Sperry Researc

wxkkrkgubmitted for Publication******

Technical Report cs 80011-R
Language pxtensions for specifying
Access Control policies in

Programming Languages

Billy G. Claybrook *
and

H. Rex Hartson

October 1980

Department of Computer Science

virginia polytechnic Institute and State University

Blacksburd, VA 24061

e .—.-__....-——.-_.—.,-.——-—-.—.—_

h Center, 100 North Road, Sudburys Mass. 01776

Language gxtensions for gpecifying Access Control

policies in Programming Languages

Billy G. Claybrook *
Sperry research Center
100 North Road
sudpury, Mass. 01776

H. Rex Hartson
Computer Science Depar tment
virginia polytechnic and State University
Blacksburd, VR 24061

ARSTRACT

The scope rules in proqramming languages control the sharing of data
among program mits—e.J-r plocks and procedures. Typicallys scope rules
provide an all-or-nothing kind of access control. A wide range of program-
ming problems exist which require finer access control as_well as considera~
ble sophistication for the implementation of access control policies on
high-level data objects such as f£iles. This paper presents & aunber of lan~
guage extensions that permit the prog rammer to specify the degree of accesS
control for each abstract object that a program unit can manipulate.
attempt has peen made to keep the number of extensions as small as possible
and yet allow the user conveniently to specify the access control policies
that he desires.

gome of the extensions permit access policies ©o be specified’such that
access correctness cén pe completely determined at compile time; other
extensions permit policies to be specified that require some access checking
+o be done at runtime in order to ensure access correctness. The extensions
have been déveloped such that subsets can pe selected and implemented in
proqramming languages o provide various access control policies.

—--——..-—-—_..———.—-_—-...-—....——

This research was sponsored by Army Research office Contract
DAAGZ9—80—C—0022 while the first author was @ yisiting Associate professor
at the University of South Carolina, Columbia, SC-

2

1. INTRODUCTION -

The scope rules in programming languages. control the sharing of data
among'individual program units (blocks and ﬁrocedures). Typically, lan—
Vguages (via their scope rules) provide an all-or-nothing kind of access con-
trol. In many applications finer access control is needed and the capabil-
ity to implement & variety of access control policies, somet imes
sophisticated, is desirable.

According to benning and Denning [DENND79]: "access controls regulate
. the reading, charging, and deletion of data and programs.” There are two
main kinds of access controls as classified by the agents they control: (1)
those which control access by users (people) , and (2} those which control
access by programs. The motivation for this andrrelated work is based on an
observation made a decade ago (LAMPB71}: "...reasons for wanting protection
are just as strong if the word 'user' is replaced byl'program'.“ However ,
there is still a diétinction netween the two cases.

Access controls that govern access by users can vary from user to user.
as such, they are suitable for applications involving, for example, security
and integrity in which different users must be given different access
rights. Access controls of users are the type used by operating systems and
database systems, and they involve an external authorization process—-the
dynamic granting and revocation of access rights to usefs.

On the other hand, accesS control policy controlling access by a Pro—
gram is placed (possibly by capabilities) into the program more or less per-
manently. No capabilities can pe passed in from anywhere external to the

execution environment. These controls are created by the programmer and are

SR I

typically independent of the user (the person on pehalf of whom the program
is running). That is, they behave the same way regardless of which person
is using that program. As such, they are most useful for preserving integ-
rity—for example, for preveﬁting a malfunctioning program from damaging
another program's objects. The contemporary approach to implementation of
data structures, using data type abstraction, is a good example of integrity
preserving controls. Another example is the way in which the scope rules of
prog ramming 1angﬁages control access to variabies in wvarious program units
(blocks). It is this latter kind, the integrity preser&ing controls which
control access by programs, that are addressed in this paper.

Thé primary aim of this paper is to present a number of 1anguage exten-
sions that permit the programmer to specify the degree of access control for
each abstract object that a program unit can manipulate. An attempt has
beeh made to keep the number of exteﬁsions as small as possible and yet
allow the user conveniently to specify the access control policies that
he/she desires. The extensions are suitable for specifying access control
policies in both applications and systems programs.

Access control policies specified such that access correctness can be
determined entirely at compile time do not require validity checks at run—
+ime and, hence, do not incur any runtime overhead. On the other hand, the
greatest flexibility in specifying access control policy is achieved by pro-
viding the validation of access requests at runtime. While the user can
specify access policies such that access correctness can be completely det-
ermined at compile time; no attempt is made to restrict the discussion to
only such extensions (e.g., Jones and Liskov [JONEA?S}).. Instead, exten-

sions are described that also provide the expressive power recquired to spe-

cify policies for dynamic systems, such as file systems, in which objects
and access paths are created and deleted and rights to objects can be
changed dynamically.
McGraw and Andrews [MCGRJ79] state that access control mechanisms
should adhere to two principles: |
1) expressive power - they should allow a wide variety of access
'policies to be expressed clearly and_exactly, and
2) access validation - they should allow the implementation of an
access policy to be validated.
Extensions introduced here support both of these principles.

An important ingredient of any access control facility is the binding
rule. Binding causes a variable (a capability variable in this paper) to
refer to an object by storing a reference to the object in the variable. In
particular, the binding operation x <{-- Yy causes the capability variable x
to feference the object already referenced by capability variable y, creat-
ing a new access path to the object. Most access control facilities pfovide
a single binding rule. For example, Jones and Liskov [JONEA78] provide a
binding rule in which binding is legal provided access rights to an object
are not increased. Others, e.g. McGraw and Andrews [MCGRJ79], Ekanadham and
Bernstein [EKANK79], Wulf, et. al. [WULFW74], use a binding rule in which

the caller determines the access rights of the called procedure during

- procedure invocations. In addition, most access control mechanisms provide

some form of amplification [JONEA73], in which, in certain situations, the
access rights to an object can be increased.
In general, a binding rule determines to somé extent how much control

is afforded the programmer for passing access rights to data objects among

prograﬁ units. Because a wide range of access control policies are needed
for manipulating high level data objects, a single binding rule is not suf-
ficient. Three different binding rules are permitted for use in specifying
access cpntrol policies (these are discussed in detail in Section). Thus,
in addition to specifying access rights to data objects, specification of
access control policy involves specifying which binding rules should be used
during binding operations.

In addition to the authors of the main references in this paper, a few
others have investigated protection.'iﬁ programming languages. An early
integration of protection into programming languages was done by Morris
[MORRJ73). In this work, objects can be sealed and passed from module to
module. The module which seals an object is the only one that can unseal
it, Other modules can access the object only by calling that module which
did the sealing. Malfunctions in.other modules, then, cannot damage the
object by accessing it directly.

Ambler and Hoch [AMBIA77}] also recognize this same approach which, in
its more recent--and more genefal-—form, is the foundation of the abstract
data type approach to object type implementation: "...never pass direct
access to a protected object, butlrather pass access to operations on that
object." Ambler and Hoch provide a comparative examination of Pascal,
Fuclid, Clu, and Gypsy and their application to the solution of an interest-
ing exercise in security-—the Prison Mail Probiem.

The remainder of this paper describes the syntax and semantics_of the
language extensions for specifying access control policy. These extensions

provide the capability to:

1) specify access rights to data objects (either at compile time
- or runtime), |
2) confine or limit the wvisibility of data objects in program
units by restricting the scope rules,
3) specify the binding rule to be used in each binding operation,
and,
4) specify whether or not a capability can be exercised by a pro—
gram unit. ;
Item (1) above is discussed in Sections , , and The confine declara—
tion for limiting the wvisibility of data objects in discussed 1in Section .
The semantics of the binding rules are defined in Section and conditlonal

capabilities (item (4) above) are briefly discussed in Section .

2. MODIFYING SCOPE RULES

The first step in providing finer access control to data objects
involves modifying the scope rules. This involves controlling the objects
that each program unit sees. 1In other words it is desirable for the capa-
bility to limit the visibility of data objects. McGraw and Andrews
[MCGRJ79] use the grant declaration to fully replace the scope rules. A
program unit must be granted access to an object that is defined in another
program unit, otherwise, access to the object is prohibited. Note, however,
that grant must be applieé at successive levels to pass an obiject to an

inner program unit.

This approach 1s analogous to a ®elosed system" of access control
[DALER65] in which all allowed accesses must be explicitly granted. This

has been shown to be the most secure approach in a highly dynamic authoriza-

tion system, because an accidentally omitted grant will not allow unauthor—-

ized accesses. However, in the more stable programming language environment
where long term integrity is the issue, the explicit grant declaration is
too cumbersome for many épplications. Instead, therefore, normal Algol-like
scope rules are permitted to apply here, unless they are altered by the con-

fine declaration. The confine declaration has two forms:

1) confine <cbject list> to <program mit list>; and
2) confine <object> rights {rights list} to <program it list>;
The rights specification in the second form of the confine specifies
the rights that the 1isted program unit(s) have to <object>. In this paper
a right is represented by the name of the operation that it allows to be
performed on an object (e.g., read, write, copy). Any object specified in a
confine declaration automatically has its scope confined to the program
wnit{s) specified in the declaration.
A confine declaration can be applied only to those objects that the

program unit {in which the confine declaration resides) defines or inherits

via another confine declaration. The program wmit(s) in a confine declara-

tion must be defined in the program unit containing .the declaration. The

visibility of an object referenced by variable t can be limited to the

program unit, say ¥PROC, in which the object is defined by using a confine

of the form

confine T EQ_XPROC;

The confine declaration does not prevent an object from being passed as a
parameter to another procedure and confine can also be applied to formal
parameters to limit access to objects passed from a calling procedure. The
confine declaration is appropriate for objects referenced by what ig refer-
red to as "normal" variables (see Section) but is intended primarily for
capability variables.

The example in Figure 1 illustrates the use of the confine declaration.
The object referenced by variable x, defined in proceduré T, has its visi-
bility confined to procedure R (x is also visible in T since it is defined
in T). Variable x would have been visible in all of the précedures in Fig-
ure 1, if the confine on x has not been used. Even though variable x is not
visible in procedure V, the bbject referenced by x can be manipulated in
procedure V, because X is an actual parameter to the call to Erocedure S.
The corresponding formal parameter, a, in S is restricted to V. Variable a
in S is not visible in procedure U as it would normally be.

The program units that can be used in the <program unit list> in a con-
fine declaration in procedure T are limited to procedures 0 and R {(as well
as T itself) since they are the only program wmnits directly defined by T.
The "confine y to T;" declaration limits the visibility of variable y to T;
thus eliminating y as a global variable to the other procedures in Figure L.
On the other hand, z is global to all procedures in T.

As illustrated in Figure 1, the confine declaration can be used to
alter the scope rules of a language when desired. The scheme is relatively
simple yet expressive enough to specify a wide range of access policies not
handled by scope rules or other existing mechanisms. Inciusion of the con-

fine declaration in a programming language requires slight modification of

the symbol table routines within the compiler.

T: Erocedure;
X,¥: integer; ‘
z: real; /* z is global to whole figure */
confine % to R; /* x also visible in T, where it
is defined */
confine y to T; /*prevents y from being global to
. whole figure*/

R: procedure;
Ss Erocedﬂre (a);
a: integer;
confine a to V;

V: procedure; /* x not visible in V, but
. object referenced by X

. can be manipulated here
. because x is actual par-
end V; ameter of call to S */

U grocedure;

end U;

end S;

call §(x);

end R;
Q: procedure;

end Q;
end T;

Figure 1. Using the confine declaration

10

3. CAPABILITY VARIABLES

In conventional Algol-like languages, variables hold values rather than
pointers (or references) to values. Thegse variables are referred to as
"rormal® variables and the variables that hold references to values are
referred to as caﬁability variables. A capabiiity is essentially a ticket
to access a data object, and if a-program mit has the ticket then it has
access to the data object referenced by the ticket. A conventional capabil-
ity contains a type field holding the type of data object referenced, a list
of -access rights to the object referenced and a reference to the data
object. In addition to the three items listed immediately above, a capabil-
ity, in this paper, may contain one or more binding rules that can be
applied to the capability variable during binding and a list of locks that
can control the use of the capability by program units. This generalized

capability variable is illustrated in Figure 2.

——

binding lock (s) reference

I |

| type | right(s)
| | rule(s)
l !

T
e
T

Figure 2. Capability variable

In Jones and Liskov's [JONEA78] system, all data objects are assumed to
be referenced by éapabilityvlike variables. In this paper, access to
objects of built-in types is assumed to be via normal variables, whereas

access to objects of programmer defined abstract data types (that is, types

11

specified and implemented via an encapsulation mechanism such as Claybrook's
module [CIAYB79], [CLAYB80}) is through capability variables. Each abstract
data type* specified and implemented by the module has a rights specifica-
tion in it which gives the maximum set of rights available for the program-—
mer to use. The buiit—in types have a predefined set of primitive opera-
tions. | |

There is no confusion of normal variables with capability variables,
sincé a compiler can easily make the distinction. The use of normal varia-
bles to access objects of built-in types does not limit the uﬁility of this
access control facility, since normal variables can be replaced with capa-
bility variables to reference built-in types as well as programmer defined
types. This would mean of course that primitive objects would also be
referenced with capability variables. This paper will concentrate on access
to programmer defined types.

If "xlist" is a programmer defined type then the declaration

x: xlist capability;

decléres X to be a capability variable to type xlist; that is, x is an
access path to objects of type xlist. The capability attribute can be omit-
ted from declarations such as the above because it is easy for a compiler to
differentiate between built-in types and programmer defined types; there-
fore, it will be omitted from some of the declarations in the remainder of
this paper.

Instances of type xlist are created by executing a "createlist" opera-
tion. In this paper it is assumed that each abstract data type has é

create-like operation specified for it in the module defining the type, and

* The terms "data type" and "object type" are used interchangeably in this
paper.

12

that this create operation creates an instance of the type with full access
rights. The statement

X.createlist(); *
causes an instance of data type\xlist to be created (with full rights) and a
reference to it placed in capability x. Initially, a capability variable is
empty in the sense that it does not reference anything; however, it still
can initially contain access rights when they are explicitly specified in a

declaration as in:

y: xlist capability rights {insert,delete};
The rights specified in the declaration of y must be a subset of the full
rights specified in module (the type implementation module of) xlist.
As mentioned earlier, a capability variable can have the following

attributes: rights, binding rules, and locks. In their most general form,

capability variable declarations would specify whether each of the attri-
butes is static or dynamic. For convenience, & éonvention is adopted that
retains this generality while not unduly encumbering the.programmer._ The
‘convention is that attributes are static if théy Have declared initial
values. Attributes without declared values are dynamic. None, any, or all
of the capability variable attributes can be initialized at declaration
time. Static attributes can never be altered during execution, while
dynamic attributes can be assigned values during program execution. To
illustrate the difference between static and dynamic attributes, consider
the create statement

y.createlist();

* In this paper, an operation on an object referenced by a capability varia-
ble will be denoted either by a qualified notation of the form "varia-
ble.operation" or by the notation "operation(variable) ;" both forms are used
in Alphard [WULFW76].

i3

This statement creates an xlist instance with full access rights and places
a reference to it in y, whose declaration is given above. But capability
variable Y does not receive full rights (as variable x did above), because y

has static access rights, "insert" and “delete," while the binding rules and

locks attributes are dynamic.

Jones and Liskov [JONEA78] require that access rights be declared at
compile time and thus provide only for static access rights. When only
static attributes aré used to specify policy, then access corrrectnesé can
be determined entirely at compile ﬁﬁne. A disadvantage, however, of static
attributes is that sometimes there is a need for different sets of attri-
butes for a single object. In Jones and Liskov's system this means at least
one new capability variable must‘be declared for each set of access rights
(the only attribute in their facility is rights), whereas, if dynamic attri-
butes‘ are available, a single capability can be used. In McGraw and
Andrews' [MCGRJ79] system, access rights are associated with a capability
variable, not.at declaration time, but when an instance of an object is
created or a binding operation is executed. Access policies spécified using
their language extensiops are quite flexible, but they lose the capacity to
determine access correctness entirely at compile time. By means of both
static and dynamic attributes in the language extensions described in this
paper, runtime determination of access correctness is allowed, but used only
if the access policy requires it. In other cases access correctness can be

decided completely at compile time.

14

4. QUALIFIED TYPES

In this paper the concept of "qualified type" is used, as it is by
Jones and Liskov [JONEA78], to facilitate the definition of binding rules
and to specify when a binding is legal. The concept is wused here for the’
same purposes. A simple qualified type x is specified as

T{rl,e..,m}
and has two parts: a type part* and a rights part,'i.e.,
type(x) = T, and

rights(x) = {rl,...,rn}

Definition 1. If x and y are two simple qualified types then x =y 1iff
1) type(x) = type(y), ard
2) rights(x) = rights(y).
In addition, = ﬁ_y iff
1) type(x) = type(y), and
2) rights(x) ¢ rights(y).

Further, x and y are incomparable 1ff type(x) ¥ type(y).

In general, a qualified type x is defined recursively as:
1) A simple qualified type, or
2) T[QL,Q2,...,0m} {rl,...,rn}

‘where each Qi, i = 1,...,m, 1is a qualified type.

*Jones and Liskov [JONEA78] refer to this as a "base type" part.

15

In this paper the objects described by nonsimple qualified types are
synonomous with structured objects. A qualified type is essentially a hier-
archical structure. The Qi are components of the structured object, each
with its own set of rights called "component rights." The set of rights
{ri,...,rn} in the qualified type X is the rights to the structure (as a
whole) and are called vstructure rights.”

An example of a qualified type is a file composed of records, whose
qualified type declaration might be as follows:

file [record rights {readsalar?}] rights {insertrec, deleterec}
where {readsalary} comprises the component rights (the salary £ield may be
read within any record). The structure (file level) rights, {insertrec,
deleterec}, indicate operations allowed on the overall structure.

The functions type(x) and rights(x) still apply to non—simple qualified
types as follows: -

TYPE (x) = T

RIGHTS (x) = {rls...,rn}
The upper case function names denote functions that yield the structure type
and the structure rights, respectively. The three items in Definition 2
relow are each a pairwise comparison of the nodes in the hierarchies x and
Ve This requires the elements of sets A and By defined as follows, to be

generated in the same order.

components (s) such that s€A}l

]
1)

X or £

et A =1{t | t

il
It
1§

and B={t 1l £t=yort components (S) such that s€B}l.
Definition 2. a) TYPE(x) = TYPE (y) iff:

type(a) = type(b) for all a, b such that ach and bEB

16

b) RIGHTS(x) = RIGHTS(y) iff:

rights(b) for all a,b such that a€A and beB

il

rights(a)
¢) RIGHTS(x) < RIGHTS(y) iff:

rights(a) c rights(b) for all a,b such that a€A and beEB.
Similarly, |

{type(a) | a€A}

TYPE (x)

RIGHTS (x} = {rights(a) | a€A}

The lower case function names denote functions that vyield attributes of

individual components.

Definition 3: Let x and y be two qualified types
¥: T[Q1,02,...,0m}{rl,...,rn}
y: T'[Q1f,02',...,0m" 1{rl",...,rk"}
then x < y iff:
1) TYPE (x) = TYPE(y),
2) RIGHTS (x) < RIGHTS (y}
The next section discusses the use of qualified types to describe the three

' binding rules proposed for the language extensions.

17

5. BINDING RULES

As stated in section 1, a single binding rule is not sufficient for
providing the convenience and flexibility required to express a wide range
of access control policies. Thus, we permit the programmer to specify the
rule to be used during binding. This is a departure from other systems
whéfe there is usually a single binding rule in effect and the programmer
has no control over it. Permitting the proérammmer to specify a binding
rule is analogous to the process of giving the user the ability to specify
how parameters are to be passed dufing procedure invocation in conventional
.programming languages. For example, Algol permits parameters to be passed
by name or by value, and the programmer can specify which.

The three binding rules are referred to as

1) subset,
2) amplify, and
3) domtrans

The subset rule Iis essentially the binding ruie that Jones and Liskov
propose in [JONEA78] . It does not permit the access rights to an object to
be increased during binding. The amplify rule is used (primarily in proce-
dure invocation) where the called procedure must have greater rights to an
object than those of the caller. The domtrans rule transfers all rights of
a capability already referencing an object to another capability which is a
new reference to the‘object (regardless of what the new capability's rights
were prior to binding). Detailed definitions of these rules are given in

the next section.

18

5.1, Binding rule evaluation

As previously stated, the binding operation x <—— y causes the capabil-
ity variable x to reference the object already referenced by capability var-
iable y, creating a new access path to the object.

Two thiggs must be determined during binding operations:

-1} the one binding rule that is applicable, and.

2) wvhether the binding operation is legal with respect to the rule

determined in (1).

The second of these is the simplest to discuss, and it is covered first
in this section. In systems such as Jones and Liskov's, McGraw and
Andrews', etc., to determine whether or not a binding operation caﬁ be com—
pleted (or is legal), it is sufficient to determine if the capability varia-
bles involved in the binding operation satisfy the binding rule. For exam—
ple, in Jones and Liskov's mechanism, the binding x <~y is legal if x vy
(see Definitions 1l and 3 in Section 4 for the meaning of x é~y).

Since the manifestation of qualified types is in the corresponding
capability variables, the éttributes of qualified types will be referred to
as though they were attributes of capability variables as well. In particu-
lar, we wish to apply the type() and rights()} functions to capability varia-
bles. Doing so merely simplifies the notation. The specification of a qua-
lified type, then, and the declaration of a capability variable are
identical.

For generality purposes 1in discussing the binding rules below, the
capability variables x and y are assumed to represent the qualified types

x: T{QL[Q2 [...{On]...}1] rights {rl,...,rk}

v: T[QL'{02'[...[On']...]]] rights{ri',...,rm'}, respectively.

18

The validity of a binding operation for each binding rule is, then,
summarizeﬁ as follows:
1) subset: x <-—y is legal iff x < y (by Definition 3}
{Result: The riéhts to y's object cannot be increased by accessing
via x.]
2) amplify: x <--y is legal iff
a}) TYPE (x) = TYPE (y)
b} checkrights(x) g_rights(y)
[Result: The right to y's object can be temporérily increased.]
3) domtrans: x <-- vy is legal iff TYPE (x) = TYPE (y)

[Result: The variable x takes on the rights of v.]

Note: For the binding x <— vy to be legal with the domtrans ;ule the capa-
bility variable x must be declared with no rights specified; for example:

x: file [record]
so that the rights of x is a dynamic attribute by the conventions of Section
3.

As an aside, it is interesting to consider a special case of the subset
rule, which can be called the eqgual rule. The requirements of this rule
are:

1) TYPE(x) = TYPE ()

2) RIGHTS (x) = RIGHTS(y)
The rule would seem to have its application limited to- situations in which
it is desired to retain information about rights over a sequence of related
bindings. Thus, while the eqgual binding rule does not allow an increase of

rights, it also does not allow a decrease.

20

5.1.1. The subset binding rule

The subset rule does not permit the rights to data objects to be
increased during a binding operation. For binding operations involving
structured data objects using the subset rule, it may appear that the rule
need only be applied to the object as a whole and to the component objects
that are explicitly manipulated (say within a procedure).

However, even if component objects are not explicitly manipulated, they
may need to be specified to check the validity of either or both of the con-
ditions during a binding operation under the subset rule:

1) TYPE(x) = TYPE (y) .

2) RIGHTS(x) < RIGHTS (y)
where X and y are qualified types (see Definition 3). Component objects may
have to be declared even thoﬁgh the components aré not explicitly manipu=-
lated, say, in a called procedure. This is bécause programmer defined types
can be parameterized and the component objects of a data type may vary from
one instantiation of the type to another. For example, a parameterized
stack data type may be instantiated‘with integer elements one time and real
elements the next. In other cases in which components are not explicitly
manipulated, their rights must be stated to permit condition (2) above to be
satisfied.

In comparison, Jones and Liskov do not allow for separate application
of the rule for structure and components of a structure.
| For the binding operation

X {— Y7

21

to be valid they require that all the component parts of x and y be pairwise
identical. For x £y, Jones and Liskov require that:

1) TYPE(x) = TYPE(Y),

2) rights(x) ¢ rights(y), and

3) RIGHTS (Qi) = RIGHTS{Qi"), for i = 1,n.

The subset binding rule proposed here is similar but not exactly iden-
tical to the binding rule iﬁ [JONEA78]. The difference between the present
subset rule and their rule is item (3) above. (See Definitions 1 and 3 of %
£y, which allow for pair-wise check-ing_of rights(Qi) ¢ rights(Qi').)

In order for their binding rule to apply to structured data objects and
to permmit a procedure to declare precisely what limited rights that it
requires to component objects during procedure invocation, they introduce
the "?types” concept. The symbol "?" indicates that the exact rights of
that ﬁype are not known, but must satisfy a subset constraint given in the
formal parameter declarations. The exact rights are then known at invoca-
" tion time, when matched with the actual parameters. The use of ?types in a
formal parameter position permits the riqh{:s to component object types to be

" decreased and yet permits the binding rule to be legal.
5.1.2. The amplify binding rule

Sometimes, when a procedure is called to perform an access operation on
an object, the procedure needs greater rights to the object than those of
the caller. This occurs, for example, when the object is an occurrence of
an encapsulated data type and the called procedure that implements opera-

tions in the type definition must manipulate the details of the object's

22

representation in storage. Suchlrepresentation details are not accessible
to the caller, but are necessary to implan.ent the access operations. The
process of access amplification [JONEA73] is used to provide the necessary
additional,access rights to the called procedure. (Amplification is not,
however, universally accepted as necessary [MINSN78].) A good example of
this concept is given for the type implementation module of an associative
memory object in [JONEA76, JONEA78].

Ther caller needs some prerequisite rights to invéke a procedure that
performs amplification. At levels closest to the object representation, the
prerequisite right requirement is fulfilled by having the name of the called
procedure as a right stated in the caller's capability to that object. The
prerequisite rights needed to invoke a higher level system procedure tha£
performs amplification can be made more general. One way that these prere-
quisite rights can be checked is by the checkrights mechanism of HYDRA
[(WULFW74]. The calling procedure must satisfy the requirements specified in
the checkrights list of the called procedure. The same concept was called
"regacc" earlier by Jones [JONEA73]. |

When the amplifz binding rule is applicable for a binding operation,
the capability variable x of x <-— y must have checkrights declared for it.
The rights(y) are compared to checkrights(x) and, 1if y contains all check=-
rights(x) (y may also contain other rights), then the binding operation is
legal and x is allowed access to the object according to rights(x). The set
rights(x) may be a subset, superset, or disjoint set of rights(y). The var-
iable % can be the left side of an explicit binding operation or it can be a
formal parameter in a procedure (the distinction is discussed further in

section). For example, a program A having capability variable y referenc-

23

ing an object (as an actual parameter) calls program B to do operation "O"
on the object, where the formal parameter in B for the object is x. Program
B has the rights to perform O on the representation of the object and A does
not. If the caller's rights are adequate (to invoke the procedure}, then
the called procedure has the rights listed in the rights list of the same
fofmal parameter. Jones and Liskov [JONEA78] limit application to procedure
invocation but amplification does not have to be tied to procedure entry
since it also has other uses (see Wulf, et al. [WULFW/4]).

A noncompﬁter example (adapted from [WULFW74})} of amplification oécurs
when the user of a telephone needs to have it repaired. The user (the call-
ing procedure), who leases the phone (the object) but does not own it, has
certain rights to the phone but they do not include the right to repair it
(perform the operation directly on the object). They do however, include
the right to call the repairman (i.e., they have the prerequisite riéhts to
invoke the amplifying procedure). The repairman, once he has assured him-
self that it is indeed the proper caller who is requesting the repair (per—
haps by a checkright mechanism), has the right to repair the phone. How-
ever, the repairman may not use the phone for perscnal calls unless the user

grants him that right.
5.1.3. The domtrans binding

When the domtrans binding rule is applicable for a binding operation, x
{-—- vy, the capability variable x takes on the rights of variable y (a varia—
tion on this is described in Section where X takes on only a subset of

rights(y)). Any rights that x has at the time of binding are irrelevant, as

24

the dominant rights of y are transferred difectly into x; thus, the name of
the rule. As noted above, however, variable x in x <——Y cannot have rights
set for it at declaration time, as it must have a dynamic rights attribute.
Some examples of the use of‘domtrans are given later in Figure 4.

McGraw and Andrews [MCGRJ79] have taken a general view of binding simi-
iar to the domtrans rule. In their access control mechanism, a capability
variable can have its access rights changed at runtime by a binding opera-
tion and there are no restrictions on whether or-not the access rights to an

object can be increased.

5.2. Specification of binding rules

Before getting to the topic of determining the single applicable bind-
ing rule, the application of binding rules is describéd. A capability vari-

able can have, but is not required to have, a binding rules list. The bind-

ing rules list can be initialized at declaration time with one‘or more
binding rules that are applicable for it (see procedures MAIN,A and B in
Figure 3). When this occurs, the binding rule(s) declared are considered to
be static (per the convention of Section 3) and can never be altered at run—
time. On the other hand, capability variables that do not have binding
rules specified at declaration time can have them assigned dynmically at
runtime by using the

assignbinding <kinding rule> to <capability variable list>;

statement and subsequently removed using the

removebinding <binding rule> from <capability variable list>;

25

statement. The assignbinding and removebinding operations permit a capabil-

ity variable to be used with different binding rules, thus eliminating the
need to declare an excessive number of capability variables for the same

object —— one for each binding rule and situation in which it is used.

5.3. Explicit and implicit binding

The binding operation x <-— v is an explicit binding operation if it is
actually written as "x <-- y" in the executed program code. Some authors
call this operation an "assigmment" operation. This temm is not used here
in an effort to avoid confusion with ordinary wvariable assigrment (of
value). There are implied (or implicit, usually temporary) bindings which
bind each formal-parameter (x) to the corresponding actual parameter (v)
during procedure invgcation._ In either case the binding operation changes
the reference field of the capability variable on the left side to point to
the object referenced by the capability variable on the right side. 1In some
cases, e.g., when the domtrans binding rule is used, the access rights of
the left side.variable can be changed. The next two sections describe the
semantics of explicit and implicit binding and how the applicable binding

rule is determined in each case.

26

5.4. Determining the applicable explicit binding rule
1t should be understood that only one binding rule can be applicable
during a given binding operation whether it be explicit or implicit. In the
discussion to follow binding-rules(x) is a set function that yields thé list
of binding rule(s) in the capability variable x. The function card(A)
yields the cardinality of set A. At binding time for the operation x <= Y
the following statements must nold* or an applicable binding rule cannot be
determined and an error results.
UcmﬂﬁMMwmkﬂm)zL
2) card(binding-rules(y)) ; 1, and
3) binding-rules(y) € binding-rules(x) .
Iﬁ the binding-rules(x) and/or binding-rules(y) are dynamic, binding

rules can be added or removed using assignbinding and removebinding, respec-

tively., For example, if y has two binding rules prior to binding, then one

can be removed by the removebinding statement. Or if x or y does not have a

binding rule associated with it, then the assignbinding can be used to set

the proper one.

when the binding rule that is applicable for x <— y is either subset
or amplify, then both rights(x) and rights(y) must be non—empty; otherwise
the binding is automatically illegal. That is, they both must have rights
assigned either statically or dynamically (prior to binding) , because the

legality of binding in both cases is determined by comparing the rights of

* Exception: Rales 2 and 3 do not apply in the case 2 type of explicit
binding (given below), where the binding rules(¥) have nothing to do with
determining the rule used for the binding. An example of this exception is
shown in Figure 4 for the binding yourfile <— COPYFILE (myfile) in procedure
MAIN.

27

the two variables, possibly involving checkrights which must always be.
static. When domtrans.is the applicable rule, x must have dynamic rights

and y must have a non—-empty set of rights, for binding to be legal. In

addition, domtrans cannot appear in a binding rules list with either of sub-
set or amplify. In summary, domtrans always appears alone in a binding
rules list of a variable while subset and amplify can appear alone or
~ together.
The following three cases'exist for detemmining the applicable explicit
binding rule:
1. X <——vy;

if binding-rules(y) € binding-rules(x) then

binding(x <-- y) = binding-rules(y)

else error.

2. X <= y binding rules {bind-rule};

if bind-rule € binding-rules(x) then
binding (x <=- y) = bind-rule
. else error.

3. X <=- y(0) binding rules {domtrans},

if domtrans = binding-rules(x) then
binding(x <-— y) = domtrans
else error.

In the third case qgiven above, Q 1is a qualified type specification
which contains a subset of the rights of y; i.e., 0 < y. The semantics of
the thifd case are such that, as a result of the binding, x's new rights
become those of ¢ (for the attributes specified in Q); i.e., RIGHTS(x) =

RIGHTS (Q).

28

Some simple examples illustrate the semantics of the explicit binding
operation. Suppose

x: list rights {insert} binding rules {subset};

y: list rights {insert, delete} binding rules {subset};

are two capability variable declarations. Then the applicable binding rule
for x <— y clearly is subset. Furthermore, since x <y, the explicit bind-
ing operation itself is legal. Notice that the explicit binding y {~= x is
not valid because y { x. The applicable binding rule in specific instances
is associated with the right side variable while the left side variable
gives the possible applicable rules.
For another example, consider the declaration
z: list rights {insert, delete};

Then

X <— 2z binding rules {subset};
produces subset as the applicable binding rule and the binding operafion
itself is legal since rights(x) ¢ rights(z). On the other hand, the binding
rule domtrans is not applicable for

¥ <-- z binding rules {domtrans};

since domtrans € binding-rules(x); furthermore, x has static access rights.
The domtrans binding rule is the only rule applicable for case 3 above.

The subset and amplify rules do not change the rights of left side variables

and so they are not applicable for explicit binding operations invelving
explicit rights lists. Case 3 is illustrated using the following declara-
tion for w and the above declaration for z:

w: list binding rules {domtrans};

w <=- z rights {delete}l binding rules {domtrans};

29

The domtrans rule is applicable here. In addition, the binding operation is
legal because {delete} ¢ rights(z). As a result of the binding operation,
rights(w) = {delete}.

Following are some more examples, using the declarations

a: list {element] binding rules {domtrans};

3

list [element rights {readsalary, writename}]
rights {insert, delete};
For the case 2 binding |

a <~— b binding rules {domtrans};

a takes rights of "element" and the rights of "list" from variable b.
After this binding operation, "a" is the same as if it had been given the
following declaration

a: list [element rights {readsalary, writename}] rights

{insert, delete} binding rules {domtrans};

When using structured objects with case 3, above, the rights given by a
right side variable must include not only the "structure rights," but must
also include "components rights" for each componené. For example, this
binding

a <-= b {list [element rights {writename}] {insert}

binding rules {domtrans});

produces an "a" which is the same as if it had been given the declaration:
a: list [element rights {writename}]{insert}

binding rules {domtransi;

30

5.5. Determining the Applicable Implicit Binding Rule

The rules for detemmining the applicable binding rule for implicit
'binding (during procedure invocation) are essentially the same as for expli-
cit binding, with two exceptions. For an implicit binding x <—— v,

1) variable x must have static binding rules, and

2) when binding-rules (x) ¢ {subset, amplify}, then rights(x) must

be static.
The reason for these two restriction is explained as follows. Variable X
must have at least one binding rule associated with it (whereas y must have
exactly one) before the applicable binding rule can be determined. Note how
this differs from the case 2 type explicit binding, where y does not have to
have a binding rule, since.the rule is supplied in the binding statement.
If.bindingwrule(x) is not static, then the called procedure would have to
execute a statement for x before the applicable binding rule could be deter-

mined. |
Each of the formal parameters in a given procedure's parameter list may
have different binding rules applicable at procedure invocation. This is
analogous in Algol to having some parameters passed by name and some passed
by value during a single procedure invocation. An actual parameter may have
different binding rules associated with it on separate invocations of the
same procedure or during invocations of different procedures in which the
parameter is used. Thus, for all practical purposes, the actual parameter
determines the binding rule for it and its corresponding formal parameter

during procedure invocation.

31

An advantage of the applicable binding rule scheme is that it permits
different invocations of a single procedure £from the same procedure or from
different procedures to have different binding rules applicable. A proce—
dure B may wish the subset rule to apply during invocation of procedure T(x)
from B, and A may want the amplify rule to be applicable when T(x) is called
from A. This notion alleviates a shortcoming found in other access control
mechanisms for high level programming languages. For exazﬁple, the first
invocation of procedure A below (Figure 3) results in subset as the applica-
ble binding rule for parameters x and a, and the second invocation results
in amplify for x and a. The binding rule associated with y and b is always

Both of the invocations of procedure A result in applicable binding
rules. In addition, the binding rules, yhen épplied, are legal and proce—
dﬁre invocation is permitted. When proéedure B calls A, the amplify rule is
applicable for x and a and the binding itself is valid since rights{x) in B
contains checkrights(a) in procedure A. When the applicable binding rule
for ¥ and a is subset, the checkrights are ignored.

The rules for use of domtrans in procedure invocation are the same as
for explicit binding, so no examples are given.

The following section, however, provides two examples that illustrate

the use of the three binding rules.

32

PROC:

procedure;

x: list rights {insert, delete, copy};
y: list rights {insert} binding rules {subset};

assignbinding subset to x;

call A(x,v);

Az

procedure (a,b);
a: list checkrights {delete} rights {insert, delete} binding
rules |subset, ampliﬁy?;

b: list rights {insert} binding rules {subset};

end A;

procedure;

x: list rights {delete} binding rules {amplify};
y: list rights {insert} binding rules {subset};

call A{x,v);
end B;

end PROC;

Figure 3. Example of Determining Applicable Binding Rule

5.6. Examples

Some of the characteristics of the language extensions proposed in this

paper can best be illustrated via examples. The first example demonstrates

the use of the subset and domtrans rules. The second example involves the

amplify rule.

33

.+ Subset and Domtrans Example

This first example involves three procedures: MAIN, FILLFILE, and COPY-
FILE in Figure 4, In many cases the subset rule can be used to develop a
rather fine dégree of accéss control. For example, FILLFILE and COPYFILE
can be restricted to £filling and copving only files that have certain sets
of rights; otherwise, binding will not be valid. Thus, the subset rule is
appropriate in cases'where binding is required to be limited. In other
cases, where it is desired to generalize the routines so that they can apply
to various files with a wide variety of access rights, the domtrans rule is
éppropriate, because acceés rights can be passed by the caller.

In this example, PFILLFILE can fill all files having the same record .
type as that of xf in FILLFILE, but possibly having.different rights. The
restriction on record type does not bear on the issue of binding, but does
simplify the example with respect to type checking.

In Figure 4 rights(myfile) are passed to xf in EILLFILE by the invoca-
tion of FILLFILE (myfile). As a result of the implicit binding using the
domtrans rule when FILLFILE is invoked, x£ refereﬁces the same file as
referenced by myfile. FILLFILE causes myfile to be filled (possibly from
some external source of data). Then COPYFILE is invoked and xfile is bound
to myfile. A copy of myfile is made in COPYFILE and returned to MAIN. Then
yourfile is bound to this copy, using the subset rule and an application of
the case 2 type explicit binding. A check to ensure that "createrec" and
"insertrec" in FILLFILE and "copy" in COPYFILE are contained in rights(xf)
and rights(xfile), respectively, is made at rﬁntﬂne, since the rights of xf£

and xfile are dynamic. On the other hand, the check to ensure that "create-

MAIN: procedure;

myfile: file [record (SSN: char(9); NAME: char(20); SAL: real;) rights
{createrec, rssn, wssn, rname, rsal}l]l rights {createfile,
insertrec, deleterec, copy} binding rules {domtrans}

yourfile: file {record (SSN: cHar(Q); NAME: char(20}; SAL: real;)

rights {rssn, rname}] rights {insertrec} binding rules
{subset};

myfile.createfile(); /* creates a file referenced by myfile */
FILLFILE {(myfile); /* £i1]l myfile */

yourfile <-— COPYFILE (myfile) binding rules {subset} /* make a copy
' of myfile and bind it to yourfile */

end. MAIN;

FILLFILE: procedure (xf);

xf: £ile [r:record (SSN: char(9); NAME: char(20); SAL: real;) binding
rules {domtransi:

while {more_records) do;
r.createrec(); /* create a record */
Y=, /* fill record (with something) */
xf.insertrec(r); /*insert r into xf */
- endo;

end FILLFILE;

COPYFILE: procedure (xfile);
xfile: file [record (SSN: char(9); NAME: char(20); SAL: real;)] bing-
ing rules {domtrans};

if compare (xfile, xfile.copy) then return (xfile.copy); else ERROR;
/* copy creates a copy of xfile with xfile's attributes;
"compare" compares the data content of the two files */

return;

end COPYFILE;

Figure 4, Example using the subset and domtrans binding rules

35

file" is in rights(myfile) is made at compile time, since the rights of
myfile are static.

The declaration for xf in FILLFILE points out that component objects
can héve capability variables declared for them when it is necessary for
them to be manipulated explicitly. Record components of filé xf are dec-
lared with a capability variable "r"-—-for the sake of simplicity, a general
notation for doing this is not developed here.

There is a, perhaps,' subtle concept related to file xf (in FILLFILE).
The rights one expects an object to have are the rigﬁts of the qualified
type specification that defines the object's type (i.e., the rights of the
capability variable that references the object). Those rights are either
statically assigned (e.g., in the case of the record component objects in
myfile in MAIN), or they are those rights received during a binding opera-
tion involving the domtrans rule. For example, the expected rights of the
component records in file Xf are {createrec, rssn, wssn, rname, rsall.
Since "file" is a programmer defined type, implemented by a programmer, one
can describe an implementation such that the rights associated with each
record occurrence possibly differ from the expected rights. Thus, there can
be an inconsistency between expected rights (the rights of the defining qua-
lified type) and the rights determined by an implementation strategy. For
example, one way of implementing a file is as a 1list of capability varia—
bles, each referencing a record occurrence. This représentation is general
enough to allow each of the varicus record instances to be associated with
some subset of the rights defined for the record component type in the main
qualified type definition for the file. Such an implementation could allow
the rights of record occurrences to be determined by the record capability

variables, as opposed to the "expected" rights.

36

The above implementation of files implies that the condition "RIGHTS (x)
< RIGHTS (y) " must be checked at runtime. The implication is that RIGHTS is
iﬁplementation dependent; but it is not. The RIGHTS function, as defined in
Definiﬁion 2, was intended to use the fuil set of expected rights.

To resolve this inconsistency, the following interpretation is included
as part of the ;anguagg extensions: Component object occurrences (e.g.,
record occurrences in xf) are assumed to have the expected rights (i.e., the
rights of the main defining qualified type specification), and, when these
component objects are used in binding operations, these implementation inde—
pendent rights should be taken as the rights of the occurrences. This
interpretation is implemented by having a single capability variable associ-
ated with each component object type in a structure. All occurrences of
each type are then related to one implicit capability variable and this
capability variable does not contain an actual reference to any component.
This means that there is one capability variable per component object type,
holding the rights of all occurrences of that type. This concept can be

generalized to multiple types of components in a straightforward manner.
5.6.2. Amplify Example

This example involves a file of records and a situation in which it is
desired to delete a record. In order to delete a record, the delete opera-
tion procedure needs access to the representation of the file (something
which the calling program does not have). The deletion is accomplished by
repeated application of the "compactspace” operation; which moves the rest

of the records up by one place, overwriting the record to be deleted.

37

Therefore, the calling program's rights to the file must be amplified to
permit deletion at the representational level., Amplification typically
occurs when a type module is entered to perform an operation on an instance
| of the type. The procedures in Figure 5 illustrate the part that check-
rights plays in the amplify binding rule. The amplify binding is not valid
unless rights(f) contains checkrights(xf). Despite the simplicity of this
example, neither the subset nor the domtrans rule could have been used to
specify access contfol.policy here, because procedure DELETEREC requires
amplification of rights to perform the delete operation. In particular, it
needs to perform the "compactspace" operation, the use of which is not per-
mitted outside of DELETEREC (or outside of the gggglg in which DELETEREC is

implemented).

6. CONDITIONAL CAPABILITIES

The contents of this section represent a further extension of the use
of capabilities, A conditional capability (introduced by Ekanadham and
Bernstein [EKANK79]), is a capability that can be exercised only when a par-
ticular condition or conditions are true. Conditions placed in a capability
can controi the usé of capabilities. For example, they can be used to pre-
vent the propagation of an argument capability after it has been passed as a
parameter or to prevent a procedure from accessing the object the capability

references except during specific time periods, etc.

38

MAIN: procedure;

£: file [record (key: char(6); info: char(20)) rights {rkey, rinfo}]
rights {insertrec, deleterec, nextrec} binding rules

amplify}; '

DELETEREC (£, kKeyval) /* keyval contains the key of the record to be
deleted */

end MAIN;

DELETEREC: procedure (x£, kval);
kval: char(6);

xf: file [r: record (key: char(6); info char(20)) - rights {rkey}]
checkrights {deleterec} rights {nextrec, compactspace} bind-
ing rules {amplify};

-

repeat r <-- xf.nextrec until r.rkey = kval;

xf.compactspace(r); /* compactspace is a file operation that col-
lects garbage; it picks up space left by deletion of record
r */

return;

end DELETEREC;

Figure 5. Example using amplify binding rule

39

Conventional capabilities differ from conditional capabilities-‘in the
sense that, if a procedure possesses a conventional capability, it can be
exercised to perform any of the operations permitted by the capébility vari-
able. No control can be exerted over a conventional capability as to when
or where the capability can be used.

Conditional capabilities are utilized in the following manner. For
each condition x in the capability there is a lock, Li{x). To exercise a
capability with a lock L(x), a matching key, K{x}), has to be presented. As
.we stated earlier, an instruction attempting an operation on an object
referenced by capability variable vy is of the form

y.operation ()
Such an operation is valid if:
1) the conditions associated with capability variable vy are satis-
fied, and A
2) the "operation" is in the rights list of vy.
If variabie.y contains locks-L(a) and L(b), then keys X(a) and K(b) must be
presented along with the capability y if the capability is to be exercised.
The keys are supplied as arguments of the operation in the following manner
y.operation (), K{a), K(b);
The above operation can be executed whereas
y.operation (), K(b);
will not be executed, because lock L(a) is not "unlocked."

A capability variable can be declared with locks as in the following

declaration for capability variable y

y: list rights {insert, delete} locks {LOCKl, LOCK2};

40

The value (the key), set at declaration time, which opens a lock can never
be altered. A capability variable can also be declared without locks as in
the declaration
z: list capability;

Capability variable z can have locks assigned to it by using the

assignlock <lock> to <capability variable>;
statement. A lock can be removed from a capability variable by using the

removelock <lock> f}om <{capability variable>;
statement. The assignlock and removelock operations are analogous to the

assignbinding and removebinding operations.

The locks on capabilities are similar to the locks placed on certain
operations in database management system schema definitions. For instance,
a;delete operation might not be permitted unless the user of the database
supplies the correct lock key for the operation.

Ekanadham and Bernstein generate locks (and hence keys) at runtime by
using mique random numbers [EKANK79]. They have a relatively elaborate
scheme and it is particularly suitable fbr use in operating systems. The
approach presented here differs in that it permit locks to be specified at

compile time.

41

7. ACCESS CORRECTNESS

An access control facility should provide these two abilities, which
:are impdrtant to access correctness:

1) to limit each program unit to the data objects apd operations that it

needs, and |
2) to insure that only authorized operations are applied to data
objects.

Jones and Liskov's system requires each variable to have its access
rights set at declaration time. Hence all use and movement of rights (via
explicit binding and procedure invocation) can be checked at compile time to
determine access corfectness. One major drawback of their system is that it
does not provide the flexibility required to build dynamic systems. In
dynamic systems, such as file systems, rights must often be allocated dynam—
ically for objects such as buffers, files, etc.

The 1an§uage extensions ‘described in this paper permit the user to
develop access control policy such that access correctness can be determined
at compile tﬁﬁe. In this case each capability must have its access rights,
binding rules, and locks, if any, set at declaration time. Accgss policies
can also be deveioped for dynamic systems such that some accesses must be

validated at runtime.

42

8. FUTURE WORK AND CONCLUSION -

The work reported in this paper has also raised some additional ques—
tions which must be reserved for future work. Some of these questions
relate to the adaptation of the concepfs of " this paper to the area of data-
base systems. For example, it is interesting to consider the introduction
of predicates into the object definitions which would make the acess rights
dependent upon system state and data values. - Some binding rules would then
- have to be evaluated at access time, since the contents of object instances
would be réquired to make the corresponding access decisions.

Cther extensions, too, might apply to languages designed for database
applicationss. For example, consider the possibility of obtaining the data
type definitions, especially the rights lists, at bindihg time from some-
where external to the program and its execution enviromment (for example,
from a file in secondary storage). This would allow the-access control poi—
icies to be determined dynamically within'a détabase authorization system.

Another question for future work involves dynamic implicit binding of
formal parameters during procedure invocation. As discussed in this paper,
the binding rules of formal parameters are static. The reason is straight~-
forward: dynamic binding would reguire the entry Qf the procedure to deter-
mine the applicable binding rule, prior to invocation. To allow this, the
procedure would need some sort of "prologue" in addition to the "body" of
the program. The prologue would serve to interact with the_execution envi-
ronment to make the binding decision, before proceeding (or not proceeding)

with the execution of the body of the program.

43

Finally, a small modification of the syntax would generalize the attri-
bute definitions within object type definitions by allowing attributes that
are: static, dynamic but initialized, or dynamic and uninitialized. Static
attributes are then indicated by the '=' operator, as in this example:

x:record (...) rights = {rssn,wname}}
dynamic initialized attributes are indicated, as follows, by the ':=' opera-
tor:

x:file [record (...) rights {...}] rights := {insertrec,deleterec};

Dynamic,- uninitialized attributgs are still indicated by their absence.
Dynamic initialized rights can be altered at runtime, and perhaps they could
be reset to their declared values during program execution with a reset
operator.

In this paper a number of language extensions have been described which
permit a wide rarge of access control policies to be specified. By choosing.
a subset of the extensions to develop policy, the user can cause access cor-
rectness to be determined at compile time. On the other hand, the exten-
sions permit policies to be specified that.require access correctness to be
determined at runtime. These extensions permit more flexibility in specify-
Ing language based access control policy than other access control facili-

ties currently available.

44

REFERENCES

AMBLAT77
CLAYB79
CLAYB80

DALERGS
DENND79

EKANK79
JONEA7T3
JONEA78

LAMPB71

MCGRJ79

Ambler, Allen L., and Charles G. Hoch, ™A Study of Protection in
Programming Languages,"” ACM SIGPLAN Notices 12, 3 (March 1977),
25_40-

Claybrook, Billy G., et al., “Log'ical Structure Specification and
Data Type Definition,™ Proc. of ACM Annual Conf. {October 1979),
203-211, _

Claybrook, Billy G., "module: 2An Encapsulation Mechanism for Speci-
fying and Implementing Abstract Data Types," Proc. of the ACM
Annual Conf. (October 1980), 225-23S.

Daley, R. C.,, and P. G. Néwnann, "A General Purpose File System for
Secondary Storage," AFIPS Proc. of the FJCC (1965), 213-229,
Denning, Dorothy E., and Peter J. Denning, "Data Security," ACM
Computing Surveys 11, 3 (September 1979), 227-249,

Ekanadham, Kattamuri, and Arthur J. Bernstein, "Conditional Capa-
bilities," IEEE Trans. on Software Engineering, Vol. SE-5 (Septem—
ber 1979), 458-464,

Jones, Anita K., "Protection in Programmed Systems," Ph. D. dis-
sertation, Department of Computer Science, Carnegie-Mellon Univer—
sity (June 1973).

Jones, Anita K., and Barbara H. Liskov, "A language Extension for
Expressing Constraints on Data Access," Conm, of the ACM 21, 5 (May
1978), 358-367.

Lampson, Butler W., "Protection," Proc. Fifth Princeton Symp. on
Information Sciences and Systems, Princeton University (March
1971), 437-443; reprinted in ACM SIGOPS Operating Systems Review 8,
1 (January 1974), 18-24.

McGraw, James R., and Gregory R. Andrews, "Access Control in Paral-
lel Programs,” IEEE Trans. on Software Engineering, Vol. SE-5 (Jan—
uvary 1979), 1-9,

45

MINSN78

MORRJ73

WULEW74

WULEFW76

Minsky, Naftaly, "The Principle of Attenuation of Privileges and
Its Ramifications," in Foundations of Secure Computation, ed. by R.
A, DeMillo, et al., Academic Press, New York (1978), 255-277.

Morris, James H., Jr., "Protection in Programming Languages,” Comm.
of the ACM 16, 1 (January 1973), 15-21.

Wulf, William, et al., "HYDRA: The Kernel of a Multiprocessing
Operating System," Comm. of the ACM, 17, 6 (June 1374), 337-345,

Wulf, William A., Ralph L. London, and Mary Shaw, "An Introduction
to the Construction and Verification of Alphard Programs,"” IEEE
Trans. on Software Engineering, SE-2 (December 1976), 253-265.

46

