Technical Report CS80010-R
Implementation of Predicate-Based

Protection in MULTISAFE
H. Rex Hartson

October 1580

Revised May 1981

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

* The work reported herein was supported, in part, by the National Sci-
-ence Foundation under Grant Number MCS-7903936.

Implementation of Predicate-BRased

Protection in MULTISAFE*
H. Rex Hartson

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

Abstract: This paper reports some implementation work done within the
MULTISAFE database protection research project group at Virginia Tech.
It describes the evolution of an approach to database security from a
formal model of predicate-based protection, through an implementation
model, to an on—going implementation. The implementation model is based
on a relational database approach to the management of protection infor-
mation (stored representations of authorizations). Classes of access
decision dependency are reviewed. Protection policies, - design deci-
sions, and special implementation problems are discussed. Detailed
examples are used to illustrate the ‘use of this flexible and generalized
approach to database security within the MULTISAFE system architecture.

Reywords and phrases: MULTISAFE, database management, pProtection, secur-
ity, implemeritation, relational, data dependency, predicate based

*The work reported herein was supported, in part, by the National Sci-
ence Foundation under Grant Number MCS-7903936.

1. INTRODUCTICN

Throughout the field of data management, the areas of security and
protection continue to evolve and improve, in response to the continuing
demand for more flexible and effective data security. The predicate-
based model of protection in [HARTH76a] was one of the first in which
access decisions were generally sensitive to the state of the system,
including a dependency on data content. MULTISAFE ETRUERBO] is a system
architecture for secure data management. The discussion of MULTISAFE in
[TRUER80] gives a detailed account of intermodule communication in terms
of procedure calls and returns and proposes in detail an intermodule
message system as a vehicle to carry those calls and returns. No indi-
cation is given there, however, as to how access decisions are imple-
mented. This paper brings three things together 1in an implementation
model :

a) the predicate-based model of protection,

b) the MULTISAFE architectural approach to database security, and

c) a relational database approach to storing, retrieving, and com-
| bining éuthorization information in order to make access deci-

sions,

Many people in the MULTISAFE project group have contributed to this
implementation model. Tﬁe work reported here 1is an effort providing a
point of departure from which two other research efforts have proceeded
in wvery different direction;. Deaver [CEAWMSB1] deals with a
cqst/performance model of MULTISAFE protection and Balliet {BALLES81]

with a Petri net model of MULTISAFE protection. Talbott is presently

implementing the work described in this paper [TALBT81] and has
contributed significantly to the syntax of the commands and the struc-

ture of the system directories and authorization information.

2. A PREDICATE-BASED PROTECTION MODEL*

Hartson's predicate-based model of protection began as a semantic
model for protection languages [HARTH75, HARTH76a, HARTH75b]. It has
both an authoriiation process and an enforcement process. Protection
requirements (authorizations) are presented to the authorization pro-
cess. Subsequently, access requests are presented to the enforcemenf
process which, by consulting the authorization information, renders an
access decision.
| An emphasis on authorization draws éeveral other concepts into the
model. For example, the.“authorizer" emerges as an entity distinct from
the "user." Authority can now be decentralized, 1f desired, from the
bottleneck of a single database administrator. The model introduces a
general dependency of the access decision on system sfate, rather than
using the fixed relationship between users and data afforded by the more

conventional access matrix. Also, the concept of "ownership" acquires a

* This section is adapted to an implementation model from the formal
model of [HARTH76a]. The following notation will be used. Underscored
upper case letters will denote sets while lower case letters, possibly
subscripted, will denote set elements. Finally, subsets will be denoted
by upper case letters, possibly subscripted. Subscripts will follow the
associated variable, delineated by square brackets when necesary for
clarity. for example, s, s[1], or sl is an element of S, while 8 =
{s1,s2} is a subset of S = {s1,s2,s3}.

3

role more general than its traditional one.

2.1. Sets and Predicates

Several sets are involved in the model. An important set is U, the
set of individual users, who will be making access requests. Sets of
users will be called user groups. There is also a set of individuals
who will be granting authorizations, the authorizers, A. An authorizer
is an owner of data and has the responsibility of méking authorizations,
i.e., of determining who may share in the access of that data and in
what manner. In the literature the term "user" 1is almost universally
used to denote both users of the database system and users of the pro-—
tection system. The distinction is emphasized here by using the term
"authorizer." |

The next set of the model is the one that contains data. D is the
set of all data in the database. Real world access requests and data
definitions deal with sdbsets of the database, as well as with indivi-
dual data elements. Since this protectioh medel is not tied to a parti-
cular model of data, the way in which elements and subsets of D are
defined will be left unspecified until the specifics of the implementa-—
tion are discussed in section .

The operations a user may perform on the data alsc comprise a set,
0. Examples of operations are: OPEN, CREATE, READ, WRITE, APPEND,
UPDATE, DELETE, EXECUTE, C@‘lPARE, RETRIEVE, CWN, and SUBOWN. The model
is extensible in that it allows new data types and operations to be

added.

A set can be described explicitly by enumeration of its members or
implicitly by a predicate, or condition, used as Iits characteristic
function. For example, let ¢(b,B) be a condition defining set B. Mem-
bership of any potential element b in set B is dependent of c(b,B) in
the following way:

B={b | c(bB) holds}
Since the truth value of c(b,B) can, in general, vary with time (with
database system étate), membership in B is a dynamic property.

If the set in question is U, a group of users, then c(u,U) deter-
mines whether or not an individual user u is a member of user group U at

a specific instant in time and c(u,U) is called a user droup defining

condition. Similarly, c(d,D) is called a data defining condition, where

d is a data element (such as a single record, tuple, or field value) and
D is some subset of D. |

Another important use of a predicate is an an access condition,

specifying the condition (involving the system state) under which a
given type of access is to be allowed. The set of all access conditions
known. to the system at any time will be denoted by C. Within this model
there are no restrictions on what typé of variables can be used in any
of the conditions. However, in the implementation model which follows
each condition type has been restricted to certain classes of variables
without any loss of generality.

A user group can be defined by a list of user identifiers. The
examples which follow illustrate a second way—-by the use of predicates.
The simplest of these definitions is the one. for a standing group called
GENERAL. 1Its defining predicate is:

c(u,GENERAL): "true"

Thus, because this predicate has a constant "true" value, every user is
implicitly and unconditionally a member of the GENERAL group, sharing
its minimum level of privileges. This is an answer to the problem of
wasting storage to represent, for example, the rights of everyone to use
a public file [LAMPB71].

The following is typical of the user group defining conditions

which can be dynamically evaluated.

c(u,ul): dept(u)=13 v project(u)="'design’
When a user logs in, if s/he is either in department 13 or part of the
design project, s/he becomes a member of user group Ul (until s/he logs
off or until his/her membership in Ul is tested again} and is given its
access rights. (See the footnote in section regarding symbols denoting
logical operators in predicates.)

References to data, whether for access or_for access control, are
very dependent upon the data model and its method of data definition.
In most real systems it will often be desirable to use a combination of
explicit naming and implicit predicate-based definitions. The explicit
naming, such as is done by providing relation and attribute names, des-
cribes a doemain in which a data dependent predicate is to be applied.
Following is an example which uses both the relation name "personnel"
and content values for attributes named "dept" and “salary:"

c(4,D3): RELATION (d)='personnel' & dept(d)=7
| & salary(d)<20000

& (ATTRIBUTE (d)='name' v ATTRIBUTE (d)='address')

This data definition refers to a "fragment" of the PERSONNEL relation,
restricted to tuples with a DEPT value of 7 and SALARY values of less
than 20,000, projected to the NAME and ADDRESS atttibutes.

6

Access conditions--provisos which must be met before certain
accesses are allowed——can be assoclated with global system wvariables
such as the time-of-day clock, modes of operation, status indicators,
flags, and internal codes. Many of these indicators contain information
known to the database system about the current transaction. As an exam—
ple, suppose that certain accounting information can be entered only on
Fridays. Fﬁr 1981, this is represented by the following access condi-
tion: |

C: MOD (day,7) = 2
where MCD is the modulo function and day is the Julian day number on the
system calendar. Access conditions can also be data dependent predi-

cates,

2.2, Access Requests and Authorizations

The purpose of a database system is to serve the user in response

to an access request. An access request, or query, is a triple:

q = {(u,0,D)
where u€lU, o€0, and DcD. This represents a request by an individual
user u for a single operation o to data subset D. Of ﬁhe three ele-
ments, the user actually provides only o and D. The user identifier, u,
is supplied by the system in an "unforgeable" manner.

2An instance of an authorization is a 5-tuple:

p = (a,U,0,D,c)

where a€A, UcU, o€Q, DcD, and ceC. This 5-tuple represents a declara-
tion by authorizer a that each and every individual user in user group U
may do any or all of the operations in O to any or all of the data ele-
ments in D only if the access condition (predicate) c¢ has a value of
"true." For reasons of accountability, each authorization is marked
with “the identity of the authorizer who created it. Only that
authroizer can modify or delete that authorization. However, a subowner
(one to whom ownership has been explicitly granted by the owner who
created the data) of a given subset of data, D, can issue other authori=-
zations governing the access to D. Thus, several different authorizers
can each create an authorization for the same user group, operation, and
subset of the databaSe, but perhaps with different.access conditions. A
subownér cannot grant OWNership to others.*

Consider this protection requirement, taken from [CONWR72]: A user
may see and update only "financial" parts of each record in a given per-
sonnel file, and only between 9 a.m. and 5 p.m. from a specific terminal
in the payroll department. The user gfoup is defined by:

c(u,U6): dept(u)='payroll' & terml(u)='payoffice'
The data to be protected is:
c(d,D5): RELATION(d)="'personnel’ &
(ATTRIBUTE (d)="'salary' v ATTRIBUTE (d)='rate’)
assuming the salary and rate attributes are the "financial” parts of the
tuples. The aécess condition is:

c7: TIME > 0900 & TIME < 1700

* These ownership rules are a matter of high level policy, and other
policies are possible. See section , later, for a discussion of poli-
cies.

The authorization which then ties thése definitions together is:

p4 = (a,U6, {READ,WRITE},D5,c7)

2.3. Authorization and Enforcement

‘Before the authorization process translates the protection language.
expressions of authorizers into internal representations of access con—
trol information, it first validates the right of the authorizer to make
the authorization. The process cont;ols granting, as well as revoca-
tion, oﬁ rights; keeps lists of authorizer—created definitions; controls
the display of access.control information; and keeps a journal of all
transactions with the protection system.

Before proceeding with the enforcement process, it is convenient to
define some projection functions which operate on n-tuples. 1In general,
where.p = (x1,%2,...,%¥n), a set of projection functions i(p) = x[i], is
defined for 1 = .l,2,...,n. Since thertuples of this model carry spe-
cific element names, mnemonic meaning is better served by the use of the
names of the elements instead of a general scheme with subscripts.
Therefore, for p = (al,U3,07,D4,c6): a(p)y=al, U{p)=U3, G(p)y=07,
D(p)=D4, and c(p)=c6. Also, let P={pl,p2,...,pk} be the net collection
of valid authorizations received up to a given time. The enforcement
process is now stated in the context of a request, g = (u,o,D), and the
access decisicon is computed. (A similar set of projection functions is
used on q: u(g), o(q), and D(q)). An example will be developed concur-

rently to illustrate the application of enforcement.

Assume that, at a given point in time, the following authorizations
and the associated definitions exist in the system:

= { pl=(a,Ul,0,D2,"true"}, p2=(a,Ul,o,D3,cl),

p3=(a,U2,0,D1,c2), p4=(a,U2,0,D4,c3),
p5=(a,U3,0,Dl,cd), p6=(a,Ul4,0,Dl,cd),
p7={a,U4,0,D2,cb), p8=(a,U4,0,D3,c7) }

Without loss of generality, a single authorizer a and a single operation
o are assumed. The remaining information in P can be represented as the

matrix of access conditions in Figure l.

T i Dl } D2 i D3 i D4 i
(ULIF IT [cllF |
(U2 1c2 | F | F | o3|
E u3 i cd ; F i F | F |
? U4 | ¢b i c6 i c7 i F i

Figure 1. Matrix of Access Conditions
Now, consider a request q = {(u,0,D). The enforcement algorithm follows.

(1) Determine from the set of known user groups those groups to which
the requesting user u(g) belongs.

Example. This step is done by searching lists of user identifiers
(explicit user group definitions) for u{q) and by evaluating the
predicates of the implicit user group definitions. Assume that it
is determined that u{(g)€U2 and u{g)€U4.

(2) Collect from P, the set of all authorizations received to date,
those authorizations which have the user groups determined in step
{1) as elements. The result, called the franchise of the user, is
given formally as:
F(u) = {p€P | u(g €Up!}

10

Steps (1) and (2) can be done once per terminal session, at log—-in
time.

Example. For the example, this is {p3,p4,p6,p7,p8}, since these are the
authorizations which mention U2 or U4.

(3) Determine from the set of known data subsets (already defined for
purposes of authorization) those data subsets which have data in
common with the data subset requested in q.

Example. This determination is dependent on the data model and 1its
method of data definition. Suppose, for the example, it is found
that D(Q) is found to have elements in common with Dl and D3.

(4) Determine the set of authorizations that name data subsets found in
step (3). Formally, this set of authorizations is denoted as:

{peP | D(g WD(E #I{} I}
Example. Here, the set which mentions D1 or D3 is {p2,p3,p5,p6, p8}

(5) Determine the set of authorizations which specified o(g) .as a data
operation. Formally, this is denoted as:
{fpePiolg co@l.
Example, Here, this is all of P since only one operation is being con-
sidered.

(6} Determine those authorizations common to the sets found in steps
(2), (4), and (5). As this is the set of authorizations which per-
tain to this specific request, it is called F(q), the franchise (of
the user) with respect to the guery q. Formally,

F(q) = {peP | u{q)€U(p) & D(q) XN D(p) # {} & o(q)€0(p)}

All of the enforcement process so far is summarized in this one

expression. F(q) is the set of authorizations which are applicable

to q (i.e., which participate in the access decision for q).
Fxample. In the example, the franchise for gq is {p3,p6,p8}.

(7) The set of data subsets named in the authorizations of F(g) is
called D*(g), the "data reference” of d. Let D*(q) = {D1%,
D2*,...,D[d]1*}. This step is to determine if the requested data
subset D(g) is covered by the data reference D*(q); i.e., it must
be true that D(q)c UN ‘q)c UN D{i]l*, ¥i € [1,d]. That is, every element of
D({g) must he contained in some member of D*(q).

Explanation. Having some overlap with authorized data is not enough to
allow all of the requested data to be accessed. All of the
requested data must be subject to some authorization. At this

Throughout the paper, the following notation.is adopted:
'‘set union!

'set intersection’

'logical AND operator’

'logical OR operator'

'OR over a bit-by-bit AND' (used in segtion)
'the null set’

'is a member of' (set membership)

5|

M~~B g r
et

11

(8)

point, under a policy of "full enforcement" [HARTH77] {(all data may
be accessed or none is), failure of the covering check terminates
the enforcement process with a flat rejection. Under a "partial
enforcement” policy (those parts covered can be further considered
for access), the non-covered parts are eliminated by setting:

D{q) = D(q) XN D*(q)

Partition the set F(q) into equivalence classes based on the rela-
tion such that two authorizations are in the same class if and only
if they specify the same data subset. Formally, this is accom—
plished as follows. Partition F(q) into d equivalence classes such
that the i-th class is:
. FliJ(q) = {peF(q) | D(p)=D[i]*}
¥i € [1,4]. Construct a femporary composite authorization for each
class F[i] (q):
p'[i] = (-,u(q),0(q),DIil*, vic(pl3] Ip[IIEFLi] (@) })
where "v" denotes the logical OR of the set of access condition
predicates, c(pl[jl), over all J such that p[jleF[i](g). (A "=" in
the authorizer position of the 5-tuple indicates a "don't care"
value.) The franchise for g is now the collection of all these
composite authorizations: ;
F(@ = {p'{i] | i=1,2,...,d4}

Example. The partitions are {p3,p6}, corresponding to D1, and {p8},

(9)

corresponding to D3. For the example, F{q) bacomes
{ (=,u(q) ,0(q),D1,c2vecs), {(=,u{q),0(q),D3,c7)}. The result of this
step, for each data subset in D*(q), is an OR of the user's rights
over all groups of which s/he is a member. This may be easier to
see in the matrix of access conditions, Figure 2.

! | D1 | D2 | D3 | D4 |
|ULIF | T Jecl|F |
+ ; + t ¢ :
U2 | c2 | F | F | ¢3 |
U3 |cd | F | F | F |
| U4 | ¢5 | c6 | c7 | F |
| I
| I
\'% v
c2 vah c7

Figure 2. The OR Function Over User Groups.

Find EAC(q}, the effective access condition corresponding to the
request g, by performing the Iogical AND over the access conditions

of the members of F{u,q):

EAC(q) = &(c(p'[i])), over i=1,2,...,d

Example. EAC(q) = (c2 v ¢5) & c7

12

(10) Evaluate the effective access condition and render an access deci-
sion: permit the requested access if EAC has a value of "true";
deny if otherwise.

The above sequence of ten steps, while useful for explaining the
enforcement process, 1is not followed directly by the implementation.
Some short-cuts will be described later in section . Also, the rela—
tional model has turned out to be an ideal environment in which to
implement this model. The collection of authorization tuples is a rela-
tion. Many of the steps of the enforcement algorithm are nothing more‘
than relational calculus descriptions of queries over the authorization
relation, operating on subsets of its tuples.

In {HARTH76b} this basic model of prqﬁection is extended to history

keeping (access decision dependency on previous database events) and

auxiliary program invocation (procedures triggered by database events).

3. CLASSES OF ACCESS DECISION DEPENDENCY

The generality introduced in the model of {HARTH76a] by the use of
predicates as conditions of access implies a variety of ways 1in which
the.aCCess decision can be dependent on different kinds of system infor-
mation. In [BALLE81] access conditions (predicates) are classified into
three broad categories:

1. System dependent

2. Query dependent
3. Data dependent

13

The truth value of a system dependent condition is ascertained from
information available about the general system state. Such a condition
might reguire that the time of day be between 8 a.m. and 5 p.m., allow-
ing database operations only during regular working hours, or only on
certain days of the week or month. A query dependent access condition
can limit the relations upon which the user can operate, the attributes
which the user can fetrieve, and the attributes which can be used in the
selection predicates. Since the names of the requested relations and
attributes arelgiven in the query, the truth values of the predicates
are ascertained from the queries themselves, As an example of a query
dependent condition, consider an authorization which allows the selec-
tion of names from an employee relation as long as the selection predi-
cate does not specify salary values,

A condition 1is a data dependent condition if its value cannot be
ascertained without a retrieval (or perhaps several retrievals) from the
database. . In [BALLE81] several classes of data dependency are identi-
fied depending on which of the following sources provides the data
necessary for evaluating the condition: |

l).retrieved attributes of retrieved tuples

"2) non-retrieved attributes of retrieved tuples

3) tuples in relations other than those being queried by user

4} aggregate data (sum, count, average, or data otherwise derived

from, but not directly stored in, the database)

An example of an aggregate dependent access condition is one that

requires the average age of employees retrieved to be less than 30.

14

Dependency has an effect on the binding time requirements of predi-
cates. The time at which each part of an access condition can be evalu-
ated for a given query is called the binding time for that part. The
time at which a complete access decision can be reached depends upon the
type of dependencies within the access condition. System dependent con-
ditions can be evaluated as soon as the system state can be determined.
A system dependent condition can be applied at any time from the logging
in of the user (and even earlier), to the time the results of. a service
request are returned to the user. Evaluation of query dependent condi-
tions can be performed upon receipt of a query, leading to a relatively
early binding time. If a condition has a data dependency, the binding
time depends upon the class of the dependency. For example, conditions
dependent upon retrieved tuples must be bound repeatedly as the res-

ronses toe a query return from the database.

4. INTRODUCTICN TO MULTISAFE

A MULTIprocessor system for supporting Secure Authorization with
Full Enforcement (MULTISAFE) for shared database managément is being
developed [TRUERB0] by Trueblood at the University of South Carolina and
Hartson at Virginia Tech. Performance improvements are expected to be
achieved by a combination of multipfocessing, pipelining, and parallel-
ism. The MULTISAFE protection précessor can meet complex policy

requirements with flexible, generalized protection mechanisms.

15

The system configuration is based on functional division into three
najor modules:
1. the user and application module (UAM)

2. the data storage and retrieval module (SRM)
3. the protection and security module (PSM) "

The UAM can support many different tyées of user interfaces. The SRM
can support the popular data models (relational, network, or hierarchi—
cal), or it can be a specialized database machine. MULTISAFE can be
implemented on one or more processors. In an ordinary single processor
system thesé three modules function sequentially in an interleaved fash-
ion. In a multiprocessor system all three modules can function concur--
rently. The UAM coordinates and analyzes‘;ser‘requests at the same time
that the SRM generates responses for requests. Simultaneously, the PSM
continuously performs security checks on all activities. Figure 3
illustrates the logical relationships among the three modules. All pro-
cessing within MULTISAFE is initiated and controlled by events occurring
within the message flow, including such events as the transmission of
data to and from the database.

Typically, the concepts of isolation and separation have been con-
sidered important for supporting data security. The physical isclation
of modules in MULTISAFE constrains all intermodule communication to
well-defined channels and eliminates all "back door" access paths in the
software. However, physical isolation by itself is not a guarantee of
security. Security depends upon the correctness of the mechanisms
within the PSM and upon the correctness of intermodule communication.
Verifying the correctness of the authorization and enforcement processes

of the PSM can now be isolated as a separate endeavor. Methodology is

16

SER | user

[Y- X J
R T i
i M N USER AND APPLICATION
i i MODULE
PROTECTION ; , ’
DATABASE :
' . PSM PRCTECTION AND SECURITY
\—/ -
SRM g STORAGE AND RETRIEVAL
MCDULE
\—/
USER
DATABASE

Figure 3. Iogical Relationships Among MULTISAFE Modules

currently aﬁailable to show that the specifications of these processes
do not violate protéction policies (axioms} and that the programs are
faithful to the specifications. Special attention is given to intermod-
ule communication in [TRUERS80].

In MULTISAFE, messages are sent between modules via encapsulated
data types. Its contents are set and checked by. protected procedures

which are invoked parametrically. No user or user process can directly

17

access these message objects. The primary mechanisms are structured and
verifiable. For a single user, it is shown in [TRUERS0] that the only
message path between the UAM and the SRM is established by a sequence of
carefully defined operations on abstract objects in the PSM. ‘It is also
shown that the message sequences from multiple users, introduced for the
sake of cdncurrency, can be effectiveiy serialized, leaving intact the
security of the single user case.

Messages from either authorizers or users are subject to two kinds
éf security checking: 1) cheéking specific to the request, and 2) sys-
tem.occupancy checking. System occupancy checks relate to overall per-
| mission to be an active.user of the system, without regard to how the
system is being used. The system occupancy check is always made in con-
junction with log¥in. For example, the conditions (separate from user
identification) for a givén system user may be that occupancy is allowed
only between 8:00 a.m. and 5:00 p.m. System odcupancy checking at data
request time and other times provides (optional) additional binding
times [HARTH77] for these conditions.

In this paper the concern is with the implemehtation of the author-

ization and enforcement mechanisms within the PSM of MULTISAFE.

18

5. A DATABASE APPROACH TO PROTECTION IMPLEMENTATION

5.1. The Relational Makeup of the Protection Database

The dataﬁase system used by the accessors of data is a relatidnal DBMS,
called the Mini Data Base (MDB), implemented at VPI & SU on the VAX
11/780 computer. The authorization information (called the Protection
- Data Base, or PDB) is stored in relational form, as is the authorization
information of System R [GRIFP76]. The’PDB uses a fixed set of rela—
tions and a specially modified version of the MDB for storage and
retrieval. The fixed set of relations (initially in the system and,
thereafter, never created or destroyéd) in the PSM includes USERS and
AUTHS. The .USERS relation contains user identification and account
information for each individual user, as well as definitions for all
user groups. The AUTHS relation contains the authorization information,
i.e., who has the right to do what operations on what data and under
what access conditions. In other words, AUTHS contains the set P of
section 2.3. SCHEMAS, a fixed relation in the SRM, provides the data-
base directory containing the definitions of the user-created data rela-

tions.

19

5.1.1. Data Definitions

The database system directory is contained in the relation SCHEMAS.
SCHEMAS conceptually consists of variable length tuples of the form
SCHEMAS {(RELATTCN, NBR ATTRS,

NAME OF ATTR NO 1, TYPE_OF ATTR NO 1, ATTR NO_l INDEXED,

NAME OF ATTR NO 2, TYPE OF ATTR NO 2, ATTR NO 2 INDEXED, ...,

NAME OF ATTR NO N, TYPE OF ATTR NO N, ATTR NO N INDEXED).
This conceptual view of SCHEMAS is what the usér sees. The implementa-
tion details, described in the following paragraph, are transparent to
the user. | |

The underlying implementation of the relation SCHEMAS has been sim—
plified‘by separating it into two parts. The Data Base System Directory
{DBSD) contains the relation name (RELATION) and number of attributes
(NBR_ATTRS) for each relation in the system. In addition, the DBSD con-—
tains a pointer to a Relation Directory (RD) which coﬁtains the other
attributes of the SCHEMAS relation. There is one DBSD for the entire
system and one RD for each data relation. In‘addition to these attri-
butes from the SCHEMAS relation, the RD contains a count of the number
of tuples in the relation and pointers, into the data storage area and
to secondary index B-trees, which are needed to retrieve the data

tuples.

20

5.1.2. User and User Group Definitions

In MULTISAFE individual users are identified by the standard attri-
butes: userid, account numbér, project name, password, etc. Users can
also be grouped together to simplify the authorization of access to
shared data. User groups are a generalization of the Multics (and oth-
ers) "project" concept. The USERS relation is a 6-tuple of information
about system.users and groups of users with the form:

USERS (GROUP_NAME, USER ID, ACCT NO, TERM NO, PROJ NAME, PASSWORD).
In MULTISAFE, users cén be grouped either explicitly by enumérating the
membefs of the set or implicitly by stating a set—definiﬁg predicate.
At log-in time, all such predicates are tested against the user's char-
acteristics. In this particular implementation, user group defining
predicates are restricted to the use of attributes found in"the USERS
Relation (e.g., user id, account humber, terminal number, and project
name) . The user becomes a member of each grdup fbr which the corres-
ponding predicate is true. More discussion of the use of these predi-
cates is given in section . Implicit membership holds.for the duration
of the terminal session until 1ogout, or until such time that the group

defining conditions need to be re-evaluated.
3.1.3. Authorization Information

‘The AUTHS relation contains the set of all authorizations. Each
row of AUTHS is a 6~-tuple of information governing which users or groups
of users have access to any of the system relations., The AUTHS relation

has the form:

21

AUTHS (AUTHQRIZER, _ GROUP__NAME » OPERATIONS,
RELATION, ATTRIBUTES, ACCESS_CONDITION) .

AUTHS coﬁtains.a dynamic record of the current state of authoriza-
tion: information as é result of the cumulative effect of all valid
authorizations received.up to a given point in time. In each tuple of
AUTHS the attribute RELATION and ‘the bit-coded attribute ATTRIBUTES
denote a data relation_br a projection of a data relation. The corres-
pondence of the bits of ATTRIBUTES to attribﬁtes of the data relation is
.given by the order of thé attributes as defined when the relation was
created. A value-of '1' in a bit position.means that thé correspondihg

attribute is included in the projection defined by that AUTHS tuple. A
value of '0' means that it is not. Since the operation set is fixed,
for convenience of implementation, the OPERATION attribute is bit-coded,
_ too. ib illustrate the semantics of AUTHS, assume that a data relation

called EMP has been defined by a user named SMITH. Consider the con—

AUTHS «
IAUTH_O- IGROUP_I OPERATIONS IRELATION |ATTRI-| ACCESS_ |
IRIZER |NAME | : .] IBUTES [CONDITION |
1ISMITH |SMITH. jOWN,RETRIEVE ,UPDATE,...| EMP 1111111 [_ T |
2]8MITH |GROUP1|RETRIEVE | EMP [010010] C1l |
3|SMITH |GROUPZ[RETRIEVE | EMP 1611000] c2 |

tents of AUTHS sﬁown below.
| For the relation EMP, the ATTRIEUTES bits represent the attributes
of EMP in the order they were defined:
"EMP (EMP#%, WE, SALARY, BIRTH YEAR, DEPT, YRS SERVICE)
The first tuple of AUTHS denotes unconditional ownership (including full

access rights) of EIMP, the relation created by Smith. This tuple was

22

entered into AUTHS as one-résult of Smiﬁh‘s command that created EMP.
The OWN right is what allowed Smith to grant RETRIEVE rights to GROUP1
and GROUPZ,_ represented by the second and third tuples in AUTHS. Thé
second tuple defines a projection of the EMP-relation containing only
attributes NAME and DEPT; the third, a projection over NAME and SALARY.
Cl and C2 are the names of the access conditions for the two grants. A
value of "T" for ACCESS CONDITION denotes' an unconditionally "true"
truth value in the first tuple of AUTHS. | |

To simblify checking of access conditiéné when retrieving déta, the
access conditions afe Stored ih a sepérate relation with the
- ACCESS_CONDITION attribute of AUTHS contaihing pointers into the CONDI-
TIONS relation. The method of evaluation for a condition is determined
by its dependenéy class (see section 3)._ The treatment of acgeSs condi-

‘tions is further discussed in section .

5.2. Philosophy of Syntax Design

The MULTISAFE system uses a relational database system, the Mini
Data Base (MDB),_ for the SRM (and part of the UAM). In an initial
design, the MDB command language, modeled after SEQUEL [CHAMD76],
included the usual.commands for creating and dropping relations} insert-
ing, .deleting,. and updating tuples in data relations; and loading and
storing data files to and from relations. The authorization part of the
language provided the means to create and drop new users and groups of
users and to grant, revoke, display, and modify access rights of users

‘and user groups.

23

The use of a relational database approach to protection drew the
syntax of the authorization and data definition commands c¢lose to that
of the commands for manipulatinq the data relations. The logical con-
clusion was a redesign of the'command language takihg the point of view
that the authorizer.is just a user of the system who is ﬁsing authoriza-
tion relations instead of data relations. Previously specialized com-
mands.to create and drop relationé (tuple types) are now viewed as ordi-
nary INSERT ‘and DELETE operations on. tuple instances in the special
relation SCHEMAS, | which contaihs the database difectory information,
Thus, the right to create.relations appears in AUTHS as the fight_to do
an INSERT operatioh on the SCHEMAS relation. And the right to grant the
right té create and drop relétions is represented by the OWN (ownership)
- operation on the SCHEMAS relation. 'This .redesign produced a much sim—
pler language with fewer commands, rather than a different set of com-
mands for each of the thfee functional areas (daté definition, data
manipulation, and authorizatioﬁ). Intﬁiﬁively, these simplifications
would seem to enhance both "string simplicity™ and "structural consis-
tency" described by Reisner in [REISPS81]. The latter, a measure of
whether tasks that are perceived to be similar by a user.are described
by similar sequences of.commands, is especially important to the usabil-
ity:of a language. The system interactively prompts the inexperienced
user, who deals only with data relétions, for all needed information.
‘Authorizers and users defining new relations, being more expérienced,
can easily exteﬁd their wview to include the added system relations,

without having to learn new commands.

24

Another advahtage to the database approach is that it offers data
independence to the protection enforcement processes. Becapse AUTHS and
USERS ére accéssed'via database operations, information about their
structure is not put into the accessing programs, bgt is in the data
definition of these relations. Many later éhanges to the make-up of
these tables can be limited to their definitions. For example, suppose
_thére are ¥ bits in ATTRIBUTES of -AUTHS, and it is desirable to double
the number of éttributes in an MPB relation. Now, 2x bits are needed in.
the ATTRIBUTES field of AUTHS. This change requires.only that AUTHS be
redefined and reloaded. Existing tuples of AUTHS and existing programs

that deal with AUTHS are not affected.

5.3. Summary of Commands

This section contains some incomplete examples which give_juét an
overview of the form of the command language interaction. More detailed
examples and explanations of the meanings of the commands are given in
section .

in the following examples the output produced by the database sys—
tem is marked with S and the part typed by the user is marked with U.
The user starts each iﬁteraction by typing the command, which is offéet

to the left above the interaction.

25

5:.3.1. The INSERT Command

INSERT INTO SCHEMAS .

S: ENTER VALUES AS THEY ARE REQUESTED.
" RELATION =

U: EMP
S: NBR_ﬁTTRS'= ? {(NUMBER OF COLUMNS IN THE RELATION)
U: 4 =
S: NAME__OF__ATTR__NO_I =.?
U: NAME .
S: TYPE QOF ATTR NO 1
u:c — - -
S: A’I"I‘R__NO__l_INDEXED

2 (€= CHARACTER, 1 = INTAGER)

1]
)

(Y = THIS ATTRIBUTE IS TO HAVE A
SECONDARY INDEX CREATED FOR IT,
N = NOT TO BE INDEXED)

INSERT INTO EMP
S: ENTER VALUES AS THEY ARE REQUESTED
NAME = 7
U: SMITH

- INSERT INTO USERS

S: ENTER VALUES AS THEY ARE REQUESTED.
GROUP NAME = ? (USER ID, IF ADDING A NEW USER TO THE SYSTEM)

U: GROUPI - :

S: USER ID = ? (ENTER NULL LINE TO END THE LIST)

U: TALBOTT

INSERT INTO AUTHS
S: ENTER VALUES AS THEY ARE REQUESTED
GROUP NAME =
U: GROUPIL

-

26

5.3.2. The DELETE Command
DELETE FROM EMP WHERE DEPT = 'D3!

DELETE FROM EMP WHERE CURRENT
(Any command with a WHERE clause of CURRENT will operate
on the last tuple retrieved.
This allows users to make sure they are deletlng the tuple
they wish to DELETE by entering RETRIEVE commands with
various WHERE clauses until the appropriate tuple is isolated,
and then it is deleted with the WHERE CURRENT clause.) :

' DELETE FROM USERS .
WHERE. GROUP_NAME = 'GROUP1' AND USER ID = 'TALBOTT'

DELETE FROM USERS WHERE USER ID = 'TALBOTT'
DELETE FROM SCHEMAS WHERE REL NAME = 'EMP'

DELETE FROM AUTHS
WHERE GROUP NAME = 'GROUP1' AND OPERATIONS = 'UPDATE' AND RELATION = 'EMP'
AND ATTRIBUTES = 'NAME, DEPT' AND ACCESS CONDITION = 'DEPT IN ('D1','D2','D3")!

5.3.3. The RETRIEVE Command

RETRIEVE FROM SCHEMAS WHERE REIATION = 'EMP!
(Omitted attribute list lmplles all attributes of the relation
are to be returned.) :

' RETRIEVE NAME AND SALARY
FROM EMP
WHERE DEPT = 'D3!

RETRIEVE FRM USEES WHERE GROUP NAME = 'GROUP1'

- RETRIEVE AUTHS WHERE GROUP NAME = 'GRCUP1'
(Prints all authorizations for the group, using a
combination of the AUTHS and CONDITIONS relations.)

RETRIEVE UNIQUE NAME FROM EMP
WHERE DEPT = 'D3' ORDER BY SALARY
(The user must be authorized to RETRIEVE both NAME and SALARY.)

27

5.3.4. The UPDATE Command

UPFDATE NAME AND DEPT
IN EMP '
WHERE DEPT = '45°'
S: ENTER VALUES AS THEY ARE REQUESTED.

NAME =7
U: SMITH
S: DEPT =7
u: 10

UPDATE OPERATIONS IN AUTHS _ :
WHERE GROUP NAME = 'GROUP1' AND RELATION = 'EMP'
S: ENTER VALUES AS THEY ARE REQUESTED.
OPERATIONS = ?
U: OWN, RETRIEVE, INSERT

UPDATE ACCT NO, PROJ NAME
IN USERS B
WHERE GROUP NAME = 'GROUPL® _
S: ENTER VALUES AS THEY ARE REQUESTED.
ACCT NO = ?
U: 503
S: PROJ NAME = 2
U: DESIGN

5.3.5. The STORE Command

STORE FROM SCHEMAS
S: ENTER THE RELATION NAME,
U: EMP
S: ENTER THE FILE NAME OF THE DATA.
USE NEW FILE FOR STORE COMMAND; OLD FOR LOAD COMMAND.
U: EMPSCH,DAT :

STORE FROM EMP
S: ENTER THE FILE NAME OF THE DATA.
USE NEW FILE FOR STORE COMMAND; OLD FOR LOAD COMMAND.
U: EMPLOY.DAT

28

5.3.6., The LOAD Command

LOAD INTO SCHEMAS
S: ENTER THE RELATION NAME,
U: EMP
S: ENTER THE FILE NAME OF THE DATA.
USE NEW FILE FOR STCRE COMMAND; OLD FOR LOAD COMMAND.
U: EMPSCH,DAT

LOAD INTO EMP _
S: ENTER THE FILE NAME OF THE DATA.
USE NEW FILE FOR STORE COMMAND; OLD FOR LOAD COMMAND,
U: EMPLOY DAT

5.4. The Interactive Option of the MULTISAFE Language

Many of the commands are at least partly interactive in thelr ba51c.
forms, as shown above. | To simplify the use of the command language, ai
MULTISAFE user can also enter any part of a command followed by a '?'.
When the system detects a '?' at the end of an inpﬁt 1ine, it changes to
an interactive prompting mede in which the system displays a _list of
appropriate keywords and/or other items from which the user makes a
selectioﬁ.

The following examples of the use of '?' to chahge to the interac-
tive mode at various places within a command are all based on this RET-
RIEVE command:

RETRIEVE NAME AND SALARY FRCM EMP WHERE DEPT = 'D3‘.

The first example uses '?' at thé very beginning.

U: ?
S: SELECT ONE OF THE FOLLOWING COMMANDS.

INSERT, DELETE, RETRIEVE, UPDATE, LOAD, STORE, TEST
U: RETRIEVE
S: SELECT ONE OF THE FOLLOWING RELATION TYPES.

29

(LTS

haocwncunacwmg

s e a2

SCHEMAS, USERS, AUTHS, DATA

: DATA

ENTER THE LIST OF ATTRIBUTES YOU WISH TO SEE.
NAME AND SALARY
ENTER THE NAME OF THE RELATION.

EMP
ENTER THE SELECTICN PREDICATE
DEPT = 'D3?

THE COMPLETE COMMAND IS:
RETRIEVE NAME AND SALARY FROM EMP WHERE DEPT = 'D3'

: RETRIEVE ?
: SELECT ONE OF THE FOLLONING OBJECT TYPES.

SCHEMAS, USERS AUTHS, DATA
DATA

: ENTER THE LIST OF ATTRIBUTES YOU WISH TO SEE.

NAME AND SALARY

: ENTER THE NAME OF THE RELATION.

EMP

: ENTER THE SELECTION PREDICATE

DEPT = 'D3?

: THE COMPLETE COMMAND IS:

1§

RETRIEVE NAME AND SALARY FROM EMP WHERE DEPT = 'D3!

: RETRIEVE NAME AND SALARY ?
: ENTER THE NAME OF THE RELATION.
: EMP

ENTER THE SELECTION PREDICATE

¢+ DEPT = 'D3!
: THE COMPLETE COMMAND IS:

RETRIEVE NAME AND SALARY FRCM EMP WHERE DEPT

ID3I

: RETRIEVE NAME AND SALARY FROM EMP ?
: ENTER THE SELECTION PREDICATE

:+ DEPT = 'D3

: THE COMPLETE COMMAND IS:

RETRIEVE NAME AND SALARY FROM EMP WHERE DEPT = 'D3°

30

5.5. Processing and Enforcement for Commands

5.5.1, Example Folicies

This section lists some {more or less arbitrary) choices for pro-
tection policy upon which later examples are based. These policies will .
be referred to by number. Some of these policies have already been men-~
tioned, but are repeated here to emphasize that they are, in fact, pol-
icy decisions and not part of the basic mechanisms. Because many of
these policies are represented by tuples in AUTHS, they can be changed
without redesigning the protection mechanisms.

1) Discretionary authorization is decentralized (implying ownership of
data by users), but a SYSADMIN controls certain system resources.

2} Any user can create new data relations. (This policy is included
mostly for purposes of illustration and would not be appropriate for
all database systems.)

3} Anyone who Creates a new data relation is the "owner" of the data
contained in that relation, and can share access {(and SUBONNWNership)
to it. An owner can grant subownership to another user. A subowner
can issue authorizations governing the use of the data, but cannot
grant ownership or subownership to others.

4) Only the SYSADMIN can define new users (new accounts).

5) The SYSADMIN will share the right to create user groups with all
users. (Again, this is not necessarily always appropriate,)

6) All users may lock at all user information, except passwords.

7) Each user may look at all authorization information that governs
his/her access. This is a "full disclosure" policy [HARTH81b]. Each
authorizer may also see all authorizations which he/she has entered
into AUTHS.

8} A partial enforcement policy {HARTH77] will be used. Under such a

policy, acceéss is allowed to that subset of the query response which
passes all security checking. (In contrast, under a full enforcement

31

policy, if any part of the query response fails the security
checking, no access is allowed to any part of the response,)

9} Revocation (deletion) and modification of an authorization will be

limited to the person (AUTHORIZER) who entered the corresponding
tuple into AUTHS.

5.5.2. Initial State of System Relations

Since authorization can be highly decentralized in MULTISAFE (and
since policies 1 ahd 3 require it), each user is an éuthorizer with at
least the authority to share access to his/her own data. Although
authorization is decentralized, a system administrator, SYSADMIN, can be
(and is, per policy 1) included. The SYSADMIN is thé owner of the sys-

_tem reiations USERS, AUTHS, and SCHEMAS. AUTHS initially contains the
rights of the SYSADMIN to INSERT and DELETE relations, users and user
groups, and the rights to grant these INSERT and DELETE rights to other
authorizers., SYSAIMIN has no initial rights to data, but can obtain
them as any authorizer can. That is, by creating a relatidn,_ a user
(possibly the SYSADMIN) becomés its owner and receives full access and
granting rights (per policy 3). = In addition, a user can receive access
and/or granting rights by being granted them from another (owning)
authorizer.

Initially the system has only one user, the system administrator
(SYSADMIN) and one user group, GENERAL, The GENERAL user group, by
définition, contains all users and serves as an efficient repository for
that miﬁimal'set of rights common to all users.

The followinq tables show the relations USERS and AUTHS, and the

initial tuples in the relations. In all relations an attribute of '#!

32

indicates a 'don't care' attribute; that is this attribute will match

any value. Since the GENERAL group below has a '*' value for each of

its attributes, it will match every user.

* ! *

USERS:
| GROUP_ | USER_ | ACCT | TERM | PROJ_ | PASS |
| NAME | ID | NO | NO | NAME | WORD | .
1 | SYSADMIN| SYSADMIN| | 8YS | ADMIN|
| l |

2 | GENERAL | *

T ¥

Initially the relation AUTHS contains only three tuples.

tuples give all rights to access the three system relations

These

{USERS,

AUTHS:

| AUTHO- | GROUP_ | OPERATIONS |RELATION |ATTRI~ | ACCESS |

| RIZER | NAME | |- |BUTES |CONDITION|
1l == |SYSADMIN|OWN,INSERT,... IAUTHS 111111 T]
2| -— |SYSADMIN|OWN,INSERT,... [USERS |111111] T |
3] -~ |SYSADMIN|OWN,INSERT, ... |SCHEMAS [111...] T |
4 |SYSADMIN |GENERAL |INSERT [USERS [111111| c1 |
5 |SYSADMIN |GENERAL |RETRIEVE |USERS [111110] T |
6 [SYSADMIN |GENERAL |INSERT,RETRIEVE,...|SCHEMAS {111...] T !
7 [SYSAIMIN|GENERAL |RETRIEVE |AUTHS [111111] c2 |
8 [SYSADMIN [GENERAL |UPDATE,DELETE |AUTHS [111111] c3
CONDITIONS:

| COND | PREDICATE

| NAME |

C2 | (u{q) & AUTHS.GROUP NAME) OR
| (u(g) = AUTHS.AUTHORIZER)

C3 u(qg) = AUTHS.AUTHORIZER

I
1
Cl | NEW(GROUP_NAME) > NEW(USER ID) |
!
|
|

o ———

3
1

AUTHS, and SCHEMAS) to the system administrator, SYSADMIN.

33

When the

system is first run, the system.administrator grants the GENERAL user
group some access to the system relations, resulting in the tuples shown
below. Tuples 4 and 5 are in discussed in the next section. Policy 2
is implemented by the sixth tuple. Tuplé 7 and its access condition
implement policy 7. Tuple 8 and condition C3 represent policy 9. The
ownership requirement (of policy 3) to INSERT, DELETE, or UPDATE author-
izations is not shown in the AUTHS table, but is built into the authoriﬁl

zatlon enforcement mechanism, discussed in section .
5.5.3. User and User Group Definition and Enforcement

Both individual users and user group definitions are added to the
relation USERS with tﬁe command INSERT INTO USERS. Note that all new
users (being members of GENERAL) will automatically receive the GENERAL
rights to access the system relations as described in the previous sec-
tioﬁ. . For example, tuple 4 of AUTHS, and its access condition, imple-
ment policy 5. The access condition predicate, C1, restricts insertions
in USERS to groups, as individual user defjnitions are denoted by having
the USER ID appear also as the value in the GROUP NAME field. Tuple 5
implements policy 6 by allowing all usérs to read all user information,
except for passwords—this exception enforced by the zero in the final
bit position of the ATTRIBUTES column.

To continue the running example, the system administrator next adds

three new users to the system.

SYSADMIN: INSERT INTO USERS
SYSTEM : ENTER THE VALUES AS THEY ARE REQUESTED.

34

GROUP NAME = ? (USER ID, IF ADDING A NEW USER TQ THE SYSTEM)
SYSADMIN: FIKE — - -
SYSTEM : USER ID
SYSAIMIN: FIKE™
SYSTEM - : ACCT NO
SYSADMIN: 12001
SYSTEM : TERM NO
SYSADMIN: -
SYSTEM : PROJ NAME = ?
SYSACMIN: DESIGN
SYSTEM : PASSWORD = ?
SYSATMIN: CHET
SYSTEM : PASSWORD, AGAIN = ?
SYSADMIN: CHET :

? (ENTER NULL LINE TO END THE LIST)

?

?

For brevity, the reader may assume that two other similar commands
have been issued, creating users Talbott:and Lundin. The ability of
SYSADMIN to INSERT these new user definitdions into USERS is represented
by the first tuple in AUTHS (policy 4). Enforcement for this operation
is the same as enforcement for access to any data relation—--detailed in
.section .

The new USERS relation is as follows.

USERS: |
| GROUP_ | USER | ACCT | TERM_| PROJ | PASS !
| NAME | ID [NO T | NO T | NAaME © | WORD |
1 | SYSAIMIN | SYSADMIN | 0 | * | SYS | ADMIN
2 | GENERAL I* T * Poo* !
3 | FIKE | FIKE] 12001 | * | DESIGN | CHET 1
4 | TALBOTT | TALBOTT | 12004 | * | IMPL | ToM |
5 | 42 | 1MPL | ROB |

| LUNDIN { LUNDIN f 12003

+ +

The contents of USERS are interpreted as predicates in the follow-
ing way. Each tuple is an AND of simple predicates of the form "attri-
bute-value". If there is more than one tuple with the same GROUR_NAME,

the ANDs of those tuples are ORed to make up the predicate that defines

35

that group. A list of USER IDs that defines a group, then, is actually
an OR of several simple predicates of the form "USER_ID = value". In
the above example table, the TERM NO value of 42 for user Lundin means
that this individual user can use only one specific terminal to access
" the system. No other terminal number will match the AND of this tuple
and allow a successful log-in (see log;in.enforcement in section).
Next, user Fike creates two user groups, one by listing the users
which are to be members of the group and the other by stating a group
defining predicate. Before the tuples are added to ﬁhe relation USERS,
the relaticn AUTHS is checked to see if user Fike has the right to
INSERT tuples into USERS. Indeed, tuple 4 of AUTHS (per policies 4 and
5) gives all users the right to INSERT tuples into USERS if the

GROUR_NAME and USER _ID are not the same.

INSERT INTO USERS

ENTER VALUES AS THEY ARE REQUESTED.

GROUP NAME = ? (USER ID IF ADDING A NEW USER TO THE SYSTEM)
FIKE : GROUPI - '

FIKE
SYSTEM

SYSTEM : USER ID = ? (ENTER NULL LINE TO END THE LIST)
FIKE : TALBOTT
SYSTEM : USER ID = ? (ENTER NULL LINE TO END THE LIST)
FIKE : LUNDIN
SYSTEM : USER ID = ? (ENTER NULL LINE TO END THE LIST)
FIKE : - :
SYSTEM : ACCT NO = ?
FIKE : T
SYSTEM - : TERM NO = ?
FIKE : -
SYSTEM : PROJ NAME = ?
FIKE : -
SYSTEM : PASSWORD = ?
FIKE : PASS1
SYSTEM : PASSWORD, AGAIN = ?
FIKE : PASS1
FIKE : INSERT INTO USERS
SYSTEM : ENTER VALUES AS THEY ARE REQUESTED.
GROUP NAME = ? (USER ID IF ADDING A NEW USER TO THE SYSTEM)
FIKE : GROUB2 -

36

SYSTEM
FIKE
SYSTEM
FIKE
SYSTEM
FIKE
SYSTEM
FIKE
SYSTEM
FIKE
SYSTEM
FIKE

The

: USER_ID

I
)

(ENTER NULL LINE TO END THE LIST)

If
")

: ACCT NO

i
")

TERM_NO

: PROJ NAME = ?
IMPL

: PASSWORD = ?

: -PASS2

PASSWORD, AGAIN = ?
PASS2

two commands above entered three new tuples into the relation

USERS (see below). Since GROUPL was defined with a list {(an OR) of two

userids,

the first command entered two tuples, 6 and 7, into the rela-

tion. The second command entered only one tuple, number 8.

- USERS:

| GROUP | USER | ACCT | TERM | PROJ | PASS I

| NAME ~ | ID T | NO © | NO T | NAME | WORD |
1] SYSADMIN | SYSADMIN | 0 | * | svY§ | ADMIN |
2 | GENERAL [* I * | * -
3 | FIKE - | FIKE | 120001] * | DESIGN | CHET |
4 | TALBOTT | TALBOTT [120004] * | IMPL | TOM |
5 | LUNDIN | LUNDIN | 120003] 42 | IMPL | ROB i
6 | GROUPL | TALBOTT | %] x| * | PASS1 I
7 | GROUP1 | LUNDIN . S R * | PASS1 |
8 | GROUP2 [| * | * | IMPL | PASS2 |

Ju
T

T

5.5.4. Data Definition

The creation of new relations is the creation of object types (new

tuple types), and is accomplished by the insertion of a tuple into SCHE-

37

MAS. On the other hand, the insertion of a new data tuple in the new
relation is the creation of an instance of that new objedt type. The
.right to create either the object type or the instance must be expli-
citly represented in AUTHS. Tuple 6 allows all users the right to
-create new relations, acﬁording to policy 6. \

It doesn't make sense to allow operations on somé attributes of
SCHEMAS, but not on others. For example, onhe would not want a gliven
user to be able to define a new relation without being able to name its
attributes. Therefore, a simple convention was built into the system
which forces the bit code of the ATTRIBUTES column of AUTHS to contain
all ones, when the RELATION value is SCHEMAS. Similarly, for all rela-
tions, it will be a convention that ATTRIBUTES will be all oﬁes for
INSERT and DELETE operations. It makes no sense to INSERT or DELETE
only part of a tuple.

Next, suppose user Talbott creates a relation, EMP, with 4 attri-
butes, NAME, MGR, SALARY, and DEPT. Enforcement for insertions into
SCHEMAS is the same as enforcement for access to any data

relation-—detailed in section .

TALBOTT : INSERT INTO SCHEMAS
SYSTEM : ENTER VALUES AS THEY ARE REQUESTED.

REIATION = 2
TALBOTT : EMP _
SYSTEM : NBR ATTRS = ? (NUMBER OF COLUMNS IN THE RELATION)
TALBOTT : 4 ,

SYSTEM : NAME OF ATTR NO 1 = ?
TALBOTT : NAME

SYSTEM .+ TYPE OF ATTR NO 1 = ? (C OR I)
TALBOTT : C I :
SYSTEM : ATTR NO 1 INDEXED = ? . (Y OR N}
TALBOTT : ¥

SYSTEM : NAME OF ATTR NO 2 = ?
TALBOTT : MGR

38

SYSTEM : TYPE OF ATTR NO 2 = ? {C OR I)
TALBOTT : C — — T T

SYSTEM : ATTR NO 2 INDEXED = ? (Y OR N)
TAIBOTT : N ~ ~ —

SYSTEM : NAME OF ATTR NO 3 = ?

TALBOTT : SALARY

SYSTEM : TYPE OF ATTRNO 3 =2 (C OR I)
TALBOTT : I ~ -7

SYSTEM : ATTR NO 3 INDEXED = ? (Y OR N)
TAIBOTT : N~ °

SYSTEM : NAME OF ATTR NO 4 = ?

TALBOTT : DEPT
SYSTEM : TYPE OF ATTR NO 4 = ? (C OR I)
TALBOTT : ¢~ T
SYSTEM ATTR NO 4 INDEXED =
TALROTT : ¥ ~

)

(Y OR N)

After creating the relation EMP,.user TALBOTT inserts 4 tuples into it.

TALBOTT : INSERT INTO EMP

SYSTEM : ENTER VALUES AS THEY ARE REQUESTED.
| NAME = ?

TALBOTT : SMITH,J

SYSTEM : MGR = ?

TALBOTT :

SYSTEM : SALARY = ?

TALBOTT : 40000

SYSTEM : DEPT = ?

*

TALBOTT : D1
For brevity, the commands for the other three tuples are omitted. The
data relation EMP becomes as shown below. ‘A '-' in an attribute indi-
EMP:
| NAME I MGR | SALARY | DEET |
1 | SMITH,J | - | 40000 | D1 |
2 I_JONES,J | SMITH,J | 20000 | D1 I
3 { 8MITH,S | SMITH,J | 20000 | Dl [
4 | JONES,S | - | 45000 | D2 |

cates that the user did not supply a value for that attribute; ie, it is
a 'null’' value. The reader should note that the creation of EMP not

only inserts a tuple into SCHEMAS, but also adds a tuple (tuple 8 below)

39

into AUTHS, automatically establishing ownership and all access rights

to EMP by Talbott (per policy 3).

AUTHS:

.- vi
+

| AUTHO- | GROUP

] L.]

OPERATIONS IRELATION [ATTRI-| ACCESS

[I

} RIZER | NAME | | : |BUTES |CONDITION|
1} -— |SYSADMIN|OWN, INSERT,... [AUTHS |1111111 T I
2| -~ |SYSADMIN|OWN,INSERT,... I[USERS 111111} T |
3] -~ [SYSADMIN|OWN,INSERT,... |SCHEMAS [11l...]| T |
4 |SYSADMIN |GENERAL, | INSERT IUSERS |111111] of NI
5|SYSADMIN |GENERAL |RETRIEVE IUSERS |111110] T |
6 |SYSADMIN |GENERAL |INSERT,RETRIEVE,...|SCHEMAS |111...| T !
7 |SYSADMIN {GENERAL |RETRIEVE |AUTHS |111111]§ c2
8 [SYSADMIN |GENERAL |UPDATE,DELETE |AUTHS {111111] c3 |
9|TALBOTT |TALBOTT |OWN,RETRIEVE,... JEMP 1111 | T 1

.
T T T T

5.5.5. Authorization

So far,. user groups GROUPL and GRCUP2 have been created, but mem~
bers of-these groups have not been allowed to access any data relations.,
For the members of a user group to be allowed to access a data relation,
the owner must grant rights to the user group. In the following example
the user Talbott grants to the members of GROUPL the right to UPDATE the
attributes NAME and SALARY of all tuples of the relation EMP which have -
the value D1 for the attribute DEPT.

TALBOTT
SYSTEM

INSERT INTO AUTHS -
ENTER VALUES AS THEY ARE REQUESTED.
GROUP NAME = ?

TALBOTT : GROUPTL
SYSTEM : OPERATIONS
TALBOTT : UPDATE

"

?

40

SYSTEM
TALBOTT
SYSTEM
TALBOTT
SYSTEM
TALBOTT

: RELATION = ?

EMP

ATTRIBUTES = ?

NAME, SALARY

ACCESS CONDITION = 2
DEPT = 'D1!'

Next, GROUP2 is granted the right to RETRIEVE the names and depart-

ments of employees which are in one of the three departments D1, D2, or

D3.

TALBOTT : _
: ENTER VALUES AS THEY ARE REQUESTED.

SYSTEM

TALBOTT
SYSTEM

TALBOTT :

SYSTEM
TALBOTT
SYSTEM

TALBOTT :

SYSTEM

INSERT INTO AUTHS

GROUP NAME = 7
GROUP2
OPERATIONS
RETRIEVE
RELATION =

?

*J

EMP
: ATTRIBUTES

?

NAME, DEPT

: ACCESS CONDITION = ?

TALBOTT :

PEPT IN ('D1', 'D2', 'D3')

The user Lundin is given the right to UPDATE or DELETE the NAMES of

EMPloyees who earn less than 25,000.

TALBOTT :
: ENTER VALUES AS THEY ARE REQUESTED.

SYSTEM

. TALBOTT
SYSTEM

TAILBOTT :

SYSTEM

SYSTEM

SYSTEM

TALBOTT :

(1]

INSERT INTO AUTHS

GROUP_NAME = ?
LUNDIN

: OPERATIONS = ?

UPDATE, DELETE

: RELATION = ?
TALBOTT
: ATTRIBUTES = ?
TALBOTT :
: ACCESS CONDITION = ?

Y

EMP
NAME

SALARY < 25000

41

The above authorizations add three tuples to AUTHS, producing the
table shown below. All three insertions are allowed because tuple 9 of
AUTHS confirms that ‘Talbott is an OWNer of the EMP relation. The

details of enforcement of authorization are given in section .

AUTHS:

|{AUTHO- |GROUP | OPERATIONS |RELATION |AT'TRI~|ACCESS |

IRIZER | NAME | i BUTES CONDITION |
1] -- |SYSADMIN|OWN,INSERT,... |AUTHS |111111] T |
2| -- |SYSADMIN|COWN, INSERT, ... IUSERS [111111] T |
3] -— |SYSADMIN|COWN, INSERT, ... [SCHEMAS |111...] T !
4 |SYSADMIN |GENERAL, |INSERT {USERS |111111] cl1 |
5|SYSADMIN|GENERAL |RETRIEVE fUSERS [111110] T |
6 |SYSADMIN |GENERAL |INSERT,RETRIEVE, ... |SCHEMAS f111...] T]
7 [SYSADMIN |GENERAL |RETRIEVE- [AUTHS |111111]| c2 |
8 [SYSADMIN |GENERAL |UPDATE,DELETE [AUTHS 111111 c3 |
 9|TALBOTT |TALBOTT |OWN,RETRIEVE,... |EMP 11111 | T |
10|TALBOTT |GROUP1 |UPDATE |EMP]1010 | c4 |
11|TALBOTT IGROUP2 |RETRIEVE |EMP 11001 | c5 |
12|TALBOTT |LUNDIN |UPDATE,DELETE |EMP |1000 | c6 |
CONDITIONS:

| COND | PREDICATE |

| NAME ™| f

| Cl | NEW(GROUP NAME) > NEW(USER ID) |

b €21 (u(q) & AUTHS.GROUP NAME) OR |

| | (u(q) = AUTHS.AUTHORIZER) I

| C3 | u(g) = AUTHS.AUTHORIZER |

| C4 | DEPT = ‘D] |

| C5 | DEPT IN ('Di1','D2','D3") |

I C6 | SALARY < 25000]

42

5.5.6. Log-in Enforcement

In order for defined users to make use of the database, they must
log into the system. When a user logs in, s/he provides certain infor-
mation such as userid and password, and possibly account number and pro-
ject name., The terminal number is determined by system supplied infor-
mation. These log-in attributes are stored in a temporary relation, L,
as shown in the following example:

L: USER-ID PASSWORD TERMINAL

LUNDIN RCB 17

The enforcement process must decide if the log~in is to be allowed. It
does so by formulating this query*:

INTO LOG

RETRIEVE ALL (attributes)

FROM USERS

WHERE USERS.USER ID = L.USER ID AND
USERS.GROUP NAME = L,USER ID AND
USERS, TERMINAL = L.TERMINAL AND
USERS.PASSWORD = L,PASSWORD.

wmon

Such a tuple (or tuples) corresponds to the user and his/her password.
If found, the log-in is allowed. Tuple 5 of USERS is found in fhis
example.

The enforcement process next determines those user groups of which
this user is a member, by the following query. The computation of this
get of ueer groups corresponds to step.l of the enforcement algorithm

given in section 2.3.

* All names of temporary relations used by the enforcement process are
actually qualified by the USER ID, in order to keep them separate in a
multiuser environment.

43

INTO UG
RETRIEVE GROUP NAME, PASSWORD
FROM USERS
WHERE USERS.USER ID = LOG.USER ID AND
USERS.ACCT NO = LOG.ACCT NO AND
USERS.TERM NO = LOG.TERM NO AND
USERS.PROJ NAME = LOG.PROJ NAME,

ou

For the example USERS relation of the previous section, user Lundin will
match the following group names with the above query: LUNDIN, GROUP1,
GROUP2, and GENERAL. (As mentioned earlier, a value of "*! in the rela-
tion will_match any value in the qﬁery predicate.) The user must pro-
vide the passwords for each of these groups, except for GENERAL, in
order to use the rights of each one. A user can exclude himself/herself
from a group for a terminal session by withholding its password.

After log-in, the authorization information pertinent to this user
must be gathered together (into the user's “franchiée“) in order to make
access decisions in reéponse to access requests by the usef. The crea~

tion of the user's franchise is discussed next.
5.5.7. Determining the User Franchise

After log—in, in anticipation of having to make access decigions on
user requests, the enforcement process creates a temporary relation con-
taining that authorization information from AUTHS which is pertinent.to
just this wuser and his/her user groups. This set of authorization.
tuples is called the user's franchise and its computation corresponds to
step 2 of the enforcement algorithm giveh in section 2.3.

INTO FRANCHISE
RETRIEVE ALL

FROM AUTHS
WHERE AUTHS.GROUP NAME IS IN UG.GROUP_NAME

44

Given that the user's franchise is non-empty, the requesting user is now
legallyloccupying the system and has access rights to some parts of the
database. FRANCHISE defines this user's access rights for this terminal
session until logout, or until some change in authorization requires
FRANCHISE to be computed, dynamically, again. Lundin's franchise con-
tains tuples 4 through 8 and 10 through 12 of AUTHS, by virtue of his

membership in GENERAL, GROUPL, and GROUP2.

5.6. Making an Access Decision

The enforcement process will be described in terms of single varia-
ble (single relation) queries. It has been shown [WONGE76] that all
queries can be decomposed into a set of single variable queries. In
SEQUEL, a nested query is an illustration of a multi-variable query.
Assume the existence of a second data relation,

DEPART (DNO, MGR, FLOOR).
DEPART gives, for each department number, the name of its manager and
the floor (of the building) on which it is located. A query which
requests the names of all people who work on the seventh floor is:
SELECT NAME
FROM EMP
WHERE DEPT IS IN
SELECT DNO
FROM DEPART
WHERE FLOOR = 7
The inner and outer parts of this nested query can each be treated

as a single variable query, even though such a view may not reflect the

way in which retrieval is implemented. Under a partial enforcement pol-

45

icy, each part would retrieve only those tuples passing the data
dependent security checks for the corresponding relation.
In order to illustrate the enforcement Process, suppose that Lundin

enters this query into the UAM:

RETRIEVE NAME, SALARY

FROM EMP

WHERE SALARY < 13000.
Initial parsing determines and stores the query attributes in a tempo-

rary relation, Q, as shown here:

Q: OPERATION RELATION ATTRIBUTES WHERE COND

RETRIEVE EMP 1010 SALARY < 13000

The ATTRIBUTES value in Q denotes all attributes of EMP that appear
anywhere in the query. .In general, this refers to all attributes in
RETRIEVE, UPDATE, or WHERE clauses. INSERT and DELETE commands, which
affect whole tuples, imply that all attributes of the relation are
involved.

Previoué sections (5.5.6 and 5.5.7, respectively) have detailed
steps 1 and 2 of the enforcement process (section 2.3). Next to be con-
sidered are the data subsets descfibed-in steps 3 and 4 of section 2.3.
The use of a relational data model and the bit-coded ATTRIBUTES attri-
bute simplifies these concepts. The data subsets of step 3 in the
enforcement algorithm are those data relation projections defined in
RELATION and ATTRIBUTES of FRANCHISE which overlap D(q), the requested
data subset. D{(q) is composed of Q.RELATION and Q.ATTRIBUTES, taken
together. In section 2.3, overlap of the requested data, D(q)}, and the

data defined in an authorization, D(p), was determined by: D{q) XN D(p)

46

{}. In the implementation model that overlap is determined by this
predicate:

FRANCHISE.RELATION = Q.RELATION AND FRANCHISE,ATTRIBUTES & Q.ATTRIBUTES

where & is the logical OR over the bits of a bit-by-bit AND over the
bits of the two ATTRIBUTES values being compared. Specifically, if a
and B are bit coded as (al a2 ... an) and_(bl b2 ..; bn), then A 8B =
(@l & bl) v (a2 & b2) v ... v (an & bn) . Practically, 2@ B has a truth
valﬁe of one ("true") 1ff A and B have a value of one in common at any

of the bit positions (i.e., if A and B have any overlap).

The computation of the franchise (of the user) for the query, F(q),

in step (6) of section 2.3, combines the results of steps (2), (4), and
(3). In the implementation model, F(q) is computed as follows:

INTO FQ

RETRIEVE ALL

FROM FRANCHISE

WHERE Q,OPERATION IS IN FRANCHISE.OPERATION
AND Q,RELATION = FRANCHISE.RELATION
AND Q.ATTRIBUTES @ FRANCHISE.,ATTRIBUTES

The important attributes of FQ are shown below, for the example:

. 1 . I

JRELATIONIATTRI—IACCESS_
I IBUTES [CONDITION

| EMP | 1010 } ¢4
| EMP | 1001} 5
| EMP |} 1000 | C6

T

+ ———t —— 4

In the relational databése_implementation, again, this is a very simple
operation. In the example, Lundin's request results in having FQ con-
tain tuples 10, il; and 12 of AUTHS (which, by this poiﬁt, were in FRAN-
CHISE per section 5.5.7). Formally, in step 6 of the énforcement algor-
ithm, this computation is:

47

'N@=®%!M®%@&DMEMWMU&NQ%@}

The characteristic function defining this set is a boolean predicate of
three 2NDed factors. The first, u(q)€U(p), was taken into account when
FREANCHISE was computed from AUTHS (see section 5.5.7). This is com-
puted at log-in rather than at query processing time, because of perfor-
mance considerations. The second and third factors of F(q) are repre-
sented by the WHERE clause in the above query.

D*(q), the "“data reference”, and its covering of D(g), the
requested data subset, are next to be considered. 1In the implementation
model, D*(q) 1is simply the projection of FQ over RELATION and ATTRI-
BUTES. Since a partial enforcement policy [HARTH77] will be implemented
(policy 8), the question of Covering can be solved simply by setting

D(q) = D(q) XN D*(q)

as in step 7 of the enforcement algorithm (see section 2.3). Within the
implementation described here, both D*(q)--all of its tuples—-—and D{(q)
‘refer to the same relation, namely Q.RELATION (which is EMP in the exam-
ple}. Therefore, the above equation is satisfiea by projecting the user
query response tuples over attributes allowed by D*(q) . The allowed
attributes are indicated by the presence of a "one" in thé ATTRIBUTES of
a D*{g) tuple. In other words, the set of allowed attributes is denoted
by "ones" in an OR taken down each column of bits in the ATTRIBUTES
values Qf'FQ. In the example, the ATTRIBUTES values of the D¥(g) tuples
are 1010, 1001, and 1000. The bit-wise OR over these values yvields
1011, meaning that only NAME, SALARY,‘and DEPT can be returned to Lundin
 for this query. Thus, the request, Involving only attributes NAME and
SALARY, is indeed covered by D*{q). This step enforces all query depen-
dent conditions (of section 3).

48

In step (8) of the enforcement algorithm, F(q) 1is partitioned into
equivalence classes based on elements of D¥(q). These partitions are
groups of tuples in F(qg) having thé same value for ATTRIBUTES. Each
such group has its ACCESS CONDITIONs ORed tégether. In this example,
each of the three tuples of F(q) is a class by itself.

The resulting predicates for classes are then ANDed together to
form the Effective Access Condition (EAC) of stép (9), which represents
all system dependent and data dependent conditions (of section 3). In
the.éxample, EAC = C4 & C5 & C6. '™e evaluation of the EAC is discussed

in section .

5.7. Enforcement of Authorization

Enforcement of all access operations on USERS and SCHEMAS is via
authorizations stored in AUTHS, exactly the same as for operatiocns on
data relations. In controlling access to itself, AUTHS is used in a
slightly différent way, involving OWNership. In particular, enforcement
for authorization insertion (and update) . depends not on Q (the request
to make an authorization), but on the contents of the tuple (the author-
ization itself) to be inserted {or updated). ~As an example, consider
(from section 5.5.5) the request to insert a tuple granting GROUP1 the
right to update NAME and SALARY in EMP for records having DEPT = 'D1°'.
This request appears in Q as follows:

Q: OPERATION RELATION ATTRIBUTES WHERE COND.

INSERT AUTHS * *

49

The important dependency in computing FA, the franchise for an
authorization, is on the new (incoming) tuple for AUTHS:
INTO FA
RETRIEVE ALL
FROM FRANCHISE :
WHERE ('OWN' IS IN FRANCHISE.OPERATION _
OR 'SUBOWN' IS IN FRANCHISE-.OPERATION)
AND NEW (AUTHS.RELATION) = FRANCHISE. RELATION

The requesting authorizer can have OWN aslan OPERATICN in his/her
FRANCHISE only by being the creator of the relation in question. He/she
can have SUBOWN as an operation by being a subowner (see policy 3). A
subowner is one to whom ownership is granted by the creating onwer. In
general, the SUBOWN operation for a suboyner can have an access condi- _
tion predicate attached, making subowﬁership a dynamic attribute.
Requests to RETRIEVE from AUTHS are dependent on the tuples affected and
are primarily governed by tuple 7 of AUTHS {policy 7). DELETE (and
UPDATE) operations on AUTHS involve some potentially complex questions
about revocation policy [GRIFP76]. The informatioh in the AUTHORIZER
column is sufficient to allow condition C3 of the eighth tuple of AUTHS
to implement policy 9, a rather simple revocation policy.

Similarly, USERS and SCHEMAS could have a "DEFINER" column for the
USER_ID of the person who entered each tuple. This would be useful for
supporting policies that allow deletion or modification only by the per-
son who originally made the definitions. The database approach te pro-
tection allows such flexibility in responding to a broad range of poli-
cies by changing the PDB structure and contents (and sometimes the

queries posed against the PDB by the enforcement process), but not

changing the basic mechanisms that operate on the PDB.

50

5.8. The Treatment of Access Conditions as Boolean Functions

Each access condition will actually create up to three tuples in
the CONDITIONS relation. One tuple will contain the access condition,
as typed in by the authorizer. The second tuple will contain the part
of the condition which can be evaluated before data retrieval and the
third tuple contains the part which is data dependent. Simple predi-
cates are of the form: <attributg_ﬁame> <afithmetiq_comparison_pperator>
<value)>. Predicates, simple predicates connected with logical opera-
tors, are parsed and stored as coded strings. Attribute names are given
numerical codes that refer to the ordinal positions of the attributes
(and their relations) in SCHEMAS, Certain system variables {e.g., the
time clock) are given special attribute numbers. Arithmetic comparison
operators (=,#,<,>,5(Z) and logical operators (AND, OR) are given numer-
ical codes, too. A value is stored as a variable length item with its
length coded as part of tﬁe value. When needed, a predicéte can be

rapidly expanded into a very simple logic tree and evaluated.

51

6. SPECIAL IMPLEMENTATION PROBLEMS

6.1. VAX Architectural Constraints

The system described in this paper was implemented on a VAX 11/780.
A few implementation problems are worthy of discussion here. First of
all, present day computer systems do not satisfy the architectural needs
of MULTISAFE. ‘The nearest facsimile ~was attempted within the con-
straints of the VAX. WMS was the only avéilable opefating system at the
time; UNIX might have provided a more suitable intermodule communication
facility. A future version under UNIX is being considefed.

Each MULTISAFE module (UaM, SRM, PSM) is implemented as a Separate
subprocess and VAX mailboxes, a VMS interprocess communication mechan-—
ism, are used for carrying.messages amdng the modules of MULTISAFE. A
mailbox is an area of main mehory which is accessed as if it were a
sequential file. Since some messages can carry large amounts df data to
and from the database, the operating sysfem mailbox facility can be
overloaded. . Therefore, the messages are divided into two parts: a
short <fixed length message descriptor and a variable length message
text.' The message descriptor, which is twenty bytes 1ohg, céntains a
message type code, a user identifier (on behalf of whom the message is
sent) , and a pointer to the corresponding message text. Message des-
criptoré flow from module.to module via mailboxes, while message texts

are passed in shared files, (In a more suitable system architecture

52

[TRUER80] message texts can be passed at high séeed by direct memory
access within a multiprocessor configuration, or only logically passed
merely by switching addressing spaces in shared main memory.) Several
Processes and subprocesses in the VAX can simultaneously access the same
shared file. 1MS automatically interlocks shared files at the indivi-
dual record level. Two shared files are needed—-one between the UaM and
- the PSM and one between the SRM and the PSM. A MULTISAFE module sends a
message by reading the first record of the shared file, the directory of
used records. Text is placed into an available record in the file, and
the directory is updated. If the text is longer than 510 bytes, the
last two bytes of the record (page) are ~set as a pointer to the next
record of text. When the text has all been placed in the file,r a mes-
sage descriptor is written into the mailbox. Four mailboxes are used,
two between the UAM and the PGM, and two between the SEM and the FSM.,
They are used in pairs because WS allows a subprocess to read from a
mailbox into which it can write. A second mailbox prevents a module -
from mistaking messages it has sent, for incoming messages. The two
incoming mailboxes ét'the PSM cannot be combined, because a combined box
might allow the UAM to read messages sent to the PSM by.the SRM.

An important question which occurred duriné the system design phase
was that of how to divide the software and data structures among the
three modules. All three modules need_a-copy of SCHEMAS, the database
directory—the UaM fof parsing queries, the SRM for storing and retriev-
ing data, and the PSM for doing security checking, All database opera—
tions that modify SCHEMAS in the SEM Cause the copies in the UaM and PSM

to be updated as well.

53

Whole tuples are returned to the PSM from the SRM so that it can
make security checks dependent on non-retrieved parts of retrieved
tuples (see section 3. The SRM builds a file of results and.passes it
to the PSM, where data dependent checking is done on a per-tuple basis.

Throughout this paper, the term "log-in" refers to a comménd that
runs the MULTISAFE system, not a log-in to the VAX computer. At the
operating system level, Protection privileges are.set so that a VAX user
not running the MULTISAFE system cannot access any of its files. This
eliminates a father obvious "back door" path that exists in many proto-

type database systems.

6.2. Use of the MDB in the PSM

Since the PDB is a relational database, the MDB system (which the
SRM uses for data storage and retrieval) was adapted for the PSM to
access the PDB, As a consequence, structured FORTRAN (FORTRAN 77) was
.used as a programming language, in order to be compatible with the
existing MDB. Queries, generated by the PSM, to the PDB are internal
and have no requirement to be in human-readable form. Further, the PDB
queries are always the same. Thus, the PDB queries do not actually have
‘the SEQUEL-like form used for expésitory purposes in this paper.
Instead, théy are "built-in" to the PSM software.

A few other changes to MDB proved useful for the PDB. Because all
attributes of the USERS relation are indexed, it is not necessary for

the log~in PDB query of section 5.5.6 to actually retrieve any tuples.

54

It is encugh just to search the Bftree indexes to determine the exis-
tence of any tuples that satisfy the query. Also, the "“@" operation in
the PDB query to obtain FQ, the "franchise for the query" (section 5.6),
is not provided as part of the MDB operations. Therefore, the "%" oper-
ation is separately applied to the tuples retrieved from the rest of the
query.

Some features of the MDB itself had to be taken into accbunt for
use within a secure environmeht. As a user convenience, the MDB dis—
plays the present values . of a tuple before that tuple is updated. In
cases (probably rare) where a user has UPDATE, but not RETRIEVE, access
rights to a rélation, updates will have to be made "blind," probably
without even an aéknowledgement of whether or not any tuples satisfied
the WHERE clause of the UPDATE command. An alternative 1s to use a pol-
icy that éays the UPDATE privilege subsumes the right to RETRIEVE. For
UPDATE, INSERT, and DELETE all enforcement must be dbne before physical
access occurs, Enforcement for RETRIEVE must be done after physical

access, but before results are passed to the user.

6.3. Future

Certain features less central to the present emphasis in MULTISAFE
are left as possible future enhancements. One example is a multi-user
environment, which present new problems in. synchronization, locking,
backup and recovery. Another example, is system occupancy checking

(section 4), at 1ogéin and other times. A system occupancy condition, a

55

predicate that must be satisfied in order for a user to be using the
System at all, can be kept in a new column added to the USERS relation.
History keeping and aukiliary program invocation [HARTH76b] are also
left to the future. As 3 very interesting near-term modification, the
entire user language will be formally defined in BNF and LLPARSE, a com-
piler-compiler now available on the VAX, will be used to generate par-—
sers for quéries, data definitions, and authorizations. This approach
will allow a great deal of flexibility in the still-experimental lan-

guage syntax.

56

ACKNOWLEDGEMENTS

The section introducing MULTISAFE is adapted from [HARTH8la], and
parts of the section on the predicate-based protection model are adapted
from [HARTH?Ga]f The description of this model here simplifies the
development in [HARTH?Gé] somewhat, but feaches basically the same
results. Many Ehanks are due to Earl Balliet for his contributions to
the material in this paper. Thanks are also due-to Mason C. Deaver, Jr.
for his contribution to the example of MULTISAFE protection. Apprecia—~
tion is expressed to Tom Talbott, who 1is programming the protection
mechanisms on the VAX 11,780 computer, and for much of the material
about the authorization commands and the special implementation prob—
lems. It is a pleasure to acknowledge the extensive programming work

that Rob Lundin did on the Mini Data Base system.

REFERENCES

BALLES]1 Balliet, Earl J., "Modeling of MULTISAFE Protection Enforcement
Processes with Extended Petri Nets," M.S. Thesis, Department of
Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061 (January 1981).

- 57

CHAMD76

CONWR72

DEAVMB1

GRIFP76

HARTH75

HARTH763

HARTH76b

HARTH77

HARTHS81a

HARTH81b

Chamberlin, D. D., et al., "SEQUEL 2: A Unified Approach to
Data Definition, Manipulation, and Control," _

IBM Journal of Research and Development, 20, 6 (November
1976), 560-575.

Conway, Richard, Maxwell William, and Morgan, Howard, "Selec-
tive Capabilites in ASAP--A File Management System," Proc. of
the SJCC (1972), 1181-1185.

Deaver, Mason C., Jr., "Performance Analysis of MULTISAFE Pro—
tection Enforcement Processes,” Department of Computer Science,
Virginia Polytechnic Institute and State University (expected
1981).

Griffiths, Patricia P., and Wade, Bradford W., "An Authoriza-
tion Mechanism for a Relational Database System," ACM Trans. on
Database Systems 1, 3 (September 1976), 242-255,

Hartson, H. Rex, "Languages for Specifying Protection Require-
ments in Data Base Systems——A Semantic Model," Ph.D. Disserta-
tion, Dept. of Computer and Information Science, The Chio State
University (August 1975), Research report: OSU-CISRC-TR-75-6.

Hartson, H. Rex, and Hsiao, David K., "A Semantic Model for
Data Base Protection Languages," Proc. of the International
Conf. on Very Large Data Bases Brussels (September 1976).

Hartson, H. Rex, and Hsiao, David K., “Full Protection Speci-
fications in the Semantic Model for Database Protection Lan-
quages," Proc. of the Annual Conf. of the ACM Houston (October,
1976), pp.90-95.

Hartson, H. Rex, "Dynamics of Database Protection Enforce-
ment--A Preliminary Study," Proc. of the IEEE Computer and
Software Applications Conf. Chlcago “November 1977y, 349-356.

Hartson, H. Rex, "Database Securlty——System Architectures," to
appear in Information Systems.

Hartson, H. Rex, and Earl J. Balliet, "Modeling of MULTISAFE
Protection Enforcement Processes with Extended Petri Nets,"
submitted for publication. Also available as Technical Report
C591005-R, Department of Computer Science, VPI & Su,
Blacksburg, VA 24061.

58

LAMPB71

REISP81

TALBT81

TRUERS0D

WONGE76

Lampson, Butler W., "Protection," Proc. Fifth Princeton Symp.
on Information Sciences and Systems, Princeton University
(March 1971), 437-443; reprinted in ACM SIGOPS Operating Sys-—
tems Review 8, 1 (January 1974), 18-24,

Reisner, Phyllis, "Formal Grammar and Human Factors Design of
an Interactive Graphics System," IEEE Transactions_gg Software
Engineering, SE-7, 2 (March 1981), 229-Z40,

Talbott, Thomas, "Implementation of MULTISAFE in a Relational
Database Environment," M.S, Project Report, Department of Com—
puter Science, Virginia Polytechnic Institute and State Univer-
sity, Blacksburg, VA 24061 {expected 1981}).

Trueblood, Robert P., H. Rex Hartson, and Johannes J. Martin,
"MULTISAFE-~A Modular Multiprocessing Approach to Secure Data—
base Management," Technical Report CS80008R, Department of Com-
puter Science, VPI & SU, Blacksburg, VA 24061, also submitted
for publication.

Wong, Eugene, and Karel Youssefi, "Decomposition--a Strategy
for Query Processing," ACM Trans. on Database Systems, 1, 3
(September 1976), 223-741,

59

	CS80010-R.pdf
	20050926121504519.pdf

