FAD, a Functional Programming Language
that Supports Abstract Data Types

by

Johannes J. Martin

- Department of Computer Science
~ Virginia Tech
Blacksburg, VA 2406l

Technical Report No. CS80005-R

Reywords

Programming languages, functional programming lanquages, FP-systems,
abstract data types, parameterized data types, generic functiens, infix
operators, FAD,

CR Categories: 4.22, 5.23, 5.24

Abstract

The paper outlines the programming language FAD. FAD is a functional
programming system of the kind described by Backus.(Backus78]. FAD supports

abstract data types, parameterized types, and generic functions. A single
scope rule establishes the encapsulation requirements for data type

specification and program structuring. Certain syntactic additions improve
program readability as compared to pure functional notation.

1. Introduction

Programming restricted to defining and applying functions has a long
history. 1Its theoretical roots reach back to the theory of recursive
functions [Kleene36], the lambda calculus {Church4l], and the system of
combinators [Curry58]. The first well known practical programming language
of the functional type (based on the lambda calcules) is LISP [McCarthy60],
and a later one is APL [Iverson62]. Both languages, although extensively
used by researchers in certain areas, are not among the most popular ALGOL-
type languages such as FORTRAN, COBOL, PL/I, or Pascal. However, it has
been doubted whether the trade of programming is best served by languages
of this conventional type. Experience shows that in particular the
ambitious conventional designs that try to embrace the state of the art
grow into ever larger, amorphous collections of 'features'. Although this
trend may nhot be technically inevitable, it certainly is conspicuous in
practice; Backus [Backus78] calls the conventional languages fat and
flabby and points out that a 'large increase in size brings only a small

increase in power'.

In addition to this disproportion of size and power, ALGOL-type languageé
lack mathematical properties conducive to program = analysis and
verification. This is due in part to their sheer size and multitude of
diverse features, in part to their use of successive state transformations
as the model of computation. In fact, the wvariable, the assignment
statement, and the subroutine (in contrast to the function procedure),
which are the tools used and needed for transforming the state of

computation, are responsible not only for what is called side effect and

alias problems but also for rather awkward appendages to otherwise very
concise and elegant description mechanisms. Compare, for example, Guttag's
original algebraic specification method for abstract data types [Guttag75]
with the form extended to accommodate subroutines and functions with side
effects [GHM77]. Backus deals with these questions in great depth and
finally concludes that only a radically different language structure can
eliminate the trouble. He consequently proposes a new breed of languages
called Functional Programming (FP) systems. These systems, though related
to LISP and APL, are also distinctly different: simpler. The language FAD

outlined here belongs into this category.

FP systems basically consist of a mechanism for defining new functions from
existing ones. The foundation of any edifice of function definitions is a

language defined set of so-called primitive functions.

Functions always have exactly one object as a parameter and they return one
- object as a result. Both objects, the parameter and the result, may be of
arbitrary complexity. There are no variables and hence no assigrment

statements; every valid phrase is an expression or a definition.
FP languages have many attractive properties. In particular, they

- promote well structured programming,
- provide algebraic rules for program analysis
and verification,

- do not suffer from alias or side effect problems,

are easy to compile, and

}

facilitate efficient storage management.

In addition, FAD supports

l

abstract data types and allows
- parameterized types and

-~ generic functions.

The absence of side effects makes automatic sharing of like data objects
universally possible and transparent to the user. Copying of data

structures is never necessary.

Despite these and other advantages, some feel that the concise and well
structured FP system programs are frequently much harder to read, to
understand, and hence more difficult to design and to maintain than those
written with conventional programming 1énguages. However, the author is
convinced that this chiefly syntactic problem is not too difficult to
correct. It seems that Backus [Backus78] has designed his notation without
extensive 'syntactic sugaring' in order to expose the conceptual simplicity
of FP systems. In contrast, one of the objectives of this paper is to show
that an FP system can be made into a user friendly programming language.
Theréfofe, questions of syntax and of features serving readability are

discussed.

An other important point is that FP systems are not history sensitive, that
is, they have no means to save definitions or results produced by a
computation and to recall them later. Therefore, they must be imbedded

into an environment capable of performing these tasks for them. This

issue, addressed extensively in [Backus78], is not in the scope of this

paper.

The rest of the paper is organized as follows:

Section 2 gives an overview of FAD, section 3 introduces two mechanisms
added to enhance readability, 1local naming of selectors and infix
operators. Section 4 describes the type definition and checking apparatus.
It follows the conclusion (section 5), appendix A with two sample programs
written in FAD, and appendix B with the formal specification of most of

both FAD's syntax and semantics.

2. Overview of FAD

In structure and style, this section closely follows Backus' description of
FP systems. Aside from smaller notational differences, which are mostly
concessions to the ASCII character set, FAD deviates more substantially

from Backus' system by introducing

(1) the notion of a set of items,

(ii) the distinction between items and objects,

(iii) the encapsulation mechanism,

(iv) the type mechanism, and

(v) the already menticned facilities for naming selectors

and using infix operators.

(i) Items are arranged to form sets. These sets are described by item
expressions, a system similar to regular expressions. However, sets of
items are not regular sets. Sets of items represent both data and

functions.

(ii) Whereas items constitute the raw material from which all objects
are constructed, objects themselves are pairs of two items called type and

value.

(iii) Definitions of functions or data can be encapsulated. With a
single scope rule, this mechanism provides the import and export facilities

needed for the definition of abstract data types.

(iv) Abstract data types can be declared and their proper use Is

enforced by the language translator.

Throughout the rest of the paper, comments injected into formal definitions
are set off by '//'. The following initial description ignores types and

deals in turn with

item expressions and naming,

i

functions,

functional forms,

encapsulation.

2.1 Items, item expressions, and naming

All entities in FAD, data as well as functions, are sets of items. Using
sets rather than single items as basic units allows treating complex
objects, such as functions or carriers of data types, and simple objects,
such as numbers or character strings, by the same mechanisms. The result

is homogeneity and simplicity.

These sets of items are denoted by item expressions. Items and item
expressions are based on a predetermihed set of atoms. This set contains
numerals, character strings, the boolean values T and F, the null sequence

NIL, and possibly some other special symbols.

2.1l Items

Items, the building blocks of item expressions, are either atoms or
sequences of items, that is, lists of items enclosed in angular brackets.
Commas may be used as separators, if confusion could otherwise arise. NIL

denotes the null sequence <>.
Examples of items // a,b,c, ... are atoms //

NIL;
a;
;

<KQVIL>,b,<a,co>.

Formally, items are defined as follows:

item:
{1.1) Atoﬁs including NIL are items,
(1.2) If X is an item, then so is <X>,
(1.3) If X and <W> are items, then <X,W> is an item,

(1.4) There are no other items.

Note, that <X,W> = <X>, 1if <W> is NIL. The set of all items is sometimes

called 'item'.

2.12 Item expressions

The universe of discourse is the set of item expressions, called IE. An
item expression denotes a set of items. IE consists of expressions for all

finite and certain infinite sets of items.

There is no symbol in FAD that denotes the empty set. However, the empty
set may occur as the result of the application of a function to an item or
as the value of certain recursive definitions. The meta-symbol PHI will be
used to refer to those expressions that denote the empty set. Therefore}
PHI is considered to be an item expression although it is not a symbol of

the FAD language.

The expressions for finite sets are now defined.

IE:
{(2,1) PHI is in IE,

(2.2) all atoms including NIL are in IE.
Suppose A, B, and <C> are in IE then so are

(2.3) <A> // sequence of length 1 //,
(2.4) A|B // union // and

(2.5) <A,C> // seqguence //.

Notes: (i) Conceptually, the sequence of two expressions
denotes the set of all sequences that can be formed by
appending members of the set denoted by the second
expression to members of the set denoted by the first
one.

(iiy If A denotes a set S, then <A> denotes the set
obtained by surrounding all members of S8 with angular
brackets.

(iii) According to the above definitions, atoms also
qualify as items, and items qualify as item
expressions, (hence atoms qualify as item expressions).
Nevertheless, a notational distinction is not necessary
since the proper interpretation is always clear from
the context.

The members of IE that denote infinite sets are defined later.

Expressions that denote the same set are considered equivalent. The

following list gives the basic equivalences among members of IE.

A|PHI = PHI A = A;
AlA =A;
Al(BIC) = (AlB)|C = A|BIC;
A|B = BlA;
<A, (B|C)> = <A,B>|<A,C>;
<(A|B),C> = <A,C>|<B,C>;
<AlB> = A> | ,
Thus, the identity element for union is PHI. Union is idempotent,

associative, and commutative. Sequencing distributes over union. Note

that
<PHI,A> = <A,PHI> = PHI and <PHI> = PHI,

thus sequencing is PHI preserving.

2.13 Naming

Item expressions and modules (see below) can be named. Names are atomic
symbol strings which obey the usual rules of identifiers. The expression
that associates a name with an object is called a definition and has the
form:

name == thing. to be named

A name that occurs in an expression may be replaced by the right-hand side

of its definition.
Example

X¥YZ = <NIL>,a,b>;

UW == <c,XYZ,<f>>;

The XYZ that occurs in the right-hand side of UW's definition may be
replaced from X¥Z's definition. Thus, UwW represents

<C,KNIL>, a,b>, <>,

Names such as XYZ or UW are called defined atoms. FAD defines certain

atoms a priori. These are called primitive atoms (objects}.

2.14 Item expressions for infinite sets

Expressions that denote infinite sets can now be defined as recursive

formulas.

Suppose R, a member of IE, contains one or more occurrences of the atom 5

yet undefined, then the definition

defines a member of IE denoted by S.

There is a third category of expressions in IE: functions. Functions will

be introduced in section 2.2.

Examples of expressions for infinite sets

(i) with the primitive atom 'int',
the set of all stacks for integer numbers could

be defined by

stack == NIL | <int,stack>

which expands to

stack = NIL | <int,NIL> | <int,<int,NIL>> | ...

By repeated substitution, arbitrarily many items of an infinite expression

are generated.

Note: The example of a stack, used throughout the rest of the
paper for demonstrating encapsulation, type checking,
and the like, has been chosen for 1its simplicity and
publicity. It is sufficient for showing how types,
fixed and parameterized, are introduced and handled but
it is much too simple to hint at the power of the
language.

(ii} The set of all binary trees that accommodate

real or integer numbers at their nodes may be defined by

tree == NIL | <tree, (real | int}, tree>

2.2 Functions

Functions are the third and last type of expressions in IE. Functions are
sets of pairs of items where each pair defines the mapping for one item.

For example, a function which contains the the pair
<yi, xi>
has the value yi, if it is applied to the value Xxi.

Note: The conventional notation for application, f(x) or f:x,
and composition, f(g(x)) or f.g:x, implies a flow of
processing from right to left. The order of range and
domain values in the pairs <y,x> has been chosen to
agree with this convention.
This set of pairs, which is usually infinite, is called the representative

set of the function; a function is given by its representative set.

Functions may be specified directly as item expressions using the means
described above or by combining existing functions through functional
forms. FAD provides an initial pool of primitive functions as a starting

point. Some of the primitive functions and the functional forms are

introduced below.

Functions map items into items. The application of a function f to an item

¥ is expressed by

If the representative set of f does not contain a pair <yi,xi>, then f is
said to be undefined for xi. A function is, for example, undefined for a
value ¥, if the application f:x leads to a non—terminating computational
process. Although non-terminating processes can not simply be ruled out,
it is convenient for the analysis of programs to assume that a function has
a special value ('undefined') where the defining process encounters an
error condition or does not terminate. When the value 'undefined' is also
allowed to be part of the domain of functions, some care must be taken to
ensure that the resulting total mappings are monotonic. For details see,

for example, [Manna73].

In FAD, the desired extension of partial functions is brought about by
reinterpreting functions as mappings from sets of items to sets of items
rather than from items to items. This is accomplished by the following

definition of application.

Ik
h

(3.1) f:{x | v) f:x | fuy

(3.2) (f | g):x f:x | g:x

(3.3) <y,X>:z = if x =2z then y else PHI

From (3.1) follows that f:PHI = PHI, because

fix = f:(x | PHI) = f£:x | £:PHI

thus f:PHI is a subset of f:x and since this relation is independent of x,

it follows that f:PHI = PHI. d.e.d.

Because of (3.3), a so extended function assumes the value PHI, if the

original function is undefined. 5o, PHI represents 'undefined'.

Example of a function
The function 'xor' is the set expressed by

(<F,<F,F>> | <T,<F,T>> | <T,<T,F>> I <F,<T,T>>)
Hence, xor:<T,F> =

<F,<F,F>>:<T,F>
| <T,<F,T>>:<T,F>
| <T,<T,F>>:<T,F>

| <F,<T,T>>:<T,F>

=PHI | PHI | T | PHI = T.

while functions in FAD are always total, for most items in IE, the value of
any given function is most likely equal to PHI. Now, with the set D of all
items for which the value of a given function £ is not PHI, the significant

domain D' of £ is defined as the set of all subsets of D.

D and D' have the following properties.

(i) D is the l.u.b. of a lattice whose poset is D'.

(ii) For every expression s in IE, there exists an element t in D' such

that

f:s = f:t and f:(s-t) = PHI.

The lattice over D' is, of course, also a semilattice with réspect to
union. Since application distributes over union, functions are morphisms
of the semilattices that constitute their domains. Therefore, the range R'

of a function f is alsc a semilattice; its l.u.b. is R = f:D.

Functions, though, do not distribute over intersection. For example, let
f:sa = f:b = ¢, then the intersection of f:a and f:b is ¢, whereas the
intersection of a and b equals PHI and f:PHI = PHI (not ¢). Therefore, a
function is not a morphism for the complete lattice over D'. With respect
to intersection, functions, however, have a property that is similar to but
weaker than the distributive law: monotonicity. Montonicity is defined for
functions with paftially ordered domains and ranges. Let X and y be

members of D' than the intersection of x and y is a subset of x as well as

of y. Thus

¥Xnycx and anyCy

The relation < is, of course, a partial ordering of D'. A function f over

a partially ordered set is called monotonic iff

AcCc B = fA) £(B)

Thus, if f is monotonic then

flx ny) € £(x}) and f(x ny} & £(V)

THEOREM:

Functions in FAD are monotonic.

PROOCE':

]
w
L]

A € B implies that there is a C such that A | C

£:B = f:(A | C) = f:A | £:C

Thus, £:A &« f:B. g.e.d.

The Fixed-Point Theory of recursive programs (see, for example, [Scott70]

or [Manna73]) presupposes monotonicity for extended partial functions; FAD

functions meet this requirement.

Inasmuch as each semilattice (R' as well as D') 1is the set of all subsets
of its l.u.b. and, hence, completely specified by it, the l.u.b. can be
used to represent these semilattices. FAD takes advantage of this for the

specification of carrier sets of data types (see section 4).

The above specifications allow a function to be the union of other
functions. If this occurs, it is assumed that all components of the
function are evaluated simultaneously. This facilitates the writing of
non—deterministic procedures. It is envisioned, to let the programmer put
an upper bound on the number of results computed by such a proéram. For
example, he may specify that only one result is wanted. 1In this case, the
pProgram terminates as soon as the first result is found. If no such bound
is given, the program terminates when all partial processes terminate.
Therefore, the whole program will terminate, only if all component programs
terminate; however, if a bound is specified, the program may terminate and

produce results, even if some component processes should not terminate.

2.2]1 Definition of primitive functions

Instead of enumerating the representative set, one can specify a function £
by defining the expression f:x for all items x. This alternate method is

freguently more convenient.

In the following definitions, conditional expressions are used. The

notation is self-explanatory. It is assumed that X,Y,Z and <W> are items.

Recall that <Y,W> = <¥> if <W> = NIL.

2.22 Examples of functions

Length

l1th:X = if (X = NIL)
if (X = <¥,W>)

otherwise

Selector functions

i

g(i) == if X=<¢,W>and i =1
if X=<¢W>rand i >1

otherwise

_Tail

tl:X = if (X = <Y,W>)

otherwise

then 0;
then 1+lth:<W>;

PHI.

then ¥;
then s{i-1):<W>;

PHI.

then <W>;

PHL.

Prefix

prix:X = if (X = <¢,<W>>)

otherwise

Suffix

sufx:X = if (X = <<W>,Y>)

otherwise

Identity

id:X = X.

Atom

Let A be the set of all atoms,

atom:X == if (X is in A)

if (X is in itemA)

otherwise

then <Y,W>;

PHI.

then <W,Y¥>;

PHI.

then T;
then F;

PHI.

BEquality

eq:X == if (X = <¥,2>) and (¥ = Z) then T;
if (X = <X,Z2>) and™ (¥ = Z2) then F;
otherwise PHI;
Test for NIL
isnil:X == if (X = NIL) then T;
otherwise F.
Set
set:X == 1if (X = <,W>) then ¥ | set:<W>;
otherwise PHI.
Intersection

&:X = 1f (X = <,Z>) and (Y = Z} then Y;

otherwise PHI.

Arithmetic and logical functions

op:X == if (X = <,Z2>) and Y and Z are good operands
then Y op Z;

otherwise PHI.

Constant functicns

Let A be a numeral, a quoted character string, or any other atom that
denotes some wvalue other than a function either by convention or by

definition then

A:X == value(A) // ‘'value' is left as an intuitive notion. For

example, the value of the numeral 3 is the number 3 //

Thus, if a non-function A is used as the left operand of the application
operator, it is interpreted as the function <value(A),item>. Recall

that '"item' is the set of all items.

There are many more functions that manipulate item expressions; they are

described in the preliminary reference manual for FAD.

2.4 Functional forms

A functional form is an expression denoting & function. This function
depends on parameters, which are item expressions imbedded in the
functional form. Hence, a functional form is a function distinct from

other functions only because of its syntax.

However, not all functional forms are members of IE. Functional forms in
IE are called simple, those not in IE are called essential. Essential
functicnal forms treat sets {functions) as a whole, not element by element.
Therefore, the distributive law for application does not hold for these
forms, they can not be represented as sets of pairs. Nevertheless, they
are continuous functionals and, hence, have unique least £fixed points
[Manna73]. In the following description, the symbols £,q,p denote
functions (p dencotes predicates), e denotes some expression such that {e]
is a valid functional form, the symbols <W>,X,Y,Z denote item expressions

{(<W> explicitly a sequence).

The following are the definitions of some functional forms.

2.41 Simple functional forms

Composition

(£.g):X == £:(g:X)

Construction

[£]:X == <£:X>

[£,e]:X == prix:<f:X,[e] :X>

Condition

1

(if p then f else g end):X == if p:X =T then f:X;

if p:X = F then g:X;

otherwise PHI.

Case

(case £ of Z end):X == if (Z = Y::qg,U)
then (if f:X =Y
then g:X
otherwise (case f of U):X);
if (Z = Y::q9)
then {(if £:X =Y
then g:X);

otherwise PHI,
For example,
case switch of
swi :: [fl.gl, ...],
sw2 :: £3.£4,

end: ¥

evaluates to f£3.f4:Y if switch:Y = sw2,

Constant

"X:Y == X,

This form allows to introduce a function or a sequence as a constant. For

example

["atom,id]:5 = <atom,5> rather than <T,5>

2.42 Essential functional forms

Insert

1

X = 1if (X = <¥>) then Y;

<Y ,W>») then £:<Y,/£:<W>>;

if X

otherwise PHI.

Apply to all

@f:X == if (ISNIL:X = T) then NIL;
if (X = <Y,W>) then <f:Y,@f:<W>>;

otherwise PHI.

While
(while p do f end):X ==
if p:X=T then (while p do £ end):(f:X);

if p:X=F then X;

otherwise PHI.

2.5 Examples of function definitions

sqgr == ¥, [id,id]

stack == NIL | [id,stack]

The second function defines an infinite expression of 'stacks'. The
parameter of the function determines the type of objects that are to be

stacked. For example

stack:int = NIL | <int,stack:int>

2.6 Encapsulation

Item expressions, functional forms as well as groups of definitions may be

encapsulated by writing

MODULE things to be encapsulated END
The unit created is called a module; modules may be named by
id == MODULE ... END.

The scope of identifiers, items, and functions defined within a module is
the surrounding module. More than one definition may define the same
identifier as long as no two such definitions are in each others scope. If
the scope of a definition is contained in the scope of another one defining
the same identifier, but not vice versa, then, throughout its scope, the
inner definition overrides the outer one. In any case, references to
different definitions are always distinguished, even if the names are
identical. Hence, it is impossible, for example, to cheat the typing
mechanism by creating several definitions for the same carrier identifier.

The attempt to identify a type name with the wrong definition would be

detected as 1illegal. These are the only scope rules needed for
encapsulating programs or defining data types. Consider the following
example.

stk == MODULE
stack == MODULE NIL | <int,stack> END;
newstk == (...)}; push == (...); PopP == (...);
top == (uaoa}j}

END

The elements of the set 'stack' are known throughout the module stk, that

is, they are known to the functions newstk, push, and so on; outside of the

module, they are not known, however, the functions newstk etc. are.

Qutside of the module, the identifier 'stack' can not be redefined, but the

make up of the stack elements is invisible.

The scope rules constitute a refinement of the substitution rules sketched

above. Now, these may be stated as follows.

Atomic character strings fall into one of the following three categories.

(i)

(ii)

A symbol x occurs at a place where it is not within the scope of a
definition for x: There, x is PHI, ﬁnless ¥ has a wvalue by
convention as, for example, numerals do (see 2.22, on constant
functions). Depending on the case, x is called an undefined atom

or a constant.

A symbol % occurs within the scope of a definition for x but the
occurrence is not also in the scope of the right—hand side of the
definition (because this is further encapsulated): here, X
denotes itself and it may not be used on the 1eft—hand. gide of

another definition; it is called an unavailable atom.

(iii) A symbol x occurs within the scope of a definition for x and this

occurrence is also in the scope of the right-hand side of the
definition: here, x may be substituted by the right—hand side of

the definition; it is called a defined atom.

3. [Local naming of selectors and infix operators

The readability of strictly functional programs is frequently rather poor.

As an example, consider programs that evaluate polynomials by means of

Horner's method:
P(x) = ({({An*x + An-1)%*x + An—-2)*x ees)*x + AQ

In a conventional "programming language such as PASCAL the algorithm could

be expressed as follows.

function POLY (X:real; COEFS:list):real;
var RES:real;
begin RES := 0.;

while ~ISNIL (COEFS)

do RES := RES*X + FIRST (COEFS);
COEFS := TL (COEFS);

end{while};

POLY := RES;

end{POLY};

In the functional language presented this far, the algorithm appears quite

differently. With the input

<X, <An, An-l, ..., AO>

the program

poly == s{1)

while ~.isnil.s(3)
do [+.[*.[s(1),s(2)]1,5(1).5(3)]1,8(2),TL.s(3)]
end

-[0,8(1),s(2)]:

would compute the desired value.

But by all its conciseness, this program is certainly not an example of

good readability. The mechanisms described next allow to write the program

as follows:

poly ==
res {res,x,coefs}
.while ~.isnil.coefs
do [res*x + s(1).coefs, x, tl.coefs] end

{res, x, coefs}.[0, ¥, coefs] {x, coefs};

After becoming used to the functional style, programmers find this program

at least as readable as the PASCAL version.

3.1 Local naming of selectors

The pure functional program is hard to read especially because of the
accumulation of selectors and the absence of a structural description of
intermediate results. Both problems are eliminated by the local naming of

selectors.
E{idl,id2,...,1idn}

denotes that the expression E expects a sequence of n members as its
parameter and that it refers to the first member of the sequence by idl
rather than s(1), that it uses id2 instead of s(2) and so forth. Thus the

notation {idl, id2, ...} is a shorthand for
idl = s(l); 1d2 == 5{2}; ...

The scope of this definition is limited and extends only to the left.
Intuitively, the definition is in effect for as far to the left as the s(i)

refer to the same items.
Multiple levels of selection may also be specified. For example

Caix,y,1z,a}} = s(2).s(3)

Formally, the mechanism is specified as follows. Lower case letters denote
identifiers, upper case letters arbitrary combinations of identifiers and

balanced braces.

(i) a{x} == af{X}l
(ii) a{li == 3
(iii) afb,x}i == if (a = b) then s(i)

else a{X}i+l
(iv) a{{A},X}i == if (a{A}ll = a) then a{X}i+l
else a{adll.s(i)
Furthermore,
f.gf{u}:x = £f£:(g{u}:X}),
[£,9] ful:X = [f{U}rg{U-]’]3X
(£lg) {u}:x == (£{u} | gl{u}):X

if p then £ else g end{u} == if p{u} then f{u} else g{u} end

etc.

3.2 Infix operators

The second modification of the purely functional programming style is the

introduction of infix operators. In a way, it seems that infix operators
are quite contrary to the concept of functional programming systems.
However, the comma used to denote sequencing or the vertical bar for set
union are, in fact, infix operators. Thus, the concept may as well be

extended to other ones. For example, while
[£,9]:X denotes the sequence <f:X, g:X>,
(f op g):X denotes the operation op:<f:X,g:X>.

If infix operators are supposed to be a useful device, means must be
provided to specify them, unless they were to be restricted to some fixed
set of built-in operations. Means for specifying operators differ from
those for functidns only because they must inform the language parser about

the precedence and association rules.
The notation in FAD for this purpose is

op({c o a) == ...
where ¢ and o set the priority of the new operator 'op' in relation to an
existing operator ‘o'. The symbol 'c' is '=','<', or '>' depending on the
priority desired for 'op'.
If '=' is specified, 'op' and 'o' have the same priority, if '<' is

specified, the priority of 'op' is less than that of 'o' but greater than

the next smaller priority of some other, already existing operator. The

meaning of '>' is analogous to '<'.

The last symbol, 'a', may be 'L' (left) or 'R' (right) and indicates the

desired associativity.
Example:

The definition

makes '*' a left-associative operator with a priority greater than

that of '+'.

4. Types and type checking

4,1 Types

Types are algebras. A simple type algebra has one carrier set, some
auxiliary sets, and a collections of operations (functions). The carrier

set usually gives the type its name.

Sometimes, a type algebra may have several carrier sets and define several

types, namely one for each carrier. Such types are called interrelated.

Again, the names of the types are those of the corresponding carriers.

In recent vyears, much research has been done in this area. A rather

representative collection of papers can be found in [Yeh78].

FAD provides the programming facilities necessary for dealing with data

types as algebras.
Definition
An object igs a pair
C, x>

where C denotes the l.u.b. of the carrier of a type and x is a member

of the carrier. Therefore, x must be a subset of the set given by C.

There are certain primitive types provided by the lanquage. Among these

are the types
char, bool, int, real

With these, new types can be constructed by specifying carrier sets and
primitive operations. The specific structure of the new type's carrier
set, which is described by the right-hand side of a set definition, is
normally hidden from the user by encapsulation so that instances of the

type can only be manipulated by the primitive operations specified. This

hiding has\another effect. As described in section 2.6 on 'encapsulation’,
an atomic item, such as a type identifier, denotes only itself unless its
definition is fully visible from where it is being referenced. Therefore,
the user sees type identifiers as unavailable atoms not as sets. If the
type is parameterized (see 4.11 below) such that the actual type appears as
a function application, then the application can not be evaluated in the
user's module but remains an expression of the form type:parameter. This
expression can be compared with others for equality and it can be passed

down into other modules where evaluation may be possible.
Examples of objects
<char, ("a'|'b'}>
<int, 5>
<stack:int, <5,NIL>>
Objects may be named. The example below defines 'stack' as the name for an
infinite set of the type 'type'. The outermost angular brackets of the
right-hand side of a definition are dropped for readability. Nonetheless,

the right-hand side is considered a sequence, namely the pair <type,value>.

stack == type, MODULE NIL | <int,stack> END

The type of an object is not necessarily simply a primitive or defined type

as shown above. Consider the result computed by the functional form
[id*id,id]:x

which is <x*x,x>

If x is the integer 4, then the object computed has the form
<Lint,int> ,<16,4>>

Here the type of the object is a sequence of two types and, hence, the pair
structure of the object is viéible. Consequently, the type checking
mechanism will allow the use of selectors for seperately accessing the 16
and the 4. Such a type is called weak whereas types referred to by
wnavailable atomic identifiers (see section 2.6) are called strong.
Strongly typed objects can only be processed by certain operations called
the primitives of the type. Objects with weak types can be analysed with

selectors and other sequence operations.

4.11 Parameterized types

A parameterized type is a collection of disjoined types that all have the
same set of primitive operations. An example is the parameterized type
'stack'. Its members are stacks that differ by the types of objects they

stack., Frequently, there is a primitivé operation for the creation of

particular instances of the type. For example with the proper stack

primitive NEWSTK, an instant of a new (empty) stack for, say, integer

objects would be created by
NEWSTK: int,

a stack for real numbers by
NEWSTK:real.

In FAD, the carrier set for such a type 1is defined by a function, for

example by:
stack == NIL | [id,stack]

The application stack:int defines the set
_NIL | <int, stack:int>

whiéh expands to ’
NIL | <int,NIL> | <int,<int,NIL>> | . . .

Parameterized types are very useful because they permit to specify a large

family of types by a single definition. For a complete specification of

the parameterized data type 'stack', see the appendix.

4,12 The type of a function

Recall that a function is a set of pairs <y,x> of items where the elements
vy and x of the pair are members of the l.u.b.'s of the function's range (R)
and domain (D), respectively. Hence, a function is a subset of <R,D>. It

makes good sense to call the set <R,D> the type of such a function,

(i) because functional forms applied to functions over the same pair <R,D>

have certain closure properties,

(ii) because a function is a subset of <R,D> thus <R,D> is indeed the

l.u.b. of the carrier set of the type.

Furthermore, functions should be strong types in order to disallow the
manipulation of their representative sets by anything but functional forms
and the application operation. This establishes the complete seperation of
the specification of functions from theilr implementation. It ultimately
justifies to think of functions as sets of pairs but to implement them as

algorithms that compute only the pair needed at the time of invocation.

Finally, since most functional forms can be applied to all functions
without regard of their actual domains and ranges, it is better to look at
all functions as one parameterized type rather than (infinitely) many

specific types.

For example, the function that converts real numbers into integers by

truncation would be defined as

TRUNC == function:<int,real>, . . .

A typed function is called a functional object.

Examples for definitions of functional objects

SOR == function:<real,real>,id¥*id;

TOP == function:<int,stack>, s(1l});

STACK == function:<type,type>, (NIL | [id,STACK]).

Where necessary for distinction, functional objects are capitalized

throughout the rest of this paper.

4,2 Type Checking
In order to decide whether an application of the form
F:X
is legal, one must determine whether the type of the object
X = <C, x>
is compatible with Fhe domain of the function
F = <function:<R,D>,£>.
If so, the object
<R, fix>
should be computed, otherwise
F:X = PHI
In the siﬁplest case, both C and D are strong types or sequences of strong
types. Therefore, compatibility exists if and only if C=D. Suppose now

that D is a set of items such as int|real and C is int. Clearly,

F = <function:<R,{intl|real}>,£>

