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INTRODUCTION

In a comﬁrehensive review of algorithms for numerical solution of
non?inear.a1gebrafc equations, Almroth and Felippa [1] state that
"A11 standard forward'fntegration schemes, whether corrected or
not, exhibit inherent ngmerica]linstabi11ty near & critical point,
a fact that limits the usefulness of those methods in postbuckling
analysis." The homotopy method proposed here has no inherent
numerical instability near a limit point, in fact, a 1imit point
is no dffferent‘(as far as the method is concerned) from any other
pointron the load-displacement curve. The method bears a super-
ficial resemblance to standard continuation, imbedding, or incre-
mental methods but is fundamentally different in two impdrtant
respects: 1) Aside from Sifurcation points, there are no "singular
“paints” along the curve, so turning points (e.g., limit points)

pose no special difficulties whatsoevery 2) the imbedding or load
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parameter A is a deEendent.variah]e along the curve.}'In the
é]gorithm; A does not necessarily change monotonically, and part
of the poher'of the algorithm derives from this abi]ify of X ﬁo
bqth incrkase and decrease along the curve.

Theo?eticai background and results pertaining to the homotopy
a]gorithmfare in Refs. [2] and [3], and computer code is described
in Refs. 14] and [5]. The method has been succeésfu]]y appiied to
non]inear;compiementarity problems [6], nonlinear two-point
boundary Faiue problems [3], fluid dynamics [7-9], highly noniinear
elastica b?ob]ems [10], and optimal structural design [11].
| HOMOTOPY METHOD

In the notation of Almroth and Felippa [1], the equilibrium
equétion has the form

F(9.3,0) = 0 | (1)
where g ié the generalized displacement vector, X is the scalar
Joad paraheter, Q is the Toad distribution vector, and the vector
function F is the force imbalance. q, Q, and F are n-dimensional
vectors, where n is the number of degrees of freedom.- Note that F
is viewed as a function of g, A, égg_ﬁ; The theoretical basis for
the homotopy algorithm is the following fact from differgntial
geometry [2]: —— znuda%ﬁgéizén.fbyrvﬁfp
FACT. Suppose that the n€{2n+1) Jacobian matrix of F

OF = [Fy F, Fgl (2)



vy

- has full; rank on F~ &f;, {4q AW IF(q,x,G) = 0, QkA<w} Then for

almost a]l G the Jacobian matrix of
F(q,k) = F(g,4,Q)

( is Just F with § f1xed) a?so has full rank on F (j;f {kq,x
Fla,a) =10, m}

: “A1most all Q" means for all § except those in a set of
measure ﬁero Alternatively, if Q were picked at random, the
resuit ho]ds with probability one. In practical terms, the ccn-’muﬂ% ' Z ﬁ
clusion 15 virtually always true.” The full rank of the nﬁf;:?;‘ o
Jacobianjmatrix
at points on the load-displacement equilibrium curve T has two
1mportant consequences [2]: 1) T is d smooth curve with a con-

t1nuous1y varying tangent, and T does not intersect itself nor

~ other zefo curves of F (in the (n+1)~dimensional q, A space),

2) the matrix DF has a one dimensional kernel (null space), which
is crucial to the implementation of the algorithm.

Since T is smooth, it may be parameterized by arc length s.
Thus q and A are functions of s atong I'y and egn(1) becomes

Flals)ans)) =0 | (5)

& Flats)a(s)) = [i—:q(q(s),k(s))_ EA(q(s),}\(s))] dal.o (s)
dit

ds



-and '
r-gig- | . -
== | (7)
dA

J?_S"

since r 15 parameterized by arc length - g=q(s), A=A(s) ~ and

&ﬁ% 32 15 the unit tangent vector to r hointing in the direction

of increésing arc length. T is the trajectory of the 1n1t1a1
value prob]em eqns(6) and (7) w1th initial conditions
R RO )

Track1ng [ simply amounts to solving eqns(6)-(8). Recall that the

VJacobianfmatrix [?q ?%] in egn{6) has full rank everywhere along
r, so inéthis formulation a.limit point is oblivious. The true
problem ﬁs.to efficiently and accurately solve the initial value
problem éqns(s)-(S) for q(s), Ar(s).

Note that the derivative [gST -g—g-] is only indirectly speci-
fied by éqns(6)~(7), and any ordinéry differential equation al-
gorithm fequires the problem to be in the form _

y' = fls,y) _ (9)

[-g—gt %:] is calculated by finding the one-dimensional kernel of
the matrix {Fq EA] and then using eqn(?)‘and the contindity of
the derivative. This kernel calculation is done via Householder
reflections (see [2] for the defaiTs), and the work involved is

comparable to solving a linear system of equations.



Theﬁe are basically two approaches to tracking the curve T
defined parametr1ca]1y by g=q(s), A=A(s). The first is to use a
1ow order 0DE method (e.q., Eu]er s method) to predict the next
point, and then use Newton's method with an (n+1)x{n+1) Jacobian
matrix (formed by augment1ng Fq with a row and column to give a
full ran% matrix) to iterate back to I'. This is simple, accurate
(there ié no drift from F),ﬁand has no difficulty with Timit
points. iThe disadvaﬁtages are tha; an appropriate step As for
Euler's methéd is difficult to determine, there is no guarantee
that the:augmented matrix will have full rank, and iterating back
to T exaqt]y is very expensive if Eu}er's-method is forced to take
small stéps to maintain convergence. See Rheinbo1dt‘[12] for an
excel]ent discussion of and argument for thas approach.

The second approach is to solve eqns(6)-(8) by a nigh order
0DE method (e.g., a sophisticated variable step, variable order
Adams method as in [13]), and use Newton's method only rarely to
verify the accuracy of the ODE solver. Using an ODE subroutine
package, this approach is simp]e? accurate enough for most
engineering applications, and very efficient because Adams'
methods are efficient. The step size selection and order choice
are done automatically, relieving the user of two d1ff1cu]t and
burdensome chores., Furthermore, a good implementation, as in £137,

will‘be stable and robust. Drawbacks are that the solutions do
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drift (afthoﬂgh-s1ightly) the startup cost is high, and on rare
occas1ons the method s1mp1y "Joses" the curve and wanders off in
the wrong d1rect10n |
| Both approaches breeze through 1imit points with no diffi-
culty, aﬁd neither approach is clearly superior. At the moment
there isjconsiderab]e computational evidence in favor of the
second aﬁproach [2-11], and it is the second approach that is
advocated here,
APPLICATION
The homoéopy method was applied in the analysis of a space truss
| whose stability characteristics under multiple independent load
combinations are described in Ref, [14]. A se!ectidn of results
is presedtedl First, the mathematical model of space trusses,
- which is:vaTid for large fotations [15], is expressed in the
form of egn 4.
| MATHEMATICAL MODEL
The axial deformation of the truss element in Fig. 1 1%

=L-1, | ' (10)

where Lo and L are the element lengths 1n'the initial and deformed

states, respectively. It follows from Fig. 1 that

301 |
- HJ’-‘-GKH=(Zj1L§)T‘r (1)
=



' 3
L = g ll=( 218 S
o J=1 |

L, =L+, a3
AXO §= xh-x ; A‘= U, -U ;' AX = AX0+A (14)
where Xa: Xb are the initial coordinate vectors at the a, b-end of
the e1ement U s U are the global displacement vectors at the- a,'
b-end of ! the element; and the vectors AX » AX coincide with the

initial, deformed state of the element. The strain energy of the
’ |

element is
-:l: 2- = E&. ) .
I —52 Yoe S Lo . (15)

© where yo?is the ektensional stiffness of the element.

The%princip]e of virtual work yields the equation of equilib-

rium !
o m -
F(a.,0) Z (16)
where
i
Rk = 5ak; k=1,2,...,n (17)

The superscript i identifies the m elements of the assemblage. If
Newton's method is used to verify the accuracy of the 0DE solver,
the generalized force vector of element 1, Rl, is computed by the

code number method [16] from the global force vector of element i,

which can be expressed as



3
i a i i A il
P’ 3 Pi ; -Pa = Pb ol el B E:J:Ip (18)
b J
where’
L . .
iz d i_ i,
Gy T P TR (19)
c;, i=1,2, 3, are the direction cosines and p] is the axial

force-ofieiement i in the deformed state. Qf,,wgnJiJQ
By eans(3), (4), (16), and (17), the qgf;;1) Jacobian matrix

becomes

-

DF % (K -G] : - (20)

oL [ f dthn 2
e g T

1

where

i, : . .
Kn 15 the tangent stiffness matrix of element i expressed relative
to the gehera1ized displacements of the assemblage. It is computed

by the code number method from the global stiffness matrix of

element i
=1 =i
R k! .
whera
ML 2 il
y tb‘(}'c1) €16, ¢¢3
i
=1 _ (371 L 2
K' = =y = ={1-c3) CHC (23)
BAjBAk 0 2 273
L 2
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RESULTS

To test_éhe ability of the QDE solver to track with precision
hiéh]y nén]inear-equi]ibrium paths, the reticulated spherical cap
in Fig, é-was subjected to a variety of loads. The most revealing
result w%s obtained by applying a load at joint 1 in the direction
of the gfoba] 1-axis and tracking the equilibrium path through
nine sucéessive zero load configurations in a single run. The

projectidns of the path onto ‘the X—q1, qy» and q, planes are

shown in;Figs. 3-5, where the loading parameter is nondimensional-

ized as
‘ 4
= A1

and the joint displacements, 9y s which have units of cm, are
numberedjin the sequence of the global 1, 2, 3-axes from Joint 1
to joint:7; i.e., a and qy are the deflections in the direction .
of the global 1-axis at joints 1 and 2, respectively, and.q6 is
the deflection in the global 3-axis at joint 2. The zero load
configuratiohs are labeled a-f in the sequence of occurrehce,
i.e., witﬁ increasing arc length. Fig. 6 shows qua]itativély the |
positions that the e]ements.connécting joints 1, 2, and 8 assume
at the zero load states.

| Figs. 2 and 6 indicate that the zero ]oad configurations are

symnetrical relative to the support plane and that a, ¢, g, and i

10
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are rigid-body states. This is reflected with high precision in

- Fig. 5.'§Specifica11y,-the curve passes twice through the largest
negativegcobrdinate on the qs;axis, Whi;h corresponds to the zero
load'staées'd and f, and four timeg through the origin 6f the

ilqs p!aﬁe, which corresponds to the rigid-body states a, c, g,
and 1. fhe last pass occurs after the curve has been tracked over
an arg 1éngth of approximately 60 units. This remarkable accuracy
was achiéved'sole1y with the ODE solver, i.e., without a single
ﬁorrectién by Newton's methed.

TheFJacobian matrix in egn(4) has full rank along the equilib-
rium.cur§e [ for almost a11.G, but for some § this may not be true,
in whichicase [ may bifurcate or even have an endpoint. For these
speciéT @, none of our theory is strictly applicable, and the
performaéce of the ODE solver in the vicinity of a bifurcation
point caﬁnot be predicted. The ODE solver may go through a bi-
furcatioﬁ point satisfactorily (i.e., points on T beyond the
bifurcatidn pofnt_are computed accurately), but the branch it
comes out on and the effort required to pass the bifurcation
point are ]érgely uhpredictab]e. Precisely what happens depends
on roundoff error, the ODE tolerance used, the shape of T, and
 the order and step 1ength'with which the ODE solver is operating
when it reaches the bifurcatioh point. A successful run through

a known bifurcation point, the first critical point on the

fundamental equi]ibrium path [14], is depicted in Fig. 7. The

16



load d1str1but1on consists of equal Ioads in the direction of the

global 1 -axis applied at joints 2-7. 97 represents the deflection

in the d1rect1on of the global 71-axis at joint 3. The second path

: in F1g 7 corresponds to a 0.7% imperfection of the load at joint 2.

17
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