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ABSTRACT

This work reports on ney analytical and empirical
results on the Performance of algorithms for handling the
future event set ip discrete event Simulation, These
results provide & clear insight to the factorg affecting
algorithg performance; @valuate the the "holg" model, often
used to study future event set algorithms; and determine the

best algorithm(s) to use.



ANALYSIS oF FUTURE EVENT SET ALGORITHMS

FOR DISCRETE EVENT SIMULATION

1. Introduction

In discrete event simulation, the time flow mechanisnp
(TFM) - causes the évents in the Simulation to  occur at the
Proper time and in tne Proper Sequence [8,107.
Implementation °of a Variable Time Increment TFM, the-most
common,” involves maintaining a set of records, one record
for each Scheduleg future event, The usua] operations on
this set are adding a recorg when an event 1s schedulegd and
removing the record with minimunp time of event occurrence
when the clock is advanced to the time of the next event.

The data Structure used to maintain this set can be
Crucial to the eXecution time of 3 simulation ang recently
Many articles have reported major improvements in execution
time by implementing an algorithm other than the commonly
used linear list [5,7,12, 17,19,24, 37,38,39,42]. Generally
these Papers have either shown the imp:ovement for a

Specific Simulation by using g particular algorithm instead

This article Presents both. analytical ang empirical

results Concerning the behavior of the TFM future event set
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for discrete event simulation, The results provide insight
into the algorithms?’ performance, permit evaluation of‘the
(hold) model of the TFM often used, and determine the best
algorithm(s) to use.

The remainder of this paper is divided into five
sections, In the next. section, the hold model and two
distributions associated with its use are described. In
Sections 3 and 4, analytical results are derived for the
linear 1list and then ‘these results applied to other
algorithms. Section 5 reports the results of experiments
conducted and explains them. The last section contains the

conclusions and recommendations.
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2. The Hold Model

2.1 Model Definition

Thé two basic operations performed on the future event
Set are insertion of new events andg deletion of the hext
event.  Most of tpe research [5,7,9,12,13,17,19, 39, 40]
performéd to date has used a model which combines these two
operations based on the Simula hold operation {6] and will
be referreq te as the hold model. A hold Ccperation
determines ang removes the event record with minimum tipe
value from the future event Set; increases the time value of
that recorg by T, where T is 4 random variate distributed
according to some distribution F(t); and inserts that record
back into the future event set [39].

The hold model ig essentially the following:

1. {INITIALIZATION] Insert N event records into the
future event Set structure with the time value of

each generated from the distribution F(t).

2. [TRANSIENT] Execute N1 holg operations to permit
thermodel to reach Steady state. 1In analytical
work, it is assumed that N1 is infinity. 1n
Practice, Nl is usually some small multiple of the

size of the future event set {12,17,397.



This model hag two Parameters. N, the Number 4f
Fecords in the future event set; and F, the distribution
used to determine how long an inserteq record wilz Yemain in
the futyre event set, Foowill pe referred to ag the
scheduling distribution.

This mode] may be viewed g 4 Speciag] case of the
classical machine repairman model with N machineg and g
Single repairman [187. The scheduling distribution, F,
Corresponds to the distribution describing the time between
failuresg of a machine, while the time to repair 3 machine jg

Zero,

2.2 Future Event Sset Distribution

A secongd distribution, which ig important when Studying
the future event Set, 1is the future event Set distribution.
Basically, this ig 2 Measure of where the time values of
those Fecords in the futyre event set are Situateq in time
between the current time apg infinity. This distribution

can bpe obtained Using results ip Fenewal theory ang in
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Steady state 1ig independent of the current time value and
only a function of the distribution F [2]. The future event
set distribution will be denoted by G,

G(x)

i

P(remaining life < x)

—

G(x)

]

o
(1/a) § [1 - Few)] aw %50
o

—

0 otherwise

where u ig E[W], the mean time an event is in the future
event set,

If all of the events are independent and identically
distributegd (as in the hold model), G(x) is the fraction of
évent records which will occur in the next "x" time units,
For example, irf F is the unifornm distribution overione time

unit, {(0,1), then

0 x<0
G(x) = 2%y - y2 0<x<1
1 x>1

Considering F ang G, while new events are equally
likely inserted anywhere between 0 and 1, most {(75%) of the
event records in the future event set will occur in lesgs

than one-half time unit (G(0.5) = 0.75).

2.3 Limitations of the Hold Model
In using the holqd model; care must be taken to remember

it is just a model and differs significantly from real
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simulations in many ways, These differences include that
the size of the future event set does not change, al1 the
eévent records are independent of each other, and the same
scheduling distribution is used for all events, The effect
of these assumptions has never been tested. 1n at least one
case [7], much of the overhead of the algorithm was
eliminated by taking advantage of the fact that the number

in the future event set did not change.
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3. Linear List
3.1 Linear List and the Hold Model

Knowledge of the event set distribution permits
calculation of the amount of work required to insert new
records when the future event set is implemented as a
doubly-linked 1linear list [22]. For example, for the
uniform distribution above, a new event would likely be
inserted after most of the other event records in the list.
Our analysis of the linear list will be the most extensive
as it is the most commonly used, 1is simple to implement and
study, uses minimal Storage, and its analysis will aid in
understanding the behavior of the other data structures.

Let %F (%B) denote the percentage of the linear list
passed when an event is inserted from the front (back) of a
linear list. The following result was first obtained by -
Vaucher [40] and later by Englebrecht-Wiggans and Maxwell

[91:

sF = {G(x) ar(x) * 1003
: [+]
o
8B = §[1 -G(x)] dF(x) * 1003

For the example given earlier, %F is 66.7% and %B is
33.3% so insertions are nmore efficient from the back for
this scheduling distribution. For the hyperexponential

distribution [30], the front is more efficient while for the
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exponéntial the direction makes no difference due to the
memoryless Property of that distribution,

An important question is what are the characteristics
of those distributions for which Starting the insertion scan
from, for example, the front of the list, ip order to apply
these results to actual simulationg, The following theoren
solves thisg Problem for twe large families of distributions,

As defined in Barlow and Proschan [31, a distribution F
is New Better(Worse) Than Used ip Expectation {NBUE(NWUE)]

if

(a) F has finite (finite or infinite) mean;

®) JI1 - F(x)] ax L) u % F(e) for £>0
t
where F(x) = 1 - F(x) and u is g[xj.

This classification of distributions covers most of
those distributions for which random variate generators are
Provided in most simulation languages, For example, NBUE
includes the uniform distribution, Normal, and Erlang; while
the hyperexponential, a mixture of @xponentials, angd certain
Gamma distributions dre all NWUE. Some distributions fall
cutside this classification, €.g. Beta(p,1), where 0<p<1.

Note also the categories are not disjbint, as the
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eXponential ig g member of both,

This 1leads us to the following theorem:

THEOREM 1.

For the hold model,

if the scheduling distribution,
is NBUE (NWUE),

F,
then gF 2 {£) 50% so the Scan should start

from the back {front) of the linked linear list,

PROOF .

As a first step, the definition of NBUE (NWUE) will be

restated in terms of the scheduling and future event set
distributions,

&
= u* [l - (l/u)jF(x)'dx ]
[

u* [1 - aG(t)]

= u * G(t).

Thus, F is NBUE {(NWUE) if ang only if (for t>0):

O

jF(x) dx < (2) u * F(y or
<
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G(t) < () F() or

G(t) > () F(t).

The proof of the theorem is now straightforward:

oo
3F = j.G(X) dF(x) * 100%.
4]

Since F is NBUE (NWUE) and using the alternate
definition just developed:

(= -]
3F >(<) fF(x) dr(x) * 100s
. o

i
>(<) Sudu * 100
=]
2(<)  0.50 * 1003 = 50%.

This theorem Permits concentration on characteristics
of these two families to understand future avent set
behavior, If F is NWUE, then the Probability is high that
values generated are small but there ig alse a small
probability that the values are extremely large. It can be
shown that if F 1ig NBUE (NWUE) then the coefficient of
variation (standard deviation / mean) is greater (less) than

or equal to one [3]. The coefficient of variation is not
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sufficient to insure &F < (>) 8B but it is often a good
indicator. In addition, the coefficient of variation will

Play an important role in the remainder of this article.

3.2 Linear List ‘and the Interaction Hold Model

Theorem 1 determines the most efficient end of a linear
list from which to insert eévents for many distributions and
provides some understanding of the distributions; however,
it is of little application to the real world. As stated
earlier, the hold model differs in many ways from actual
simulations; one major simplification being that all event
records have the same scheduling distribution. In  real
simulations, however, it isg usually the case that the events
have not all been scheduled by the same distribution. For
example, in even a simple model 1like a single server
Jueueing system, there are the arrival and service
distributions. Thus, a model more representative of
simulation would have event records scheduled by different
distributions.

in the machine repairman model interpretation ~of the
hold model given earlier, instead of all N machines having
failure distribution F, n, would have failure distribution
Fl, n, failure distribution F2, etc. Since only one linear
list is used, when scanning to insert the failure time of
one machine it is most likely some event records scanned

will represent machines with other failure distributions.
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In this sense, the distributions are interacting in the
eévent set; hence, this extension will be referred to as the

Interaction Hold Model.

The interaction hold model] is defined as having N

=
independent event records of which n; (ni > 0 and Z:ni = N)
Y=
event records use scheduling distribution Fi(x). %Fi will

denote the percentage of a list passed in which only
distribution Fi is used (e.g. if F; were exponential, then
%Fi = 50%) and %Fint will denote the average percentage of

the list passed for this model .

That brings us to the following theorem:

THECREM 2,
In steady state, for the interaction hold model with I

distributions and 3F.

i as definegd above, the average

fraction of the future event set that will be scanned when

starting from the front of a linear list, gF. is bounded:

int?

%Fint < %Fmax = max (%Fl,%FZ, . ,%FI).

The proof is quite long and is given in Appendix A.

The theorenm simply provides a worst case upper bound

but says nothing about a lower bound; that is, %Fint need
not be greater than the minimum of %Fl’ %FZ' caa g %FI. The
beound, although worst case, does show that %Fi is less

nt
than or equal to 50% if all of the scheduling distributions

are NWUE, are exponential, or for each %Fi <50%.
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The theorem does not, however, provide any information

about $%F.

int if any or all of the scheduling distributions

have %Fi greater than 50%; therefore, %F was evaluated for a
number of cases (see Table 1). It can be seen Ffrom the

table that 3%F.

int is often much less that the bound provided

by Theorem 2 and, in fact, caﬁ be less than 50% even if for
each scheduling distribution %Fi is larger than 50%.
Similar behavior is exhibited when more than two
distributions are used.

The reason for the above is that %Fint is more heavily
influenced by the mean of each distribution and the number
of records of each type than the distribution itself. For
example, in cases 3 and 9, there are many event records from
& scheduling distribution with a large mean but each record
Jith a small mean is inserted one hundred times more often.
Thus, most insertions will go near the front of the list
while most of the records will be nearer the back of the
list. Note that this 1is similar to the use of an NWUE
distribution for the simple hold model. The other
situation, exemplified in cases 2 and 8, has most records
from a distribution with a small mean; thus, the other
records play very little role and %Fint is close to %Fz.

Thus, Theorem 2 and Table ] indicate when the event
list of a simulation contains event records scheduled by
greater than one distribution, that +the insertion scan

should start from the front of a linear list. This is in



Table 1.

Effect of Interaction of Some

Specific Scheduling Distributions on

Linear List Insertion Scanning

Scheduling
distrib. 1

exXponential
mean(u)=10

expon,u=100
expon,u=l
expon,u=10
expon,u=100
exXxpon,u=]1
uniform(0,10)
uniform(0,100)
uniform(0,1)
constant 10
constant 50
constant 100
constant 1

constant 1

Scheduling
distrib. 2

exponential
mean{u) =1

expon,u=l
eXpon,u=100
uniform(0,1)
uniform(0,1)
uniform(O,lOO)
uniform(0, 1)
uniform(0, 1)
uniform(O,lOO)
constént 1
constant 1
constant 1
constant 10

constant 100

100
100

10
100
100

ip
100

100

10

10
100
50

100

%Fl

50%

50%
50%

50%

50¢%
67%
67%
67%
1003
1008
100%
100%

100%
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&R

50%

50%

67%

67%

67%

is the number of nodes using distribution *

i,
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direct contrast to what the major simulation languages
currently do, Furthermore, it suggests that NWUE
distributions (for which @ scan from the front is more
efficient) be given much greater consideration when using
the simple hold model in order to more realistically model
actual simuiations.

Results similar to those based on Theorem 2 may be
obtained [27] for a scheduiing distribution which is a
mixture [3] of other distributions. These results are also
important in their relation to previous research into

Preservation of distribution properties by mixtures [3].
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4. Other Data Structures

4.1 Multiple Lists

SIMSCRIPT II.5 maintains a separate list for each event
and process in the simulation [20,35] which decides the
number of lists there will be and to which list an event is
inserted, The results of the pPrevious section can be used
to determine how insertions should be done for each list in
a simulation in SIMSCRIPT. For those lists associated with
events, it is likely that the same scheduling distribution
is used for all insertions to that iist so the results of
section 3.1 are applicable. For a lis; associated with a
brocess, an interaction of distributions is probable so the

results of section 3.2 are siqnificant.

4.2 Single Pointer Method

Laughlin [24], Pritsker [34], and Davey and Vaucher (7]
have studied the effect of adding a pointer to a "middle"
record of a linear 1list to improve the efficiency of the
insertion operation. The most extensive analysis was done
by Davey and Vaucher who concluded the pointer should be to
the record with 50% of the future event set to each side of
it in a linear list and that the scan should start from the
front (back) of the list if the insertion would be before

(after) the median record.
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This same choice was arrived at in a thorough analysis
using a different approach and the Interaction Hold Model
[27]. Theorem 1 provides an insight to the choice of the
scanning directions. If the scheduling distribution is NWUE
(NBUE}, then most insertions should go near the front {back)
of a linear list; thus, wusing a single pointer and always
scanning from the ends of the 1list should perform well in
any case. This method is quite easy to implement and would
require essentially no more storage than the linear list so

would probably be preferable to the latter in most cases.

4.3 Multiple Pointer Methods

A number of algorithms have been proposed which keep
the future event set records in a linked linear list but, in
addition, maintain a set(s) of ﬁginter records. These
pointers are used to logically divide the linked linear 1list
into a number of sublists with the purpose of reducing the
time to insert a new record.

The first such multiple pointer algorithm, called the
indexed-list algorithm by Vaucher and Duval [39] spaces the
pointer records equal amounts of time (DELTA) apart. wyman
independently proposed a similar algorithm [(427.. Analysis
of this algorithm {7] to determine the optimum value of
DELTA has assumed the number of pointers is infinite so that
an overflow sublist is not required. However, the number of

pPointers, NPTRS, must be finite and, in fact, reasonably
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small if the storage requirements of this method are not to
be excessive, Because of this, the probability of an
insertion into the overflow sublist is 1 - F(NPTRS*DELTA)
and the fraction of the future event set in the overflow
sublist at any time is, at least, 1 - G (NPTRS*DELTA) .

These values are most significant if F is NWUE or if
there is greater than one scheduling distribution present
since, in both cases, a high probability exists of event
records being scheduled far into the future. Using the
optimum = value of DELTAT derived in [7], for a
hyperexponential distribution with coefficient of variation
near five, even 1f there is one pointer record for each
event record, over 38% of the future event set will be in
the o;erflow list [271. 1In addition, if DELTAT is too large
there is also the possibility of many event records falling
into only a small number of subliéts and thus eliminating
the advantage of the indexed-list over a linear list.

Two different algorithms have been proposed as
alternatives to the indexed-list due to the potential
problems associated with its use. Franta and Maly [12,13]
added a second set of pointers, accessed via the indexed-
list pointers, which were dynamically Created in order to
keep the sublists of the future event set linear 1list to a
fairly small size. This was called the Two-Level
Structure, To do an insertion, after calculating the index

in the pointer array, the sublist of Secondary pointers is
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scanned to find the pointer to the proper sublist of the
future event set. The event is then inserted by scanning
this sublist from the back.

Henriksen [17] uses only one set of pointer records
kept in an array, as does the indexed-list, but instead of
pointing at records spaced equal amounts of time apart, the
algorithm essentially attempts to keep an equal number of
records between pointers. The pointer record from which to
start the scan to do an insertion is determined by doing a
binary search of the pointer records. This permits the
pointers to be dynamically adjusted by the algorithm as the

need arises to keep the sublists short.

4.4 Non-Linear Structures

Although the results of section 2 can not be directly
applied to nonlinear structures, they provide insight and
understanding to their behavior, A special kind of binary
tree, a p—trée (priority—tree), was recently described and
analyzed [19]. The authors point out it is sensitive to the
scheduling distribution but that 1insertions would be
éxtremely efficient if the times of newly inserted records
were generally larger than those already in the tree (that
is, exhibit a NBUE behavior according to Theorem 1). The
results of section 2 indicated NWUE distributions may be
more representative of actual simulations and for these

cases the performance of the P-tree is quite poor.
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Another nonlinear structure Proposed as suitable for
this problem is a heap [15]. A heap remains balanced,
unlike a p-tree, and in the worst cases can do an insertion
or deletion in O(logzN). A problem with the heap is that
records with the same xey (time) wvalue are not automatically
érocessed first-in-first-out (i.e. a heap 1is not stable
{23]). This can be overcome easily, although with some
decrease in performance, by recording in each event record
the number of records inserted prior to it and using this to
break ties when necessary.

Generally insertions to a heap are done from the bottom
of the heap and it has been shown the average time, when
insertions are random, to 'do an insertion is bounded by a
constanf [32]. The next event record (to be removed) is at
the root of the heap and after removing it, the heap is
restored. It is more efficient; however, not to restore the
heapt since, if the next operation is an insertion,
pProcessing the insertion will restore the heap (this will be
referred to as the modified heap algorithm). An insertion
following a deletion would be from the top of the heap;
thus, the insertion time would be O(logzN), if the times are
random or likely to be greater than most in the heap (NBUE).
I1f, however, the scheduling distribution is NWUE,  one would
expect the insertion/restoration of the heap time to be much
less. Simultaneous events can be handled as described

above,
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5. Comparison of Algorithms

5.1 Description of Testing

In order to determine the best algorithm{s) for use in
discrete event simulation, the execution time efficiency of
twelve algorithms were experimentally compared., The
algorithms, with mnemonics for each and an estimate of the
overhead to maintain the future event set; are 1listed in
Table 2 and were discussed in sections 2 and 3.
Descriptions of them and their implementations may be found
in [27].

Most of the algorithms have about the same amount of
storage overhead, approximately two units per event record
for pointers or time values. HPT needs one extra unit per
record in order to break ties while HNR utilizes three short
arrays to permit a binary search of the future event set.
The storage overhead for multiple lists will be small as
there will seldom be a very large number of lists. For VAU
and FRA, 1in addition to that for linking records, there is
storage overhead proportional to the number of dummy records
each algorithm uses. A dummy record need not contain any
information related to the simulation so can be quite short
unless all records must be of equal length (c.f. GASP-IV
[33]) in which case these two algorithms, especially FRA,

could require a large amount of additional Storage.
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Table 2. Algorithms Tested

Algorithm mnemnonic overhead reference
Linked Linear List 2N+d+2

Scan from Front LLF [22]

Scan from Back LLB - [22]
Multiple Lists 2N+2m(d+3)

Scan all from Front MLF ' 20}

Scan all from Back MLB [20]
Median Single Pointer 2N+2 {d+2)

Scan both halves MFF [ 71

from Front

Scan lst half from Front, MFB . [ 7}
2nd half from Back

Indexed-List (Vaucher!'s) VAU 2N+nl (d+3} [39]

Two—-Level Structure FRA 2N+nl (d+3) [12]
{Franta's) +n2 (d+2)

Binary Search Indexed-List HNR 2.75N [17]

(Henriksen's)

Heap Structures

Unmodified, not FIFQ ties HEP 2N [15]
Modified, not FIFO ties HPM 2N [27]
Modified, FIFO for ties HPT 3N [271

N - size of future event set

m - number of lists (MLF and MLB)

d - size of each dummy record {used to mark end of a list or

special records in VAU and FRA)
nl - size of array used in VAU and FRA (nl = 30 suggested)
nZ2 - number of dummy records created by FRA (dynamically)
(optimum calculated as square root of N [1271)
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Three classes of models weére used in the experiments.
The hold model, used by others in their testing, was tested
with six different scheduling distributions and the size of
the future event set taking on seven values ranging from 10
to 1000. A large number of tests were conducted wusing
simple simulation models based on simulations in.textbooks
and articles. Seven different systems were used including
simulations of two-echelon inventory, job shop, computer,
population, reliability, and machine repair systems. The
final «class included models of real world systems and
included the models with the smallest and largest future
event sets. Details of all models may be found in [27].

In addition to comparing the performance of the
algorithhs, the tests permit evaluation of some of the
conclusiong reached earlier. For the simulation mddels, the
coefficient of wvariation and 3F were measured permitting,
for example, a comparison between them and observing whether
the coefficient of variation is greater than one for
simulation models. By using the hold model, it is possible
to determine if. that model can realistically be used to
Compare algorithm performance and, if s0, which scheduling
distribution(s) are most critical.

Execution time was used as the measure of complexity as
it reflects, in addition to the number of key comparisons,
the overhead associated with each of the algorithms. The

algorithms were all written in FORTRAN, the general purpose
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language most commonly wused for simulation [21], with
execution time the prime consideration. The algorithms were
compliled using the IBM FORTRAN level H compiler,
optimization level 2, and the experiments performed on an
IBM 370/155 with no other jobs in the system.

For each simulation model tested, a trace of all
insertions and deletions to the future event set was made
and stored. The traces were used to test the algorithms
reducing the cost of the tests, making it easier to to
measure only the time to do future event set operations, and
insuring the algorithms were tested under identical
conditions.

Essentially no variability was observed between three
observations of execution time made in steady state
indicating the deleted transient period (although short) was
sufficiently long and that the behavior of the future event
set was not variable. Complete details of the methodology

may be found in [27].

5.2 Results of Experiments

5.2.1 Results for Simple Simulation Models

Table 3 shows for each simple simulation model the
number of different cases run of that model and the minimum,
average, and maximum of the average size (N) of the future
event set, average <coefficient of variation {evy), and %F

observed for cases of that model.



Table 3. simple Simulation Models

Machine Repairman (MRP)
reference: [18] 7 cases
N: (30.1,163.1,745.4)
¢v: (0.53,1.52,2.83)
tF: (21.2%,37.5%,71.4%)

Time-Shared Computer (TSC)
reference: [1] 4 cases
N: (21.7,79.6,243.7)
cv: (1.98,3.53,4.06)

F: (5.7%,10.2%,20.2%)

Terminal Systenm {TER)
reference: [25] 1 case
N: 12.9; cv: 3.90; %F: 8.1

Job Shop (JOB)
reference: [36) 4 cases
N: (35.5,39.2,43.1)
cv: (1.24,1.49,1,74)

&F: (32.6%,37.0%,40.9%)

Inventory Model (INV)
reference: [33] 2 cases
N: (23.5,49.3,75.0)
cv: (2.33,2.57,2.81)

&F: (46.1%,47.0,47.8%)

System Reliability (REL)
reference: [14] - 2 cases
N: (49.0,99.0,149.0)
cv: (1.23,1.24,1.24)
$F: (51.1%,51.1%,51.1%)

Contagious Disease (DIS)
reference: [41] 3 cases
N: (220.3,275.8,374.8)
cv: (0.51,0.54,0.60)
$F: (64.7%,68,4%,69.7%)

PAGE 25
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In Table 4 the average relative execution time {r.e.t.)
is given for each algorithm and in Table 5 a summary of
these results. The relative execution time Is the
algorithm's average execution time, to perform 1000
insertion and deletions, for all cases of a model relative
to the minimum execution time for all of the algorithms for
that model. The minimum average time is provided for each
model in Table 4. The r.e.t. was used as it is easier to
interpret and study the results. Results for each case of
each model are in [27].

The first observation to make concerns %F and the
coefficient of variation. The coefficient of variation and
%F were usually greater than one and less than 50%
respectively, despite the wide variety of models tested and
even for models where the coefficient of variation of each
scheduling distribution was much less than one. Again, the
reason for this 1is the variation in the means of each
- scheduling distribution and these findihgs confirm the
conclusions made in section 2 regarding the interaction of
distributions. The expected relationship of coefficient of
variation and %F was also observed (correlation of ~0.80,
high coefficient of variation suggests low 3F) for these
simulation cases.

The performance of most of the algorithms was also
fairly consistent despite the differences in models, future

event set size, and coefficient of wvariation. The



ALGO~
RITHM

LLF
LLB
MLF
MLB
MFF
MFB
VAU
FRA
HNR
HEP
HPM
HPT

min.
tim

ALGO-
RITHM

LLF
LLB
MLF
MLB
MFF
MFB
VAU
FRA
HNR
HEP
HPM
HPT

Table 4.

model:

avg.
e:

Table 5.

*

MRP

2.59
4.72
2.83
2.67
1.98
1.60
1.24
1.42
1.00
1.34
1.07
1.22

77.3

TSC

1.02
3.99
1.51
1.36
1.13
1.07
1.38
1.60
1.12
1.65
1.00
l.12

61.3

Minimum

1.00
1.53
1.51
1.31
1.13
l1.06
1.00
1.25
1.00
1.08
1.00
l1.12

for Each Model

TER

1.00
1.71
1.93
1.95
1.24
1.24
1.69
2.24
1.45
2.02
1.33
1.52

42.0

JOB

1.19
1.53
1.73
2.01
1.16
1.06
1.11
1.50
1.06
1.25
1.00
l.16

70.5

Max imum

7.38
4.72
5.29
2.68
4.64
2.20
1.69
2.24
1.45
2.02
1.33
1.52

equal weight for each model

INV

1.53
1.54

1.78.

1.31
1.36
1.32
1.03
1.49
1.00
1.18
1.06
1.25

72.0
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Relative Execution Times (r.e.t.'s)

REL

2.69
2.33
2.00
1.84
2.32
2.10
1.11
1.53
1.08
1.23
1.00
1.15

71.0

Summary of Relative Execution Times {r.e.t.)

Average®*

2.49
2.70
2.44.
1.98
1.98
1.51
1.22
1.58
l1.10
1.39
1.08
1.24

DIS

7.38
3.06
5.29
2.68
4.64
2.20
1.00
1.25
l1.03
1.08
1.06
1.26

892.3
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algorithms can be divided into three groups: those that
generally performed poorly, LLF, LLB, MLF, MLB, and MFF;
those of fair performance, HEP, FRA, and MFB; and those that
performed well, HPM, HNR, VAU, and HPT.

Of those that performed poorly, only LLF and MFF
performed well in any cases; in particular, for those cases
with small future event sets. LLF also was generally more
efficient that LLB as would be expected since 3F was usually
less than gB. MLB and MLF performed the worst which is not
surprising since the choice of the number of lists and
assignment to a 1list 1is not done with with execution
efficiency a consideration.

Of those in the second group, of fair performance, the
performance of MFB and FRA are the most significant. MFB
Performed quite well when the size of the . future event set
was small to intermediate in number (under 50) and wodld be
relatively easy to implement. It can be seen that MFF was
not quicker, serving as confirmation of the conclusions
drawn in section 4 regarding their relative performance,

The performance of FRA was never very good; however,
its execution time did not increase tremendously when the
size of the future event set grew. The explanation is that
because of the large overhead, FRra does not appear suitable
for use with models of under 50, and perhaps 100, records in

the the future event set.
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These results differ completely from previously
Published results using FRA [12,13] for which there are two
possible explanations. One is that previous test were done
using PASCAL which has record structures which are ideal for
implementing this algorithm, If this is the case, it only
Sérves to emphasize the need to test these algorithms under
conditions (languages) most likely to be encountered in
actual simulations.

The second reascn could be that an error exists in the
implementation of this structure as reported in the
technical report [11] on which the tests [12] of this
algorithm were based. The effect of this error is to lose
some inserted records; thus reducing the size of the future
event set, This error does not appear in a later
implementation written in Simula [14].

The final group can be divided in halfg, those that
performed very well, HPM and HNR, and those that performed
well, HPT and VAU. The outstanding performance of HPM and
HNR was evident in many ways. For example, not only were
their averagé execution times the lowest but in only a few
cases did either rank worse than third and, 1in these cases,
the size of the future event set was small, so it is not
critical, HPT and VAU performed nearly as well but
generally their times were slightly higher than those of HNR

and HPM.
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There are potential problems associated with these
algorithms which could affect their use. HNR 1is a rather
complicated algorithm to understand and write, especially
the manner in which the binary search is done. 1In addition,
the relative performance has been found to.be very sensitive
to the amount of code optimization done by the compiler
[27,28]. The major problem with VAU is how «critical the
choice of DELTA is +to its performance. The value is a
function of the average future event set size ang average
time used in scheduling new events. This will be discussed
further shortly. Finally, HPM is easy to implement, even in
FORTRAN, but does not handle simultaneous events first-in-
first-out and to do so deteriorates performance about 15% as

Seen in HPT.

5.2.2 Results for Real World Simulation Models

The resulté for the cases run for real world simulation
models are summarized in Table 6. The three models are very
different; one has a very high coefficient of variation,
while the other two have very large and small future event
sets. For the production shop model, those algorithms with
very little overhead performed very well since the event set
was so small. PFor the_time sharing system, those algorithms
which do insertions from the front of a linear list digd very
well, especially LLF even though the number of event records

approached 100. Finally, for the large job shop, the
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Table 6. Real World Simulation Model Results

: Michigan
Large Job Shop Production Shop Time Sharing System
reference: [31] reference: [4] reference: [29]
1 case 1 case 2 cases

Algo- N: 3986.7 N: 10.36 N: (48.6,65.1,81l.5)

rithm ov: 2.91 cv: 0.59 cv: (7.92,8.79,9.66)
r.e.t. r.e.t. r.e.t.
LLF *kkk 1.00 1.00
LLB kkkk 1.40 4.80
MLF khRkE kkkx 2-12
MLB * %k %% ARk 2.02
MFF *okk & 1.11 1.25
MFB 28.37 1.11 1.26
VAU 5.39 1.82 2.04
FRA 1.66 2.18 2.24
HNR 1.00 1.27 1.56
HEP Fhkk 1.76 2.66
HPM 1.09 1.18 1.22
HPT 1.34 1.33 1.42

min. avg.

time: 30.9 15.0 14.8

*%*% : Model not run for this algorithm
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extremely large future event set (it reached 6862 records)
was handled well by only HNR, HPM, and HPT.

These results demonstrate vividly the robustness in
performance of HNR and HPM, and HPT. Despite the great
differences in these models, these algorithms performed very
wéll for all three in agréement with their performance for

the simple simulation models.

5.2.3 Results for the Hold Model

Table 7 contains the summary data for the experiments
performed using the hold model. Details of the data are
contained in ([27]. Again - the same general breakdown of
categories is evident: HNR, HPM, and HPT perform well; FRA
performs poorly unless the future event set size 1is very
large; MFB is very good when the future event set size is
about 50 or 1less; and VAU performs well wunless the
coefficient of variation is high or the future event set is
large. MLB and MLF were not tested as there 1s no basis for
assigning events to different lists.,

Care must be taken in using this data since it suggests
that LLB is more efficient than LLF, in contrast to earlier
conclusions. The reason 1is that the distributions used
here; which with one exception, the hyperexponential, are
those used by others in their testing; generally have
coefficient of variation less than one and no interaction of

distributions. The results for the hold model for the two



ALGO- GRAND
RITHM MEAN
LLF 7.73
LLB 5.13
MFF 5.37
MFB 2.87
VAU 1.38
FRA 1.58
HNR 1.00
HEP 1.51
HPM 1.06
HPT 1.21
min. avg.,
time: 23.6

ALGO-

RITHM 1
LLF 1.
LLB 1.
MFF 1.
MFB 1,
VAU 1.
FRA 2.
HNR 1.
HEP 1.
HPM 1.
HPT 1.

min. avg.
time: 16

EXPON -
U(l+ly -
U(l+.l) -
BIMQD -
HYPER -
DISCR -
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Table 7. Hold Model r.e.t. Averages

DISTRIBUTTIONS

EXPON U(l+l) U(lt.1) BIMOD HYPER DISCR

6.44 8.04 13.05 3.79 5.20 10.89

5.60 3.92 1.52 8.65 6.73 4,44

4,53 5.17 8.05 4.00 4.13 7.00

3.38 2.69 1.41 3.33 3.64 2.78

1.28 1.17 1.32 2.05 1.43 1.09

1.49 1.44 1.65 1.69 1.53 1.78

1.00 1.00 1.00 1.04 1.01 1.00

1.46 1.32 1.34 1.83 1,61 1.60

1.01 1.00 1.21 1.00 1.00 1.26

1.12 1.12 1.35 1.10 1.11 1.61

24.9 25.7 22.2 22.6 24.5 20.6

Future Event Set Sizes

0 25 50 100 200 400 1000
07 1.31 1.83 2.93 5.10 10.04 24,31

00 1.12 1.47 2.13 3.43 6.84 15.28
12 1.21 1.56 2.24 3.73 6.76 16.17
02 1.00 1.08 1.37 1.97 3.36 8§.13
44 1.26 1.18 1.19 1.21 1.43 1.92
00 l.70 1.70 1.58 1.48 1.46 i.48
13 1.04 1.00 1.00 1.00 1.00 1.00
56 1.47 1.48 1.54 l.56 1.55 1.56
09 1.05 1.05 1.09 1.08 1.10 1.12
25 1.16 1.20 1,23 1.22 1.27  1l.29

.3 19.4 21.3 22.9 25.3 27.3 29.8

exponential; cv = 1; %F
Uniform; cv = 0.577; %F
Uniform; cv = 0.0577; %F = 97%

90% U{(0,S),10% U{(1008,101S),5=.095;cv=2.856;%F=12%
Hyperexponential; cv = 4,951; %F = 27%

Equally 1likely 0,1,2; cv = .707;%F not applicable
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distributions with coefficient of variation greater than one
are in agreement to those found -earlier and thus suggest
that tests done using the hold model should place greater
emphasis on such distributions.

Additional tests were performed for the hold model for
VAU and FRA to determine the dependence of their performance
on the parameter DELTAT used to space pointer records. The
values of DELTAT used were five and ten times smaller and
larger than the recommended value since the performance of
both algorithms was reported to be fairly insensitive to
changes in DELTAT in this range [12,39]. It was found the
performance generally deteriorated when DELTAT was not the
recommended value, especially when the number of events was
greater than 50 and more so if DELTAT was too small.

5.3 Transient Effect

All previocus data reported in this article has been for
the performance of the data structures under steady state
conditions. Timings were also collected [27] while the
models were in the transient state in order to determine
whether the performance of any of the algorithms was
seriously affected by the transient conditions. .

The difference in performance 1is usually small between

the transient and steady state results. Typically, the

difference was large only in the hold model, for the two
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distributions with coefficient of wvariation greater than
one, and those simulation cases, with a large number of
events and high coefficient of variation.

The explanation for this 1is quite simple. Initially,
all records are in the future event set with a value of 0.0.
The first deletion/insertion operation for each record
consists of removing a value of 0.0 and'inserting the record
with a new value greater than 0.0. For LLF this means these
insertions must pass all of the 0.0 records while LLB need
not. Thus, the execution time for the transient period for
LLB is less than that for LLF but the reverse is true of the
execution time in steady state. Similar reasons held for
the other data structures for these two distributions. For
small future event sets, the effect is not as pronounced as
‘much of the time considered transient is essentially steady
state.

Despite the general closeness of the results for
transient and steady state, the need to remove the transient
remains when analyzing future event set behavior for a
simulation in steady state. This is because, as was found
here for hold and simulation models,.for situations in which
the coefficient of variation is greater than one the results
for the transient period can be quite different from the
steady state test results.

For terminating simulations [26], like the contagious

disease model [41], where there are no transient or steady
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state periods, the closeness of the transient and steady
state results would indicate that the performance of the
algorithms would not be significantly different. The same
could be said for simulations 1in which only the transient
phase is of interest, unless the transient 1is very short.
In that case, those algorithms that perform well when the
coefficient of variation of the scheduling distribution is
.mall would be ©preferable, as demonstrated by the

performance of LLB for the transient cases here.
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6. Conclusions

There has been extensive research recently on the
subject of algorithms for handling the future event set in
discrete event simulations. Most of this research, however,
has confined itself to evaluating algorithms using a simple
model, used in one of the first studies [39], without
rquesﬁioning whether this model or methodology was
appropriate. One of the key differences in the research
described here 1is the analysis done using this model and
extensions to it prior to any testing of the algorithms.
Analysis of the algorithms and of the scheduling
distributions provided a better understanding of the subject
and thus the results of the experiments are meaningful to
real simulations.

"Analytical study of the problem 1led to greater
understanding of the effect the scheduling distribution has
on insertion time. One key result, Theorem 1, established a
relation between distributions being of class NBUE or NWUE
to the percentage of a linear 1list scanned to do an
inseftion from the front (3%F). There was also established
analytically a relation between %F and the «coefficient of
variation (ev) of a scheduling distribution {seen
empirically in section 55. That is, 1f a scheduling
distribution is NBUE (NWUE) then not only is %F > (<) 50% but

also cv < (>) 1.
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Theorem 2 showed that when more than one scheduling
distribution 1is present (which is typical of actual
simulations), the effect is to increase the coefficient of
variation and lower %F. The 1implication is that in real
simulations, the coefficient of variation of the interaction
of the scheduling distributions will often be gqreater than
one., Thus, tests of algorithms using the hold model should
use scheduling distributions with that characteristic,
whereas most tests have had only one such distribution
[5,12,13,17,39]. Knowledge of the effect of interaction of
scheduling distributions was wused to decide the scanning
. directions for the median pointer methods and indicated that
problems exist with the indexed 1list algorithm dﬁe to the
high coefficient of wvariation. "It also resulted in a
modification to the use of a heap for handling the future
event set which improved its performance significantly.

The methodology of section 5 reflected thé goal of
obtaining useful results. One step was to use simulation
models with which to conduct the majority of the tests
rather than the simple hold model. 1In addition, data on the
models themselves were gathered to compare to the
conclusions drawn in section 3. There was strong agreement
between the analytical results of section 3 and the
empirical ones of section 5 regarding the models.
Typically, the models had a coefficient of variation greater

than one and %F less than 50%.
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Finally, the relative performance of the algorithms is
significant. These results differed £from previous studies
largely due to the methodology used in conducting the tests.
Four algorithms performed well (HNR, HPM, HPT, and VAU)},
three were of fair performance (HEP, FRA, MFB), and five,
generally, performed poorly (LLF, LL8, MLB, MLF, MFF).
Storage considerations should not be a major issue since
most of the algorithms, including those that performed best,
required very little storage beside that necessary to link
the event records, 0f those classified as only fair
performers, MFB is very good provided the future event set
is not extremely large and 1is essentially no more difficult

to implement than the traditional linked list.
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Appendix A
Proof of Theorem 2
PROQF.
The proof is quite long and thus has been divided into a
number of lemmas which will be proven first. All of the

lemmas have the same assumptions as Theorem 2.

LEMMA 2.1,
Suppose an insertion is picked at random, then the
probability that the record being inserted is of type i is

given by:
L
P(inserted record of type i) = (ni/ui) / (zi [nk/uk])
' k=1

where u, is the mean scheduling time for event records of

type 1.

PROOF,.

Consider insertions over a period of time of length T. oOn
the average, each record of type i will be inserted into the
event set structure T / Uy times., There are n; such
records, so (T * n.} / U; records of type i will be inserted

over T and the total number of records inserted over T will

be 'LZI(T *nk) / uk]. Thus,
£=1

I
P(insert is type iy = [(T * ni) / ui] /Z T * nk) / uk].
K=t
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LEMMA 2.2,

oo so

iGj(x)*dFi(x) = (1/u) * é, Fi(x)*F4(x) dx
where Gj is the event set distribution for scheduling
distribution Fj’ Furthermore, if i=j, an alternative form
for %Fi is the result:ca

3F; = jbc;i(x)*dFi(x) * 100%

[»
_ = 2
3F; = (1008/u;)* g{[Fi(x)] } dx.

PROOF.

By the definition of G{x) in section 2.2,

o0 a0 X
£Gj<x)*dFi(x) = g,f“l/uj)* 23ftht) dt] dF, (x)

o X
= (—1/uj)j(;{ {-[Fj(t)dt] [-dF; (x)]}.

Using integration by parts,

X
let r = fFj(t) dt and ds = =dF; (%), so
o
dr = Fj(x) dx and s = §i(x).
Thus,

»
(—1/uj)*{[Fi(x)* g Fj(t)dt]{

Sa

oo
‘iGj(X) dFi(x) o

o |
- é([Fi(x)F'j(x)dx]}

]

*
At x = infinity, Fi(x) 0 and at x = 0, f Fj(t)dt = 0, thus
2 _

the first term is zero leaving:
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for &1 o0
fost0 ar (0 = (/uy) + S5, (x5, (1) ax.
2 J 1 J o 1 ]

LEMMA 2.3,
For all 1<1,3<I,

e ]
‘J;Gj(X) dFy (x) * 100% < [sart(u;/u;)] * sF__ .

PROOF,
The proof uses the Schwartsz Inequality [16]: For any

twe functions r and s,
2 : 2 2
[frix)*s(x)ax1® < [§{r(x)}? ax] =* [§f{s(x)}* ax]

unless Ar = Bs {equivalent) where A and B are constants not

both equal to zero. g9 = h means g(x) = h(x) except possibly

in a set of measure zero., If Ar = Bs, then equality occurs.
| Since both sides are positive, the lemma is proved if

it can be shown:

2 2
Z” < (ui/uj)*(%Fmax) .
[+ o]
where Z = 'SG.(X) dF. (x}* 100%.
3 i
s}
By Lemma 2.2,
oo
2% = [(200%/u) 1% [ F, (x) . (x) ax] 2.
] o J

Using the Schwartz Inequality,
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< [(lOO%/uj)Z]) *
oo o 2
[ {{F, (x)1% ax1*0 [ {F (x)}? ax].
s > J

Rearranging terms and then using the alternative form for &F

derived in Lemma 2.2,

2 Y 2
2% < (uj/ug)*{(100%/u;) JIF;(x)1° ax}
. L]

F = 2
* {(100%/uj)£ [Fy(x)1% dx)
22 < (up/ug) *(RF ) * (3F)

Thus, using the definition of %Fma the lemma is proved,

X

[~ =}

1002+ { G. (x)dF, (x)1% < (u./u.) * (3F__ )2
o J i - 1 ]

).

max

PROOF of THEOREM 2.

When inserting a record of type i, the average number
of records in the future event list that will be passed in

the scan will be:

a+ 2 b,

=L
where a 1is the average number of records of type i passed
and bj is the average number of‘records of type 3 passed.
The expression for a comes directly from Theorem 1.
%Fi is the average percentage of records scanned of type i

when inserting a record of type 1i. There are (ni - 1)

records of type 1 when inserting a record of type i, so
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o
a = (n; - 1)*3F; = (n; - 1)*J'Gi(x) dP, (x) .
o]

The expression for bj is only slightly more complex and

follows from the derivation of %F in Theorem 1:

o0
bj = S'nj*(% type j records with remaining life < x)*

[P(type i is scheduled for x units from now)]

op
= gtnj * G4(x)] dF; (x) * 100%.

Thus, the fraction of the total 1list scanned when

inserting a record of type i is

(a+2bj>/(m—1)
Y

since N-1 is the size of the future event set when deing an

insertion.

The expression forl%Fint is thus a weighted average:

3F. =

T™IH

P{insert type 1 record)

int l

1=

* (% scanned to insert a type 1)
= 7. [(;/u)/(c*[N-11)]
1
* {[(ni—l)*jGidFi]+[§; nj*jcdei}}*loO%
JFE
[ ]
where the abbreviation SG.dF. represents SG.(x)dF.(x) and

T 3771 3 j i

c = KZ“(nk/uk) .
By Lemma 2.3,
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3F; ¢ S {1/c*[N-17}

* zg(hi/ui)*{(ni—l)(fsqrt(ui/ui)]*%Fm )

ax

)}

ax

+ Z. n.([sqrt(u,/u.)]*sF
i J 1 7 m
={[8F _ 1/[c(N-1)]}

* {; (nl/ul) ([%nj*sqrt(ul/uj)]-l)}-

Thus, Theorem 2 is true if
P (n;7u)* ([ = ny sqrt(ui/uj)] - 1) < ¢ * (n-1),
\ o)
or equivalently, if
?L(ni/ui)( %i[nj sqrt(ui/uj)l),gié(ni/ui) + C(N-1) = cN

Tbis is true if and only if
EZlni/sqrt(ui)]£§Lnj/sqrt(u.)]=[2:ni/sqrt(ui)]2 < cN.
i N J i

{= n.*n./u.} + {222 {n.*n./sqrt(u.*u.)]}
[ <] t 3 _ 13
SUZomy*ng/ud + (3Y A0y * L ug)+(1/u) T ).
1 '<J

This last inequality will now be shown to be true.
The geometric mean is less than the arithmetic mean [1l61,
_ sqrt(ul*uz} < (ul + uz) /S 2
thus,

2/sqrt(ui*uj) L (17 + (l/uj)

since n, and nj are both greater than g,



IR /st (apry) ¢ (g*n )% (1/uy) + (1/u,)

Finally,

@
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