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Summary: A thin fiexib]e elastic circular ring is hung at one point.
The ring deforms due to its own weight. The problem depends on a non-
d1mens1ona? parametar B representing the relative importance of density
and length to r1g1d1ty.' The heavy elastica equations are solved by
perturbation for small B. by a quasi-Newton method for intermediate B,
and by a homotopy method for'Targe 8. The approximate results show good

agreement with numerical integration for B < 20.

Notation
A FLZ/Ex
SR S o
Ci quasi-Newton Jacobian approximation
El flexural r191d1ty
-F - --—”‘“{;gé;;{-force at s = (
F vector funct1on

h heTth of ring
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L 1/2 perimeter of ring
M moment

N quasi-Newton update matrix
Ps search direction for quasi-Newton method
[ arc length

s* arc length at 6 = /2

ti quasi-Newton step size

W width of ring .

VoW two-dimensional vectors

X cartesian coordinate

vy cartesian coordinate

X homotopy variable

.} homotopy map

a A/e

£ small positive number

P weight-per length

& Tocal angle of inclination

: dimensional quantity
Formulation

Suppose a thin, circular é]astic ring is hung by a point as shown in
Figure 1. Due to its own weight, the ring deforms into a noncircular
shape. The present paper studies this deformation as a function of

the length, the flexura] rigidity, and the density of the ring.

If the thickness of the ring is small compared to its perimeter, the

equations of heavy elastica can be used.l’2



d2

fer &8 - _Fsins - es’ cos 8 (1)
ds'

%%r = cos 6, %%T = sin 8 (2)

The boundary conditions are
$'=0,8=x"=y" =90 - (3)
s'=L,e=7,x'" =0 (4)
We normalize all lengths by L
s=s'/L , x=x"/L ,y=y'/L (5)

The governing equations become
2

§~§-= -A sin 8 - Bs cos 5 (6)
s
%é = cos 6 g§-= sin 8 | (7)

where A,B are nondimensional constants defined by

2 3
FL pl
i = (8)

I
The boundary conditions are

A= B

s=x=y=0 (9)

tn
n
o

s =1 g8=%,x=0 {(10)
Given B, there are five boundary conditions and five unknowns:
dg
8 , I XY and A.

Eq (6-10) are impossible to solve in closed form.

Approximate Solutions for Small B

The important parameter B measures the relative importance of density
and length to rigidity. B]/Brrepresents the ratio of L to the

"bending Tength” (EI/9)1/3. Elastic rings with the same valie of B




have the
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same configuration. Small B means relatively stiff rings

with almost circular shape. Since gravity effects are small, we

expect A to be small too. Let
Bze<<1l , A=ae (1)
where a is of order unity. Then we expand
§ = eo(s) + ae1(s) + ... (12)
X = xo(s) + ex](s) o (13}
y = y,(s) + ey (s) + ... (14)
a=a0+aa.|+... (18)
When Egs (12-15) are substituted into Eq {(6-10), the zeroth order
equations are
5
de dx dy
——751 =0 » —2=cos 8y ° —2 = sin 8, (16)
ds ds ds
0,(0) = x,(0) =y (0) =0 , (1) =7 » x()=0 (7
The solution is
- _ sin ms - 1 - cos ws
80 = 7ns xo = s yo — (]8)
The first order equations are
¢, dx,
=¢ sins -scos8. , —=-8; sin @ s
dsz 0 0 0 ds 1 0
i cos 8 |
— e
4s 1 0 (19)
61(0) = x1(0) = yq(O) = ( 91(1} = x](l) =0 (20)
The solution is
_s _ 3 sinws S _cOs 7S
8 =3 -" 3 *T 3 (21)
T 27 T
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X = 3 g _ sin E ms , 5€0S 2 7S .S cog TS _ s1n4ws (22)
4w 2m ' 4r T T
2 . ' .
S 3 s ¢in2 s , cos 2 ms . 5 SIN TS cos TS
¥y, = - + + . + + (23)
! 4172 , 21\'4 41!3 21r4 1r3 1r4
a, = - ]2—_”- (24)

de/ds represents the moment normalized by EI/LZ.

9_9_ = 5 + E(—%' _ cOs ‘I'2TS - s sin 11'5) + 0(2:2) (25)
ds T 2n 7 :

The maximum moments occuring at the extremum points s=0 and s5=] are

gy = v+ e(Lp) *+ 0(D) (26)
ds 2n ' .

491y = 5 + o) + 0(D) (27)
ds 2n

The maximum height of the ring is

L1

y() =2+ E(—'g . ,) + 0(e?) (28)

The maximum width is at & = /2. From Eqs (12,18,21) we find the
corresponding arc length is

o= Lla g3 - o) ¢ 0(e?) (29)

2 on® 21

Substituting Eq (29) into Eqs (13,18,22}, we obtain the maximum width

2x(s%) = 2 - (2 - L ¢ 0(h) (30)

T T om

The height to width ratib is thus

L S R (31)

8 4n

=

Bk



Page 6

Numerical Solutions

Let

- dg
and x(s;g),.y(s;g), 8{s;v} be the solution (which depends on v} to the initial
value problem Eqs (6-7), {9). Then it is clear that the problem given

by Egs (6-10) is equivalent to the nonlinear system of equations
= x(Ts) .

The standard approach of solving Eq (32) by Newton's method has two

serious shortcomings. Newton's method has a very small domain of con-

vergence for this problem, and it frequently either diverges or con-

verges to a mathematiéﬁ]ly correct but physically meaningless solution which
exhibits cross-overs of the ring. Forrexample, for B > 230, changing B by one
causes Newton's method to converge to the wrong“séjution. The second diffich?ty
is that Newton's method requires the Jacobian mattignpﬁ(g) of_ﬁ(z), which is
very expensive to compute. Whether DF(v) is approximated by finite

differ_ences5 or calculated exprcit]yB, its evaluation is at least

four times as expensive as F(y).

For intermediate sized B (20 < B < 300), Eq (32) was solved by a

6’7. This method approximates the Jacobian matrix

quasi-Newton method
relatively cheaply, is reliable, robust, and does not require good
initial estimates iﬁ general. (Specifically, the code HYBRJ from the

MINPACK package dsveloped at Argonné National Laboratory was used.)
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In general, a quasi-Newton algorithm operates as follows:

1.

Unfortunately, for B large enough (B > 300) quasi-Newton methods also

Start with an estimate CO of the Jacobian matrix and an
estimate v of the solution.

Compute a search direction p, by solving C.p; = -Flys)-
Compute the next approximation

Yial T4 T SRy

where t, is chosen to minimize ![F(Xi + tﬂi)ll in some
"trust region“6’7.

Update the Jacobian approximation by

Ci+1 = Ci + N,

‘where N is an easily and efficiently computed combination of

rank one matrices, elementary matrices, and Ci' See Dennis

and More“7 for the precise fo?h of N.

£ail unless the change in 8 is intolerably small. (e.g., starting

from the solution for B = 500, HYBRS fails for B = 500.1) A new homo-

topy method was used to solve Eg {32) for large B.

This powerful method is globally convergent and does not require a

close initial guess. Versions of the method have been previously applied

to fluid mechanicss, nonliinear comp]imentaritys, fixed pointg, and

. . 12
continuum mechanics problems ~.
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The homotopy method is applied to the nonlinear system of equations
(32). The theoretical justification of the algorithm requires fairly
deep differential geometry, although the algorithm itself is decap-
tively simple. Thorough discussions of both the theory and some

appiications can be found in references 5,8-12.

: [0,1) x €2 » g2 by
AE() + (T-2)(y - w) (33)

Define a homotopy map gw
gﬂ(k,g) = g(ﬂ,lsx) =
9

The supporting theory™ says that for almost all w (i.e., all W

except possibly those in a set of Lebesque measure zero), the Jacobian

matrix Dgw of gw has full rank on

500 = L0 sa <1,y gl 5,009 = 03,

~

the set of zeros of ¢ _ in AsY space. The full rank condition implies

~W
that the zero set of ¢ consists of smooth disjoint curves which
cannot just "stop" in the interior of (0,1) x Ez_(for elaboration see
the figures in Watsong). The hope is that there is a Zero curve v of
$,, reaching from a trivial known solution (at A = 0) to the desired
sglution (at x = 1) Such @ zero curve exists under fairly general

8-11

hypotheses » but they are often difficult to verify for practical problems.

Nevertheless the homotopy method works well in practice.

The algorithm is conceptua?Ty s1mp1e track the zero curve y of b

. ~

emanating from (0 v ), where ¢ (0,v) = 0, until a point (1,¥) is reached.
Then ¥ is the solution to (32). This algorithm differs significantly

from standard continuation in that ) need not increase
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along y, and there are never any "singular points" along y. The
power of the algorithm derives from this ability of A to both increase
and decrease along v, with turning points posing no special difficulty.

y is the trajectory of the initial value problem

() .x()) = 0, | (34)
dn2 | [dy )2

SN
A0) = 0, y(0) = v, x (36)

where s is arc length. Equation {34) is

Dgﬂ(x(s},x(s)) sé.g. = 0,
dy

ds

where D¢ is the 2 x 3 Jacobian matrix of 3 Dgﬁ has full rank on the

~ ~

zero curve y given parametrically by i(s), v(s). Thus the derivative

(da/ds, dy/ds) is calculated by finding the kernel of Dgw, and fhen

3’9’10. A sophisti-

using {35) and the continuity of the derivative
cated variable step, variable order ordinary differential equation
solver is used to solve Egs (34-36), where the derivatives required by
the ODE solver are calculated as just described. Such an ODE solver

is very efficient, and considerable computational experience indicates -
fhat this approach.is Superﬁér to schemes us%ﬁg ﬁéwfbﬁ's mefhod and/or

simpler ODE techniques to frack Yg-]l' The computer code used was

subroutine FIXPT from Watson and Fennerlo.
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Results and Discussion

The maximum moment is shown 1in Fig. 2. The largest moment or curvature
occurs at the top at $ = 1. The height and width are shown in Fig. 3.

We see that our solutions for small B, theoretically good for B << 1,

can be extended to B < 20 without appreciable error. This is due to

the fact that the corrections 2,x,y, are numerically small, thus extending
the actual range of validity of the perturbations. Fig. 4 shows the
integrated shapes for various values of B. It is seen that as 8 increases
(an increase in length, density or a decrease in rigidity) the shape |

changes from circular to an oblong pear shape.

Fig. 5 is important since it can be used to inversely determine the
flexural rigid{ty of flexible rings. The procedure is to hang the ring
and measure the height to width ratic. Since p and L are easily
measured, EI can be obtained from B. This method was suggested by
,Pierce4 in testing textiles. The theoretical analysis is now presented

in the present paper.
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Figure Captions

The coordinate system
Maximum moment at s=0 and s=1
The height h and width w of the ring

The shape of the heavy ring for various values of B, a:B=1, b:B=20,
c:B=100, d:B=600 .

Height to width ratio as a function of B.
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