a machine
identifier, a permanent indicative
attribute, with a unique value.
Units: dimensionless.

Each machine has a machine clock and
a machine downtime which are temporal
transitional indicative attributes.
Units: minutes, for both.

Each machine has a condition
attribute which is a status
transitional indicative attribute.
Units: states, with range of "failed
awaiting repair," "failed under
repair," and "operational."

(c) Relational attributes

Each machine has membership in the
set of failed machines based on the
condition attribute value ("Failed
awaiting repair" or "failed under
repair"™).

2. Repairman submodel

The repairman submodel can be defined immediately
at the base level. The repairman is an object.

2. Sets

No sets are defined for the repairman object.

lor

Indicative attributes

The machine repair time is a temporal
transitional indicative attribute with wvaloe
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generated from a negative exponential

distribution with mean MU, a permanent
indicative attribute which is identical for.
every machine failure.

Units: minutes for machine repair time and MU.

The repairman clock and the total repair time
are temporal transitional indicative
attributes.

Units: minutes, for both.

The intransit time from/to the neutral
location to/from any machine is a permanent
indicative attribute.

Units: minutes.

The repairman location and the intransit time
between machines are status transitional
indicative attributes.

Units: dimensionless for repairman location
and minutes for intransit time between
machines.

The machine intransit times make up a table of
permanent indicative attributes.
Units: minutes.

¢. Relational attributes

The repairman location is a relational
attribute, relating the repairman (object} to
the machine objects.

At this point the. first stage — model definition — is
terminated fbut not necessarily completed since model development can.
: iteratevthroﬁgh more than one definitional phase). Model specification
in the second stage is guided by the model definitiog, which is

summarized for convenience in Figure 5.



B

1
2.

3.

A.  Model

Sets: None

Indicative attributas:

System time: temporal transitional indicative attribute
System utilization: permanent indicative attribute
Maxtime: permanent indicative attribute

Relational attributes: None

«  Submodels:

1.

Machine submodel:

&. Sets: Set of machines {p~set} with number of machines
Set of failed machinas {d-set) with number of failed machines

b. Indicative attribotes:

" Total wmachine downfime: permanent indicative attribute
Number of machines: permanent indicative attribute
Number of failed machines: status transitional indicative attribute
Mean failure rate (LAMBDA) : permanent indicative atrribute

c. Relational attributes; Refarence mechanism for set of machines and
set of faiil:ed machines

(1) Base level of machine submodel: Each machine is an object

(2) Sets: Members of the ser of machines and can be members of
the set of failed machines

() Irdicative attributes:

" Machine Identifier: permanent indicative attribure
Machine clock: temporal transitional indicative attribute
Machine downtime: temporal transiticnal indicative artribute
Wait time for repairman: temmoral transitional indicative
atiribute
Condition: status transirional indicative attribute
Time between failures: temporal transitional indicative
attribute

(e} Relational attributes: A coordinate relation exises among
members of the set of failed macines identified by the value
of the condition attribute

Repairman submodel (Base leval)
The repairman is an chject.
2. Sets: None

b. Indicative attributes:

~  Total repair time: temporal transitional indicative attribute
Machine repair time: temporal transitional indicative attribute
Mean repair rate (MU}: permesnent indicative attribute
Repaiman clock: temporal transitisnal indicative attribure
Repaimman location: status transitiopal indicative attribute
Intransit time to/from neutral location: permanent indicative
attribute
Intrangit time from a machine: status transitional attribute
Machine intransit time table: Permanent indicative attributes

S. Relational attributes: Repairman location relates the repairman
" (chject) to the machine objects.

Figure 5. Summary of the Model Definition Stage (Top—-Down)
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IV.2  Model Specification

Model definition relies heavily on the modeler’s observational
capability: the top-down description is a statement of what exists
complicated only by the need to classify attributes. The model
specification requires a more indepth recognition of the interactions
among attributes, paréicularly as these interactions vary with time.
During this stage the SMSDL should exert a crucial influence through its
ability to promote an iterative convergence in the derivation of the
desired specification. We can give only an inadequate approximation of
this derivation which, although to the modeler should seem free and

unrestrictive, is carefully structured.

Model specification can begin at several points, no one clearly
more appropriate than another. Any base level submodel is a candidate.
Actually, any attribute with value assigned by input can be immediately
specified. One possibility is to select that base level submodel with
the ﬁaximum number of attributes; yet, an argument cﬁuld.be méde to the

contrary.4

Scmewhat arbitrarily we begin with the machine submodel since
machine failures are the "driving eveﬁts“-in the model. Initially, all
machines are in the "operational™ state, and the repéirman is at the
neutral locaztion. A .change in state occurs with the first machine to

experience a fallure, and at this instant the repairman also changes

4 Ordering of the base level submodel specifications can be made more
specific; the criteria are the subject of ongoing research.
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VState (from "at ngutrai location®™ to "intransit"). Repaif cannot begin
until the repairman is at the failed machine. In general, the period
until repair begins is comprised of both intransit time and the time for
repair of machines failed and not repaired prior to the failure of the
machine uﬁder consideration. (Cf course, the first failed machine has

no predecessors, but the general case is of more interest.)

In order to clarify the assignment of values to attributes, we

use the temporal subscripts:

T+
It

£ future time (a value > system time),

current value of system time, and

(a3
]

T
[l

past time (a value < system time).

Also, the set of failed machines is represented by F and the particular
failed machine under repair is designated as having j &s the value of

the machine identifier.

At the instant of the repairman’s arrival at the failed machine,
we begin the update of attribute values.

3 wait time for repairman(t ) <— system time (t ) - j machine

clock(t
ock( p)

j condition(to) <~ "failed under repair"
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At this point we need to treat the repairman submodel attributes
which describe the interaction of the repairman with the failed machine.

‘Specifically,

machine repair time(t ) <— EXP(MU),

total repair tlme(t ) <— total repair time(t ) + j wait time
for repalrman(t Y, afd

system time(tf) {— system time(to) + machine repair time(to).

With an updated value of system time, i.e. the current value of to is

the previously updated system time(tf), we continue:

repairman clock(t ) <{— system time(t }, and

j machine downtlme(t ) <— machine repalr tlme(t ) + 3 wait time
for repal rman {t )

Updating the machine clock to mark the next failure of the 3

machine is accomplished by utilizing the EXP function.

time between failures(t ) <-- EXP(LAMBDA),
j condition(t ) <&— “operational”, and

j machine clock(t )} <— system tlme(tb) + time between
fallures(t }

At this instant the repair is completed (with the consequent

update of the clock for the machine just repaired) and the next state of
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ihe repairman is "intransit,“ but to what location? The selection of
the next location is the crui of the major event in the model. If at
least one machine is failed, i.e. the set of failed machines is not-
null, then the repairman moves to the location j, the "first" of the
failed mechines. After updating the repairman clock, we resume with the
sequence of computations described above. However, if no machine is
failed, the repairman moves to the neutral location. The next location

is determined by the functional representation shown below.

k machine first in F if |F| > 0
repairman location(tf) &

neutral locatieon, otherwise,

The first condition above 1leads to an intransit time between
machines specified by a table access with j (the current repairman
location) and k (the next machine location) as arguments. The update of
system time to reflect the intransit time is accomplished by the update
of the repairman clock {note that the determination of a future value of

system time always redefines the current time).

intransit time between machines j, k(t ) <— machine intransit
time table <j,k>

system tlme(tf) {~— system tlne(to) + intransit time Dbetween
machines j, k(t }

repalirman clock(to) <— system time{to)

49



The second condition, which leads to the state "at neutral
locétion“ for the repairman, also introduces the possibility of time
passing while the repairman waits for a failure, To capture this
situation we update the wvalue of system time to place the repairman at
the neutral location (and update the repairman clock) then follow with a

second update depending on the status of the machines at that instant.

system time(tf) <— system time(to) + intransit  time from/to
neutral location

repalrman clock(to} {— system time(to)

system time(t ) + intransit time from/to
neutral location if |F} > O

system time(t f) Lo

min(k machine clock(t.)) + intransit time
. from/to neutral locatlon, otherwise.

The selection of the minimum machine clock identifies the location of
the next failure, designating the repairman location (at the current

value of system time).

repairman location(to) <— k | k machine clock(to) is minimum.

The "core" of the model is now completed, since we have returned
to the state of the repairman at the designated failed machine to begin
repair,r Summafy’attriﬁutes, such as total machine downtime and system
utilization, and the test for termination by comparing the wvalue of

system time with maxtime remain to be specified. The complete
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specification is shown in the series of figﬁres relating the model
definition and specification stages (Figures 6 - 9). We note again that
the modeler would be expected to cycle between the definition and
specification stages several times during the development of  a model,
rather than simply proceeding through a top—down definition succeeded by

a bottom-up specification as described above.
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As a final comment we return to the two sets — the set of
machines and the set of failed maéhines. The former is a p—;et, with
all of its characterizing attributes estazblished prior to medel
execution. The latter, a d-set, is made up of all machines having the
,valﬁe "failed awaiting repair"™ plus thé possible single machine with
value "failed under repair®™ for the condition attribute. While the
definition of the set of failed machines adds 1little to the model
representation in this case (the selection of the machine to be repaired
could be made strictly on a comparisen of machine clock values), we have
included it to illustrate the use of sets, which proves exceedingly

useful with more complicated models.

Iv.3 Summary

The machine interference éroblem has served to illustrate an
application of the Conical Methodology for model representation.
Completion of the model development would include validation and
verification, experimenéation,- and implementation, omitted here in the
interest of brevity. In the following section we examine both the
development process and—fhe produced representation to critique both the

process and the product.
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V. The Methodology and the Representation: An Incomplete Critique

The illustration of the Conical Methodology in Section IV only
confirms that one model can be developed according to a top—down
definition and bottom-up specification based on the attribute
classifications of Section III. What is gained by the sacrifice of time
and thought to produce this structured, categorized representation
summarized in Figures 6 - é? That question is the subject of this
section, but no definitive answer is possible at this time for the SMSDL
remains a crucial missing component in model development. Nevertheless,
the application of the Gonical'Methodolégy and the product itself impart
further knowledge about the characteristics of an SMSDL and simulation
model development. We attempt to organize this kﬁéwiedge in the second

subsection.
V.l Examination of the Model Representation

Coservations on the machine repair model are presented as brief
comments, in both a positive and negative vein and sometimes combined.

The reader is advised that references to Section IV, and perhaps to

Section III as well, are helpful in evaluating the comments.
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"V.1.1 Considerable redundancy exists in the representation.

Redundanﬁy is present in several forms: between the definition
of sets and the definition of relational attributes for example, or the-
use of a condition attribute for machines +to indicate a failed state
when a comparison of the machine clock with system time provides the
same inférmation. However, redundancy is not undesirable in the
development of a model, for it provides a means of checking for
consistency (see [ZEIGB79, P. 108]} and assists in assuring

completeness,

Redundancy in the model development should not be confused with
redundancy in the experimental model, represented in a SPL. The latter
is ‘a potential source of inefficiencies in execution time and/or
simplification of the experimental representation. For example, the
explicit use of a repairman clock is revealed to be unnecessary since
its specification is always the assigmment of the value of systen time;
that is, the value of the repairman clock is simply obtained by

assigning the value of system time.

V.1.2 The hierarchical development in Figure 4 is too restrictive.
‘The outline of Figure 4 serves to illustrate the top—down

definitional decomposition, which is followed by the bottomup

composition in the specification stage. This format does not illustrate
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the procedure by which the model is developed. Model development is an
iterative procedure, providing for interchanges between the definition
and specification stages so as to converge on the model representation

through successive refinements.

V.1.3 The modeler should not have to prescribe the reference
mechanisms for sets or, in general, define and specify at this level of

detail.

We agree that this example has probably carried the
representation into the domain of the SPL. We have erred in this
direction intentionally so as to emphasize the descriptive power one can
use. A SMSDL must permit the level of description to range from very
high to very low levels, according to the choice and needs of the

modeler as we have noted elsewhere [NANCR79, p. 93]

V.l.4  The representation provides a basis for testing consistency in

the use of attributres.

In addition to the detection of inconsistencies through
redundant description, the classification of attributes enables the
identification of differences between definition and specification. For
example, having classified machine downtime as a temporal transitional

indicative attribute, the modeler would be alerted to his specification
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of the attribute as an expression devoid of attributes which are
- functions of time (or a generated function value such as EXP). By
including dimensionality requirements, the detection of inconsistenéies
is made more exacting through the ability to match the dimensionality of

an assignment expression with that of the assigned attribute.

V.1.5 Model completeness is facilitated through the ability to check

on attributes defined but not used in the specification and vice versa.

Completeness is an important property to assess of any model.
While the Conical Methodlogy cannot assure completeness with certainty,
the use of an undefined attribute in the specification of another
attribute can be detected easil?. Likewise, the definition of an
attribute that never appears in. the specification éxpression of another

attribute is recognizable.

V.1.6 The representation provides a basis for the estimation of

relative model complexity.

At this juncture such an assertion is based primarily on féith
or hope. However, this optimistic claim has some foundation.
CQurrently, program complexity is recognized as an exceedingly important
‘area that has attracted mucﬁ attention without admitting much subsequent

understanding. The analysis of structural relationships through
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directed graph models of data or control flow have furnished only
limited insights into the inherent complexity of programs. By
classifying attributes, we construct a more substantial relationship for

investigation.

The complexity of a simulation model seems intimately related to
the degree of interaction among cbjects in the medel. This "degree of
interaction" could be indicated in several ways. Consider the following

possible indicators of medel complexity:
(1} the number of statements required to update system time,

(2) the number and types of attributes included in the
expressions for determining the updated values of system

time,
(3} the number of intermodular relational attributes,

(4) the mix of attribute types in the expressions for value
assignments to temporal transitional indicative attributes,

and
(5} the directed graph showing the relationships among all

attributes (which is related to the component interaction

diagram of Zeigler [ZEIGB76, p. 21]).
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Any or all of these might prove necessary to comprise an adequate and

useful measure of model complexity.

V.1l.7 The representation provides very good documentation support

without additional effort.

The model documentation is enabled as a byproduct of the
definition and specification activities. If desired, each level of the
conical partitioning can be described without recourse to further
detail. The model and first submodel levels might prove sufficient to
explaiﬁ the model to a manager; while a programmer considering the
fequired data structures might access the base level descriptions.
Relationships among attributes are clearly depicted in the specification
stage; thus permitting the "domino effect® of changes in object
descriptors to be peréeived_g priori. Further, sensitivity tests can be
conducted more selectively since the first level effects §f changes in

parameters and structures can be recogniied.
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V.2 The Conical Methodelogy for Simulation Model Development

V.2.1 The model development activity is too creative a task to be so

tightly structured.

The absence of a MSDL and the corequisite environment forces
the development task to appear as sequential and narrowly channeled.
Such is neither mandated nor intended. A modeler need not proceed in a
strict top—down fashicn through model definition followed by the bottom—
up specification.. On the contrary, one can define submodels with
different superior submodels, and can interchange between the definition
and specification stages easily. The Conical Meﬁhodology also serves as
an overseer -— monitoring the relationships among submodels, revealing
submodel incompleteness, and detecting certain inconsistencies in object

descriptors.

V.2.2 The Conical Methodology and the requisite SMSDL will be costly

systems.

The development of the SMSDL is a costly, time~consuming effort.
Similarly, the cost of developing and implementing the requisite
environment for application of the Conical Methodology — a Model
Management System —— is estimated to cost much more .than the ©&SMSDL

alone. However, in comparison with the cost of developing a single
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simulation medel similar to those for the validation of defense systems
for example, the cost is relatively low. The operational costs will not
prove burdensome, and will reduce - the cost of developing large
simulation models. An interactive environment is a necessity so that:
(1) the model development system can prompt the modeler, (2) the modelef
can effect construction and revision in concert with the system, (3) the
interchange between definition and specification can be rapid to
preserve the recognition of associated structures and consequent
impli;ations, and {4) partial models and submodels can be stored and
retrieved over the duration of a lengthy simulation study, permitting
reflective periods and providing convenient communications among members

of a modeling team.,

V.2.3 The Conical Methodology is simply the application of the program
development techniques, often described as "structured programming,” to

simulation modeling.,

Elements of the philosophies and approaches of several program
development techniques are recognizable in the @1 just as these
techniques can be characterized as applications of the engineering
approach (sﬂbdivide, analyze, and éynthesize), and, in turﬁ, the
engineering approach constitutes an exteﬁsion of the scientific method,

which finds its roots among the early mathematicians and philosophers.
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To the extent that a program or system development task is

viewed as a modeling activity, that task shares the same objectives and

assumes a resemblance to simulation model development. However, we

maintain that certain characteristics of the Conical Methodology are not

So apparent in the popular program development techniques. For example,

the Conical Methodology:

(1)

(2)

(3)

(4)

seeks to support the entire simulation experinent rather

than just the model development,

incorporates diagnostic evaluation of the modeling results

So as to provide corrective improvements during the model

development,

treats the production of multilevel doctmentation as an

integral part of model development, and
includes objectives that, to be accomplished, reaquire a

closer interaction with the modeler than might be necessary

with a program development technique.
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V.2.4 The Conical Methodology provides an underlying structure that
accommodates a more axiomatic approach to simulation model development

and experimentation.

The top-down definition and bottom-up specification furnish an
explicit template for modéi development that assists in the assurance of
completeness. Attribute classification enables certain checks for
consistency, Taken together, the two provide a potential for analyzing
relative model complexity; which can contribute to :g priori
characterization of the modeling effort and to more accurate estimation

of the required resources, time, and documentation effort.

V.2.5 The methodology offers a model representation and a development
environment appropriate to the realization of knowledge-based

experimentation so crucial to large simulation studies,

The necessity for continued assistance in simulation
experimentation during the originating study, a subsequent modification,
a follow—on extension, or a reapplication to a different problem area
has been identified as important by Mathewson [MATHS78, MATHS79] and by
Oren and Zeigler -[ORENT79]. Specific capabilities have been proposed
and; in a few cases, implemented by Maroglio [MAROL79] to support large
simulation models for a U.S. Navy application. The Conical Methodology
contributés a basis for realization of a knowledge basé to guide model

experimentation and provide a vehicle for retrospective inquiry into
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‘test cases and results, Outcomes of individual experiments can be
integrated. in ways to address experimental questions unforeseen
initially and to extract behavioral responses requiring the linking of

experiments.

V.3 Summary

This examination of the medel representation and the
representation development process has been labeled "incomplete® because
of the absence of a SMSDL. = Both a SMSDL and. the environment created by
a Model Management System are crucial to the Conical Methodology.
Nevertheless, the assertions posed in this section and the responsive
comments help the reader to understand our perceptions and motivations
and to obtain answers to some of the more apparent questions. A
conclusive assessment of the Conical Methodology must remain as a futufe

responsibility.
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