SOLVING FINITE DIFFERENCE APPROXIMATIONS
0 NONLINEAR TWO-pg NT Y
BY A

RY VaLug PROBLEMs
HOMOTOPY METHOp

Layne T. watson*

i dynamfcs pr
Tthm jg Proveq COnvergen:
a proximations o} nonlineap two- int boung-
< The Numericay imp?ementation of the a?gorithm i

ed, ang ] 5 are 9iven for two

g prob?ems.

obTems



1. INTRODUCTION
UMV IION

&rror criterion was (Tikely) met, Such software exists for eigenvalues ang
eigenvectors, Tinear systems of equations, non-stiff initia} value

problems, and one-dimensional quadrature. For the first two areas, the
Sophistication and ease of yse of EISPACK and LINPACK are wel] known. For
the latter two areas, re]ieving the yser of the burden of choosing step sizesg

Or mesh points was & tremendous advance. The state of affairsg with regard

For example, with @ Brouwer fixed point problem x = f{x) , where ¥ maps
some ball intg itself, j fixed point exists, but the better quasi-Newton
methods tonverge (as they are designed to [31, 32]) to ; Tocal minimum of

Il x = flxyy . Typically €conomics and flyig dynamics problems have many



equations sounds too good to be true. Actually, fop Brouwer fjxed points

and a very Targe class of nonlinear Systems of equations F(x) =0 » there

dare at Jeast three distinct globally convergent algorithms. Because these
algorithms ape grounded in topology and differentia] geometry, were not
discovered and advocated by numerical analysts, and were inefficient in ﬁheir
early imp]ementations, they are not widely known op understood by numerica]
analysts. The excellent survey by Allgower and Georg 17 is an attempt to remedy
that. The three algorithms are based on simplicial approximations (Eaves-

Saigal [6,!2,L§]), retraction mappings (Ke]?og-Lf-Yorke [91), and a para-

meterized Sard's theorem (Chow-Ma11et-Paret~Yorke [4, 28]). Details can be
found in the original references or [11. This Paper concentrates on the
Chow~Yorke algorithm [27], the only one of the three that is both numerically

stable and €asy to understand.
The idea of the Chow-Yorke algorithm, various aspects of which have

been-around for 3 Tong time [ 22, 5,7, 9,/6,{/,!3,/#], is to track the
Z8ro curve of the homotopy map

0o (X)) = xf(x) + (7 - Ax - a)
€manating from » = 0 , x=3 until a zero of f{x) s reached at i = 1,
Superficfa]?y this resemples standard imbedding [5], but there are two im-
Portant differences. Here 3 is not the imbedding Parameter, byt is a

dependent variable just as X . Hence A can increase and decrease along

[28].

To be usefyg the Chow-Yorke algorithm must be globally convergent gn
the types of problems people actually sojve. It has been Proven globally
convergent for Brouwer fixed points [4 ], the nonlinear comp]ementarily

Problem [29], convex optimization problems with nonnegativity constraints



6], and some two-point boundary valye problems via shooffng [20]. Act-
ually the mathematical theory proves global convergence with probability
one (i.e., it can fail only for starting points in a set of Lebesque mea-
sure zero), but that has no practical significance since the exceptional
set is nowhere dense. The intent of this Paper is to prove the global
convergence of the Chow-Yorke algorithm for the finite difference approx-
imations to a class of nontinear two-point boundary‘vaiue problems, sketch
the essence of the Chow-Yorke algorithm, and give some numerical results
for two fluid dynamics problems. The intent here ig not to prove very general
theorems, byt merely to Justify the application of the Chow-Yorke algorithm
to finite difference approximations of simple two-point boundary value
problems. The computational results are on problems to which the'theory is
not obviously applicable.

Some theoretica] results are presented in Section 2. The proofs rely
heavily on theorems and descriptions pub]ished elsewhere, but at Teast the
necessary facts are stated here. Section 3 sketches the numerical algorithm,
which is deécribed in detail in Re]. Computational results are given in
Section 4. They are described in detail to make it clear exactly what
equations were solved, and what the numerical experiments were.

Notation: E" denotes n-dimensional Euclidean space; X; denotes
the ith component of a vector e EN i the inner product xty is simply

written xy
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where y(x) is a scalar function,
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and f{x, U, v) isg C2 General

boundary conditions anpg ¥(x) a vector will be considered latep. Par-

tition the interval [0,1] into n + 1 equal subintervals of Tength

h = TH“%—TT » let X;=1h , j.=9¢ s ME T LY. belan approxi-

;
mation to an exact solution y(x) at X: + The Yollowing standard finjte

difference approximations Will be yseq:

B g s ) ) e )

- + 0(h?)
(4) .;'(xT-) - ﬁ%ﬁ + 0(n%)
(5) ¥'(xy) = ) ¢ 4;5}(7) ), 0(h?)
(6) ORI T U ) W ) 0tn?).

Substituting (3), (4) into (1-2), neglecting terms of order h2

s and
replacing y(xi) by Yi > results ip

(7) 8(Y) = Ay + %My L

where
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nonlinear system of equations (7). & homotopy method s used to sglve

(7). The foliowing Temma frop [297 wit1 be usefyy.

Lemma 7, Llet F . ("N, 3 be a 62 map such that for some r >0 |

XF(x) = ¢ whenever (x| = "« Then F has 4 Zero in (x ¢ gN [ lixll<sry
and for almost all a ¢ gl » Hall < r » there is 3 Z28ro curve v of

P, (A,x) = AF(x) + (1 - Hx - a),

along which the Jacobion matrix Dpa(A, X) has full rank,enamatfng from
(0,a) and reaching a zero % of F at =1, Furthermore, - has finite
arc length jf DF(;) is nonsingular,

The function Py [o, 1) x g" ., gn in Lemma 1 is the homotopy map.
It is important t0 note that: 1) a need not increase monotonically along
the Z8ro curye Y s 2) the dJacobian matrix of the homotopy map has fyli

rank at every point along v {(this feature ig Convenient byt pot crucial to

Zerg of F with probabi]fty onhe.

Theoren ]."Let Fh(Y) in (7) be a 62 mapping, and Suppose that



(8) L LT

Y

For W e £", define oy ¢ [0,1) x gN, gn by
pw(A,Y) = AG(Y) + (1 - MY - w).

Then for almost ai] We En there exists d Zero curve vy of S along

nonsingular then Y has finite Tength.

Proof. By Lemma 1, it is sufficient to pProve that YG(Y) > 0 fop

all vy sufficfent]y Ia}ge. The matrix A in (7f is symmetric and positive

definite with smallest efgenvalue 2(7 - cos ﬁmf?j- 2 --géé—fg = 9.5h2
(n+1)

(for n > 4) [5]. By hypothesis, there exists p » 0 such that
IEYY ) < 9.q TEfor Yl 2 v . how for TY s |

() Y6(¥) = vay + n2yphyyy | (9.5n%)1y 2 - hE 9. ammi) = 1 M s g
using the Symmetry of A and the Cauchy—Schwartz fnequa]fty. Q.E.D.

Coro]]arx 1. If the condition (8) ip Theorem 1 g replaced by

—_— h ;
™ 1im ”F”wff! =€ < nz for 0 < b < hO » then there exists h] > 0 such
> o

that Theorepm 1 holds fop 0 <h < h}.

Proof. For n large enough, the smallest efgenva?ue_ Ay = 2(1 - cos Ehng)

of A can pe made arbitarily close to —— = wzhz from below. Also

for iy sufficiently large, lth(Y)H s {C+8)yYy < n%!YH - Therefore



for n ang Y large enough, w2h2 > A] > (C + 6)h2
n

s> SO the theoren holds for 0 <

» Which when used
Targe €nough translates to h

h < h7. Q.E.D.

in (9) gives the desired result.

small
anough

Coro]?arz 2.

The conclusion of Theorem 3 hold
C2

mapping and bounded,

quation (1) with the genera] boundary
conditionsg
y(0)] .
(10) c |7 = = b,
¥(1) ay1y(0) + 2,y (0) + opa¥(1) + oy ' (1) b
y'(1)]

T80 = ATy v w2y -

L

where‘l = (YO""’Yn+])t R ;ﬂﬁ 1S a8 matrix of order n+2 répresenting the
1ineapr differentiaT Operator ang boundary conditions, is a noniinear
Operator arising from the nonlinear term of (1).



The following two Lemmas are frop {30].

Lemma 2. |et g : g™, gM be a C2 map and define Py 5 [0.,7) x EM L g™
by

Pa(ra¥) = 3gly) + (1 - My - a).
Then for almost al] g3 € Em

there is a zerg curve y of emanating
from (0,a) along which Dpa(A,y) has full rank.

Lemma 3. If the zero curve vy

n Lemma 2 is bounded, it has an accumluation

Point (1,y), where g{y) = 0 Furthermore if Dg(y)

is nonsingular,
then v has finite arc Tength.'

h R 2 .
Theorem 2. Let E(Y) in (11) be_a e{: mapping, and suppose that &
satisfies one of the following: _
1) there exists r > g such that S -} and 6(

G(Y) do not point in -
OPPosite directions for HYh=r | HHI <

" >0 such that YE(Y) 20 for

h
is positive semidefinite (YAX 20 foran
r >0 such that

2)  there exists

1Xn=r
3) ah

j'),‘ and there exists

YENY) 20 for iyl = r
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For Wet" "2 gefine Py P[0Ty x NP2 2
Py (XD = 2G(Y) + (1~ a)(y - w).
Then for almost al) w e‘En +2 ’ lfww <r , there exists a zero curve

Yy of o along which the Jacobian matrix Dp (A, Y) has ‘full rank,

émanating from (0, M) and reaching a zero ‘i of £i (at A =1 ). Further-

more, if QQQZ) 1s nonsingular, then vy has finite arc Tength,

Proof. It is sufficient to prove the theorem under condition 1),
since 3) implies 2), which in turn implies 1). Condition 1) says that
py =0 for 0si<1 on the surface of the ball H¥Ils r . Therefore
{~ » 1f 1t exists, must Tie entirely within the ball HYI[< r . The
existence of y for almost al] w and vy reaching A=T1 follow directly
from Lemmas 2 and 3 above. The finite arc length of + for DG(Y) non-

singular also follows from Llemma 3. Q.E.D. '

Corollary 1. Suppose the matrix A&? in (11) is positive definite and

(x,u,v) “in (1) is a bounded C2 mapping. Then the conclusion of Theorem

2 holds.

Proof. f bounded implies 'Eh in (11) qs bounded, and therefore

hoYE"(y) = oYM . Let o= min YA™.> 0 . Then

AG(Y) = ﬁ.h + hzxﬁh()_’) 2 nn;f,uz *OWIX) >0 for YNl Targe enough, which

is condition 2) in Theorem 2. Q.E.D.

Corollary 2. 1If fx,u,v) in (1) is a bounded C2 mapping and the boundary

conditions (10) are of the form
Y (0) = st Y (]) = bz!

then the conclusion of Theorem 2 holds.
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Proof. By Corollary 1, it qs sufficient to show that the matrix

h . . - -
AT din (1) gs POsS1tive definite. With these boundary conditions,

L

Condition 1) in Theorem 2 is the most general situation in which the
| horotopy method is guaranteed globally convergent. However, it is virtually
impossible to verify in practice, with a few notable exceptions [29].
Condition 3) is easier to verify, but is frequently not satisfied fbr practical
problems. For most Practical problems the homotopy method works very well,
even though the above theory is not dfrecf]y or demonstrably applicable.

Finally, consider the case where y(x) = (y](x),...,ym(x)) in (1)
is a m-dimensional vector function. |[et Yi(k) be an approximation to the

exact solution yk(xi} and Y = (Y(]),...,Y(m))' e EM Then the matrix

as A in (7), and Fh(Y) is defined accordingly. The proofs of Theorem

1 and its corollaries are valid for the vector case also, so

Theorem 3. Theorem 1 and its corollaries are valid for the two-point
boundary vajue problem (1-2), where y{x) = (yl(x),...,ym(x)) is a

m-dimensional vector function, and v s A, Fh(Y)‘ in {7) are defined

F - U
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The vectdr case with genera] boundary conditions (10) is not so easy,
because there are many ways of forming the matrix gﬁ‘ in (11). The most
advantageous wdy to merge the boundary conditions with the finite difference
matrix to form jy1 depends on the problem. Withoyt being more specific,
assume ‘Ah in (11} is formed in some reasonable way, and that JEhQX)
1s defined accordingly. Here A Em(n *+2) - The proof of Theorem 2

carries over to the vector case, but not necessarily the corollaries’ proofs,

since they depended on 3 specific structure in if] . Hence

Theorem 4. Theorem 2 ig valid for the two-point boundary value pkobTem
(1), (10), where yix) = (y](x),...,ym(x)) is & m-dimensional vector
function, ¢ isa om x ag matrix of rank 2m, and ,!%ﬂh,‘ﬁh(X) in (17)

are defined such that (11) is a consistent approximation to (13, (10).

The boundary condition approximations based on (5}, {6) are just one
of many possib%lities, and there was no particular reason for tﬁat choice.
For example, adding an extra point to the left of Z€ro or staggering the
mesh points around Zero and then using a centra] difference approximation

for y'(0) could have been done.
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3. Algorithm

The general idea of the algorithm is apparent from Theorems 1 and 2:

Just follow the zero curve y emanating from (0,W) until a zere ¥ of
G(Y) 1s reached (at x = }. OFf course it is nontrivial to develop
a viable numericaj algorithm based on that idea, but at least conceptually,
the algorithm is clear and simple. The numerical algorithm was described

in detail in [28], and various aspects and applications of it are in Ro -30],
[a7] contains computer code for the algorithm. Since the algorithm has been
thoroughly described elsewhere, only a brief outline of 1t and how it differs
from standard continuation wi]]ﬂbe given here. The homotopy map 1is

Pu(RY) = 360+ (1 <)y <y,

which has the same form as a standard continuation or embedding mapping.
However, there are two Crucial -differences. In standard continuation, the
embedding parameter ) increases monotonically from 0 tg ] as the trivial
probiem Y - W =0 is continuously deformed to the problem G(Y) = 0.
The present homotopy method permits X to both increase and decrease along
Y with no adverse effect, that js, turning noints Fresent no special
difficulty. The second important difference is that there are never any
"singular points" which plague standard continuation methods. The way in
which the zero curve vy of P is followed and the full rank of Dow
along .y guarantee this. Observe that Lemma 2 guarantees that vy cannot
Just "stop" at an interior point of fo,l) x N,

| Parameterize v by arc 1ength S 50 A=2(s) , Y= Y(s) along
Yy . Then

o, (A(s)> ¥(s)) = 0

and

14
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(12) g s) ¥()) = o,
(13) H(g% L ”2 = 1.
Taking

(14) A(0) =0, Y(0) = W,

the zero curve v s the trajectory of the initial value problem (12-14).
When a{s) =1 , the corresponding Y(s) dis a zero of G(Y) . Thus all
the sophisticated QDE techniques currently available can be brought to bear

on the problem of tracking vy [17,18].

0DE software requires (%i,-gg) explicitly, and (12), (13) only im-
plicitly define the derivative gk ar . This can be calculated by finding

the kernel of the n x (n + 1) matrix
Do, (A(s), Y(s)),

which has full rank by Lemma 2. It is here that a substantial amount of
computation is fncurred, and it is imperative that the number of derivative
evaluations be kept small. The recommended techniques for these calculations
are given in [3,28].

Remember that tracking y was merely a means to an end namely a zero
Y of G(Y) . Since vy itself is of no interest, one shou]d not waste
computational effort following it too cTose1y On the other hand, since ¥
is the only sure way to ¥ » losing y can be fatal. The tradeoff between
computqtiona] efficiency and reliability, and some practical advice based

on computational experience, is also in [28].



4. NUMERICAL RESULTS.

A1l the results reported here were cbtained on an IBM 370/158 using a

double precision version of the code FIXPT in [27]. FIXPT was compiled
with the FORTRAN H Extended compiler, and the answers were obtained
accurate to 8 places unless otherwise mentioned. The execution times are
in seconds. The examples here are intended to show the performance of
the algorithm on realistic problems, and that the homotopy method works
even though the theory in Section 2 is not obviously applicable.

The first examplie concerns the motion of-a fluid squeezed between
two parallel plates with prescribed normal velocity. The equations are
[19], L30]

S(af™ + 367+ meren - gem) = f(4)
f(0) = f" (0y=0, f(1) =1, f'(1) =0 , i
m = 0 (axisymmetric case):
With x, = fox= f'' , the second order formulation is
= X,
x2“ = S(nxz’ + 3%, - x]xz’)
x](O) =0, x](1) = ]
sz(O) =0, x]'(I) =0
Note that the boundary conditions are unbalanced. This was handled by

relating Xq o x]‘ s x]" , and X5 at n =1 . The nonlinear system

G(Z) = 0 corresponding to (7) is given in Table 1.



The dimension of the nonlinear system is

S =-4.22

NEQ

Starting from W = 0 with n

Zn + 1

Take

4 , the algorithm

required 2.25 seconds of CPU time and 118 Jacobian evaluations, with

an arc length of 20.

0547

Starting from zero for larger

n is

expensive because most of the components of the solution are large

resulting in a very long zero curve vy , and demonstrates nothing

other than’ the global convergence.

with starting points

The results are shown in Table 2,

W=(0,0.,1,1,-1,-1,-1,-1,2) (n = 4)
W= (3%0, 3.5 , 3*1 , 3%*-.5 , %] , 2) (n=09)
W= (3%, 4%.5 , 7%1 , 3%-1 , 3%-2 ,4%4 , 2,1 ,0,1, 2)
W= (3%, 6%.5,10%1 , 4%-1 , §%.3 , B%4 , -3, -2, -1 , 0 , ] , 2)
n 4 9 14 19
NEQ 9 19 29 39
CPU time - 2.00 11.37 27.11 63.39
.Jacobian evaluations 108 139 118 127
arc length 8.1771 11.8233 6.0622 4.4201
x5(1) 2.7033820 | 2.1986139 | 2.1178779 2n09b28]8
extrapolated values 2.0303579 | 2.0532891 | 2.0548011
2.0561555 | 2.0553057
2.0552484

Table 2. Squeezing of a fluid between parallel plates.

{n = 14)

(n

16

19)
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The extrapolation was based on an asymptotic expansion in powers of
h2 » which should hold since ail the finite difference approximations
were O(hz) accurate [ 5 ]. The Tast extrapolated value compares well
to the exact solution xz(T) = f"(1) = 2.05514 . (It is known that cen-
tered difference methods may have difficulties on such problems [33, 341.)

In [30] this squeezing problem was solved by the same code

FIXPT, using instead a nonlinear system, equivalent to the original pro-
blem, defined by shooting. The shooting approach produces more
accurate solutions than the finite difference
method here, and it also yields the first and third derivatives through-
out the interval, which the method here does not. The only difficulties
with shooting {(on this problem) are instability and the magnitude of the
solution (which involves higher derivatives), both due to the pronounced
boundary layers [ 19 ]. The shooting approach took 53 seconds on an
Amdahl 470 V6. Allowing for the different machines, the CPU times for
the shooting method in [ 307 ahd the finite difference method here
are combarable. Since the shooting technique fn £30] is more
accurate, yields more information, is easier to program, and has approximately
the same execution time as the finite difference method here, it is clearly
preferabie (for this squeezing problem).

In many fluid dynamics problems, the boundary layers become more
proncunced as certain parametefs increase [ 20, 21, 22]. As
these paraﬁeters increase, shooting becomes more and ﬁore unstable. 1In
extréme cases shooting completely fails, because unless it is started
right at the correct initial conditions the solution to the differential
equation becomes so large that the ODE éolver‘never reaches the other end

of the interval. An example of such a problem is in f20].
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Frequently a stretching transformation alleviates the problem, but this
doesn't help if there are multiple boundar} layers whose locations change
as the parameters change (as in [ 21 ], for example). Other possibilities
are collocation and rultiple shooting [ 5 ], but these were not tried.
Shooting completely fails on the following problem, for the aforementioned
reasons.
A mode] of the polar ice cap is given by the equations [ 22 ].
R(eren - £y = £ e e
R(f'k = fk') =

1
=
|

-
n-f,
-

R(gf' - fg') =g" +yh +B
R{gk
f(0) =-1, f(1) = -8, £ (0) =F' (1} =0 ,

]
3
—

i
-
i
=<
[T}
-

With x4 = T s X = f* o, X3 =9, X = h , Xg = k , the second order formulation is

I 1 B— ] - 1 - 1
X" = R(XI Xp = XXy ) TXg
x3" = R€x3x1‘ - X %g ) = %y - B

X4“ = R(x3x5 - x}x4') + oYXy

R(x1'x5 = x]xs‘) + yx1'
X](O) -1, X1(T) = =B , X1'(O) = X}‘(T) =
x5(0) = x4(1) = xd(O) = xé(l).= xs(O) = x5(1) =0

1}

The unbalanced boundary conditions are handled as in the previous problem. Let

zZ= (x1(h} vons xi(nh) . xz(O - xz(T s x3( Yoy eees x3(nh) s Xg (h)»,

e Attt

4(nh) . xs(h) sl ey xs(nh)) . The f1n1te d1fference equations are

]1sted in Tab]es 3 and 4., The dimension of the non11near system 1s

NEQ = 5n + 2
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5.  CONCLUSION

Three conclusions can be drawn from Sections 2 and 4. First, the
Chow-Yorke algorithm is theorstically applicable to the finite difference
approximations to simple nonlinear two-point boundary value problems, and

practicaiTy appiicab]e to a much wider class than the present theory indicates.

mm e "‘“‘“"_""*“"“T'“"_TT“‘T”“—'“’_‘"—""'_“"j_"T"'"?_'"TT"";_"

Second, the homotopy mgthod is indeed globally convergent, and the code in

(277 requires no jiggling of parameters and starting points 1o make it work.
Third, and this observation has been made before [a6,38], the homotopy

method levels the difficulty of problems. Trivial problems take almost as

much time as extremely difficult problems. Whenever a quasi—Newton method

does converge to the correct answer, the quasi-Newton method is usually

at least an order of magnitude more efficient that +he homotopy methed.

The question, of course, is hov to know when a quasi-Newton method will work.
cor non-oscillatory well conditioned problems Saiga]-and Todd's acce1er§;ed sim-
piicial algorithm [ 16 1] is much more efficient that the Chow-Yorke algorithm, but
the final verdict is not in yet. One final note: The differential geo-

metry foundation of the Chow-Yorke algorithm is very powerful, and has been

used to generate globally convergent nonlinear homotopies for probiems on

which the simplicial algorithms fail [5].

Acknowledgement. The author is indebted to Gene Golub, Gene Allgower, and
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