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Nonorthogonal Transforms for Logical Design

Several authors have given detail study to the use of orthogonal
transforms for logic design purposes and for the classification of switching
functions (see [1] - [51). The majority of these have used Rademacher-
Walsh transforms to deduce the relationship of g given function with
various XOR functions of the variables. The purpose of this report is to
investigate whether a useful technique may be based on nonorthogenal
transforms constructed to match the particular modules which it is desired
to use to realize the function. The brimary advantage of the use of
orthogonal transforms is their ease of inversion enabling the recovery of
the ofiginal function., In our case where the transforms are not even
usually square it will be necessary to keep a copy of the specification
of the function.

The approach is to assume that we are given a function which is to
be realized in terms of some given subfunction. A transform corresponding
to this subfunction is constructed and it is used to indicate which
particular variables should be substituted into the subfunction as an
initial module to realize the function.

Two algorithms will be presented, neither of which is amenable to
hand calculation. The first tends to produce decompositions which have
many levels but few modules at each level while the second leads to
realizations with fewer levels but more modules at each level. Two rather
small examples are comsidered in some detail in section 3.

The method presented is currently under development to determine

exactly which types of problems it is applicable to. It is elear that in



certain situations it will fail altogether and it is not suggested that it
will provide an adequate design method on its own. Rather it should be
used in conjunction with a number of other approaches to generate a useful
total design package (see, for example, [2], [6], and [7]). The advantage
of this approach is its ability to work with an arbitrary module which

may be quite large.

1.1 Notation and Definitions

Our concern is with switching functions of n variables f(xl “ s Xn),
which map ordered n-tuples of 0's and 1's into {0,1}. These ordered
n-tuples are called "vertices". Two vertices which differ in exactly one
position are called "adjacent". Sets of adjacent vertices are termed
" " - . =

cubes”, defined as follows: a cube C1=Cqq Cpy -o- Cine clie{D,l,X}

includes all those vertices a. ... a such that a =c.. if clie{O,l}

1 1i

elge aie{O,l} (for each i, 1<i<n).

A switching function of n variables may be defined by a table listing
all its 2% vertices in order with the value taken by the function being
listed as the (n+l1)th column. This (m+1)th column will be called the
specification vectordg for a function f. Alternatively the function may
be defined for all those cubes and vertices for which it takes the value 1
(the "onm-array") and for all the cubes and vertices for which it takes the
0 (the "off-array). The functions considered may be either totally
specified (assigned a value in {0,1} for all 2" vertices) or partially
specified (there exist vertices for which the function is not assigned a
value). If the function is partially specified a realization will consist
of any completely specified function that agrees with the partially

specified function at all vertices for which the latter is defined.



The "intersection of two cubes Cy = Cyq »vv Cpp and c, = ¢

is defined by:

ey A p=e1M Cypaeys Cppuninsey Aey

phq 0 1 X ¢
where "p " is 0 0 9% 0
defined by the P 1 ¢ 1 1
table shown. X ¢ 1 X

The intersection of two cubes is called their "intersection cube"
(though note that it is not a genuine cube).

The "distance' between two cubes is the number d of distinct occurences
of @ in their intersection cube. Such as intersection cube will be
referred to as a distance-d intersection cube. When convenient the positions
occupied by the @'s will also be noted, for example 0 @ 0X1 ¢ 1 is a

distance 2 intersection cube in X, and X6'

1.2 Redundant Variables

The algorithms to be developed will be heavily involved with the
checking for redundant variables and two different procedures will be
used for this.

Initjally the simplest test is for single redundant variables, as
follows:

l. Evaluate all distance 1 intersection cubes formed by the inter-
section of one cube in the on-array and one cube in the off-array.

2. A necessary and sufficient condition for a variable x, to be
redundant is that this list contains no distance 1 intersection cubes in

X, .
1



These conditions can easily be widened for larger sets of variables,
for example:

3. The variables X, and Xj are both redundant if and only if

a) there are no distance 1 intersection cubes in either X
or Xj; and
b) there are no distance 2 intersection cubes in X, and Xj'

For the second algorithm we need a rather more complex technique
since a large number of redundant variables may have been introduced at
the previous stage. As our requirement is for a near minimal set of non-
redundant variables it is essential to look at every intersection cube.
Each intersection cube yields a list of variables which cannot all
simultaneously be removed although all but one may be. TFor example, if
cl=OllXX1010 and ¢,=00X10X100 then cy A c2=0 @ 1101000 which gives the set
of va;iables {XZ,X7,X8} which cannot all be simultaneously redundant.

EZach intersection cube leads to such a set though in practice most of the
sets can be removed since if we have two such sets AB with AcB then B

is redundant. The problem remaining is to choose a minimal number of
elements from some set of sets so that at least one is chosen from each

set. This is, of course, the classic covering problem and may be solved
using a prime implicant table or any similar technique. For our application
it is quite adequate to deduce a reasonable near minimal set rather than |
spending a large amount of time to find a minimal set. Indeed the minimal

set will not always lead to the better solution.

2. The Comstruction and Use of the Transform

The construction of the transform is straightforward, and it is built



in a similar fashion to the Rademacher-Walsh transform for XOR functions
(see [3]). When a functrion f(xl,...,xn) with a specification vector‘E
and a desired subfunction or module M(yl,...,ym), (min), our aim is to
deduce a reasonable substitution of the x variables into M as a good
initial decomposition of f (assuming such a subfunction is reascnable
for the realization of f).

Each row of the transform is based on a single function M(yl,...,ym)
with each yie{xl,...,xn,o,l}. Only substitutions leading to nontrivial
distinct functions are included and inverses of functions included are
unnecessary. Suppose there are k such functions. Then the transform
will contain k rows. 1In practice various heuristic arguments may be
employed to remove rows representing functions that are unlikely to be
useful,

The 27 columns of the transform correspond to the 2" combinations of
the variable Xl""’xn and the exact ordering of these columns does not
matter as long as the specification vector for f is based on the same
ordering. We will assume that column j (1<ksn) corresponds to the assignment

X = a for each k (1<k<n) where

k=1

Suppose row i corresponds to the function M(x.

11750000 %, ).

im
Then
T = 1 4if M(ail,...,aim)=0
-1 if M(ail,...,aim)=1
Essentially the rows of the transform are just the specification

vectors for the functions concerned coded by 0~1,1+-1,

As an example suppose our interest is in a 3 variable function



f(Xl,XZ,XS) to be realized using the subfunction M(yl,yz) =¥ + yé.
For this function we have the following nontrivial substitutions:
M(Xl,xz)’ M(Xl’XB), M(Xz,xl)’ M(XZ’XB), M(X39Xl)’ M(XS’XZ)’ M(Xl’l).’
M(Xz,l), M(XB,l). All other substitutions lead to functions that are either
trivial, duplicates, or inverses of functions listed above (the last three
are just the three variables themselves).
Consequently the transform will have 9 rows and 8 columns, as shown
below. Each row is labelled by the function leading to it and the combination

of variables for

1

X2 0 0 1 1 0 0 1 1

X3 0 1 0} 1 0 1 0 1

M(xl,xz) -1 =1 1 1 -1 -1 -1 -1

M(Xl’x3) -1 1 -1 i1 -1 -1 -1 -1

M(XZ’Xl) -1 -1 =1 -1 1 1 -1 -1
M{x,,x.) -1 1 -1 -1 =1 i -1 -1 =T
2°73 AP

M(X3,Xl) -1 -1 -1 -1 I -1 i -1

M(X3,X2} -1 =1 1 -1 -1 -1 1 -1

Xl 1 1 1 1 -1 -1 -1 -1

X2 1 1 -1 -1 1 1 -1 -1

X3 1 -1 1 -1 1 -1 1 -1

each column is listed at the top.
Having constructed T we multiply it by a coded version of F in that
s o~
0 is represented by -1, 1 is represented by 1, and don't cares (if there

are any) are represented by O's. This yvields the vector R viz R = TF.
A L

ot



If E}is ocne of the orthogonal Rademacher-Walsh transforms then R will
be the spectrum of the function. For our purposes‘ﬁ will be referred to
as a correlation vector since its entries measure the agreement or dis-
agreement of f with the functions used to build the transform. Note that
since it will usually not be possible to easily recoverlﬁ fromgﬁ,it is
essential to retain a copy of‘E. In practice it is most convenient to
store this in the form of the on and off arrays for the function. It is
possible that an evaluation technique similar to that used in [8] might
be more efficient for generating 5. The entries in R give a measure of
the agreement or disagreement of f with the possible M functions. This
procedure works on the assumption that functions corresponding to the
larger absolute values inlﬁ are the preferable initial subfunctions. If
the sign of the entry in'E is negative the agreement is with the function
and if positive it is with the inverse of the function.

At this state the two methods diverge so the algorithms will be

specified,

Algorithm 1

1. TFor a given module (or modules} form the transforqu of

the correct size.

2. Evaluatepgfyg Where‘g is the specification vector for the
function of n variables to be realized.

3. Investigate the modules corresponding to the large absolute
value coefficients in 5.

4. Select one such module ag a subfunction and append it to

the function as an extra variable.



2. Check the new function for redundant variables other than the
‘newly appended subfunction,

6.% 1If none are redundant delete the module used and return to
4. If one or more are redundant delete them and return to 1 or

2 (as appropriate).

/. Continue the procedure until the function has been completely
decomposed.

* After performing 6 a number of times it may become apparent
that it is necessary to procede to the next stage carrying ntl
variables. Currently a number of loose heuristic methods for

detecting when this is advantageous have been used.

The approach described above is serial in the sense that a single
module is selected at each stage. The disadvantage of this approach is
a tendency for the realization to have many levels of modules with few
modules at each level. 1In practical terms the opposite situation is often
preferable, viz a realization with fewer levels and more modules at each

level. This is the aim of the second algorithm.

Algorithm 2

1. For a given module (or modules) form the transform E’of the
correct size.

2. Evaluate Efgg where E’is the specification vector for the
function of n variables to be realized.

3. 1Investigate the modules corresponding to the large absolute
value coefficients in R.

ar

4. Select some set of m of these modules and append them to the



function as extra variables (the value of m will depend on the
values in‘E). These m variables are called the "new variables'.
5. Check the new function for redundant variables deducing a
minimal or near minimal size set of nonredundant variables. If
there are several sets of the same size choose one with the
smallest number of new variables.

6. Return to 1 or 2 as appropriate, unless 5 has been a complete
failure in which case return to 4 and consider a different set

of new variables.

7. Continue the procedure until the function has been completely

decomposed.

The decision as to whether to procede with an ntl variable problem
in algorithm 1 depends on the nature of the particular function under study.
It is also possible to use the method in conjunction with the technique
described in [7] so that we can determine initially which subfunctions
will lead to redundancies. In practice all modules characterized by large
values in R are investigated prior to proceding with an nt+l variable problem.

The algorithms will be illustrated using the transform E'defined above
for M(yl,y2)=y1 + §2. For convenience bothJE and 5 will be written as row
vectors. To illustrate the various stages Karnaugh maps will be used
(blank entries indicating 'don't cares').

We use algorithm 1 initially. Suppose f(Xl,Xz,X3)=§l§2+§1X3 and is

completely specified.
X . X

ON Xy x2 x3 OFF Xl x2 x3 Xl 00 01 11 10

0 0 X 1 X X ot 1 i1 |1 1o

0 X 1 X 1 0 1 0 0 0 0
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F=[11-11-1-1 -1 -1}, R=TF=[2 6 2 2 ~2 -2 6 2 -2]
~ L

Based on the first entry of 6 let §4 = M(Xl, XB) giving

ON Xl X2 x3 x4 OFF Xl x2 x3 X4
cl O 0 0 0 c3 1 X X o
<y 0 ¥ 1 1 <, X 1 0 0

Since the only distance 1 intersection cubes are

C.A 63=G§ 000

1
and ¢ A ¢,=0 @ 00 it follows that X, 1s redundant leaving

\\gﬁzxé

ON Xl X, X3 OFF Xy X2 x3 Xy 00 01 11 10
a 0 0 1 X 0 0 1 1 L0
0 X 1 X 1 0 1 0 0

(note that the function is only partially specified now)
F=[11-11-10~10] and R=[0 4 =2 2 -4 -4 4 2 -4].
A A

We will consider the first three entries of size 4 in R.
Ra v

(a) Let §5=M(xl, x4), giving

ON Xl X2 x4 x5 OFF Xl X2 x4 X5
0 0 0 0 1 X 0 o0
0 X 1 1 X 1 0 0

and the redundancy check gives z, redundant, leaving

ON x x x OFF x x x
000 1X0
0x 1 X10

which is unchanged from the function at the previous stage, so Cthis is
obviously not a useful module.

(b) One of the heuristic rules normally followed is to prefer modules
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that introduce variables which have not previously been used (in this case
xz). The only one of the three possible choices for X which meets this
criteria is x5=M(x4, xz), giving

ON Xl X2 X4 X5 CFF Xl X2 X4 x5

Cl 0 0 0 1 c1 1 0 0 1

Cy 0 X 1 1 cz X 1 0 0

The only distance 1 intetrsection cube is ¢ A c3=0001 and since there

are no distance 2 intersection cubes in x. and X, both are redundant leaving

2
OoN Xl XS OFF Xl X5
0 1 1 1
X 0 SO f(xl, Xy x3) = M(xl, XS).

(¢) The third size 4 entry in R yields X5=M(X4, xl) giving

ON Xl X2 x4 X5 OFF Xl x2 X4 X5
0 0 0 1 1 X 0 ¢
0 X 1 1 0 1 0 1

and Xy is redundant leaving

ON x2 x4 x5 OFF X2 x4 X5 X2 00 01 11 1o
0 0 1 X 0 0 0 01]1!;'
X 1 1 10 1 1 00!1;]

F=[-1101-1-101] and R=[2 4 -4 0 -2 0 -2 4 4].
~ "

The two early entries of size 4 lead to

(i) Xg = M(xz, x5) ON X2 %, X5 X OFF X, X, X X
0 0 1 1 X 0 0 o0
0 1 1 1 i 0 1 0

1L 1 1 ¢
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Both x, and Xg are redundant leaving

2
ON x4 Xe OFF x4 X6
0 1 0 0
11 s0 that f(xl, Xy x3)=M(x4, X6)
10
(ii) Xe = M(XA, X2) ON Xy X, Xg ¥ OFF X, X, s X
0 0 1 1 0 0 0 1
X 1 1 1 1 0 0 0
1 0 1 ¢
Boeth Xy and x, are redundant leaving
ON X5 X6 OFF Xz K
I 1 - 0 1
0 0
10 so that f(xl, Xgs x3)=M(x5, x6).

We have a number of different decompositions of the function in terms
of the module M. Some of the realizations are not very efficient partly
because £ is a function of only 3 variables so the range of values for the
correlation coefficients 1s not large enough to give good discrimination
in the choice of modules.

To 1llustrate algorithm 2 it will be applied following the first stage

of the above example. We had

ON Xl x2 X4 OFF Xl X2 X4
0 0 ¢ 1 X 0
0 X 1 X 1 0 with X, = M(xl, XB).

R=[0 4 -2 2 =4 ~4 4 2 -4]
N

Consider the first three size 4 entries simultaneously,



i3

viz x5=M(xl, X4)’ x6=M(x4, x2), x7=M(x4, xl).

ON X X, X, Xg . X, OFF X, X, X, X X Xy
¢1 0 0 0 0 1 1 Cy L 00 0 1 0
¢y 0 X 1 1 1 1 y 1 1 0 0 0 0

Cs 01 0 0 0 1

To deduce a minimal set of nonredundant variables it is necessary to

consider all the intersection cubes, viz

C1A ¢y = 000018 {Xl, X7}

¢y A, = $p00pd {x,, Xy, Rgs X}
CiACy = 090091 {xz, X6}

ChhCy = PopB1e {xl, Xy o x7}
Cyac, = 1000 {Xl, X0 X X X7}
Concy = 010¢@1 {x4, g5 X6}

The sets following the intersection cubes are the sets of variables
which the intersection cubes dictate cannot all be redundant e.g. ¢, <5
indicates we must retain at least one of x4, X5, X6. In this case it is
obvious that the minimal size nonredundant sets of variables are {xl, X6}
and {x6, X7}. The general problem at this stage is a set covering problem
which can be attacked by any of the prime implicant table techniques. 1In
this example the two possiblilities give:

ON x. x OFF x. x ON x. x OFF x, x

176 176 6 77 6 77
0 1 1 1 1 1 1 0
10 0 0
0 0 0 1

f(xl, X5 x3)=ﬁ(xl, X6) f(Xl, Xy x3)=ﬁ(X6, §7)
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The former is the better solution and would have been chosen by the
algorithm since it uses fewer new variables,

Note that although algorithm 2 introduces more extra variables than
algorithm 1 we never apply the transform to this n+m variable problem and,
because of the greater scope for redundancy this approach will tend to
converge to a solution faster than algorithm 1. For some functions all
the correlation coefficients are small and of equal magnitude usually
indicating the inappropriateness of the module under comsideration. It
is also clear that for certain functions it is not possible to deduce a

good initial module using this approach.

3. Examples

Two examples will be considered to illustrate the algorithms. Some
rows of the transforms which would have been included in a computer imple-
mentation will be omitted here in an attempt to keep the examples to a
reasonable size. For a similar reason the number of variables in the
examples is kept to a maximum of 5. Neither algorithm is followed ex-
clusively, rather several alternate paths through the examples are discussed.

F and R are written as row vectors when this is convenient.
~ A

Example 3.1

The function to be realized is totally specified and given by

OoN Xl x2 X3 X4 OFF Xl x2 x3 x4
1l 1 X X 0 0 X x
X 1 1 0 0 X 0 X
1 X 1 x 0 X X 1
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The operator module used is one based on a sole sufficient operator

of Wesselkamper [9] which is defined by
S(x,v,2) = "z if x=y
x if xfy

It is clear that S(x,v,z) = 8(z,v,x). We shall construct a transform
giving the correlation with all the possible S functions. Rows corresponding
to S functions with one or two variables constant will be omitted in the
example.

R?j will be used to denote the correlation coefficient corresponding
to S(Xi, Xk, Xj)-

Since S(x,y,z) = S(z,v,x) and S(x,7,z) is the majority function there
are only 4 functions to consider in the transform for any group of three
variables, e.g. for X1s Xys Xy these are S(xl, X5 X3), S(X2’ X35 X4),
S(XB, Xqs XZ)’ and S(xl, §2, x3). All other possible substitutions of these
three variables lead to functions that are equal to one of the above or
its inverse,

Coefficients corresponding to S(xi, §j, Xk) will be denoted by Rijk'

We have

F=[-1-1-1-1-1-11-11-1 1111113
EY

) aEd hence - - -
R;3 11-1-1-1-1-1-1111111-1-1/] -1 4
R%a 1-11-1-1-1-1-111111-11-1] <1 6
R§4 1-1-1-11-1-1-1111-1111-1}] -1 4
RiS 11-1-11111-1-1-1-111-1-1]] -1 |4
Ri4 1-11-121111-1-1-1-11-11-1)] 1| |4
R§4 1-1-1-1111-11-1-1-1111 1 | -1 4

’ . .
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R | 111101111 -1-1121-1-1-1-1]] 1| |4
Ry 11 -1111 1111 -010-1-1-11-1]]-1 2| -4
RO, | [1-111-1-12-11-111-1-111 1 | 4
Ry, | 11111110 -11-11-1-1-1-1]] -1 |12
Ri3 11-1111-11-11-1-1-11-1-=1]] 1! l-12
R;3 11-11-11-1-111-11-11-1-1]] 1| | -4
Riogl [111111-1-111-1-1-1-1-1-1{] 1/ |-12
Ripel 121120212 -11-11-1-1-1-1-2]] 1| | 4
Riggl [121-1111-11-1-1-112-1-1-1{] 1! | -4
Rygl [111-11-1-1-1111-11-1-1 -%J 1 ~4J

Several of the coefficients have equal values res&iting from the
symmetries within the chosen funection. The strategy we will adopt is to
consider the three cases corresponding to the entries of 12 in R using
both algorithms. For comparison we shall also consider the resulting

functions if we chose two of the coefficients with value 4.

(a) Using algorithm 1.
(i) Ri2=—12 so let X5=S(Xl, Xy XZ) giving

ON x, x. x. x OFF x, x, X, X, X

1 %2 %3 %4 %5 1 %2 %3 %4 %5
cl 1 1 X x 1 c5 0 0 X X 0
c, X 1 1 0 1 g 0 X X 1 0
c; 1 X X 01 ¢, X 0 0 1 0
¢, 101 10 cg 0 100 1

with distance 1 intersection cubes

cqa C8 #1001

C2/\ CS = 0]_{301
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Cqncg = #1001
ChnCy = 10610
Chpi Cp = #0110

C4,\ C5 = QOlJ_O
so that Xy %, and Xs are all individually redundant. Since there are

no distance 2 intersection cubes in X, and %, both are redundant leaving:

ON Xl X3 XS OFF xl X3 X5
1 X 1 0 X 0
X 1 1 X 0 0
1 1 ¢ 0 0 1

which is easily shown by the 3-variable transform to be S(xl, §3, XS).

(ii) Ri3=—12 so let x5=S(xl, Xy x3) giving

ON X) Xy Xg X, X OFF X %, Xq X, X
1 1 0 1 0 6 0 1 0 1
X 1 1 0 1 0 X 0 X 0
1L X1 X 1 0 X X 1 0
1 X X ¢ 1 X 0 0 10

and a redundancy check reveals that Xq and x, are both redundant leaving a
function identical to that in the previous case. This just reflects the
symmetry of X, and Xq in the original function.

(4idi) R123=—12 so let X5=S(Xl, §2, x3) giving

ON Xl X2 x3 x4 X5 OFF Xl X2 X3 X4 XS
1 1 X X 1 0 0 X X 0
X 1 1 0 1 0 X 0 x o
1 X 1 % 1 0 1 1 1 1

1 00 00 X0 0 1 0
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and the usual redundancy check reveals that both X, and Xy are redundant

leaving
ON Xy X, Xg OFF Xy x, Xg
1 X 1 0 X 0
X ¢ 1 0 1 1
1 0 0 X 1 0 which is S(XI, Xy XS).

(b) We consider the same three cases simultaneously using algorithm 2.

Let X5=S(Xl, X, xz), X6=S(Xl, X X3), x7=S(xl, X5 X3).

CN X Xy Xg X, Xg Xg Xq .OFF X %, Xy X, X5 X, X4
ey 1 1 1 X 1 1 1 Cq 0 0 00X 0 0 o0
<5 L 1 x 0 1 1 1 10 00X 1 0 0 0
Cq 11011 0 1 et 001 0 0 1 0
C X1 1 01 1 1 Ciq 0 0 X 1 0 0 0
g 1 1 x 01 1 1 i3 0O X 0 1 0 0 0
Ce 1 X1 0 1 1 1 Cy4 01 1 10 0 1
¢ 10 0 0 1 1 0 s X0 01 0 00
Cg 1 01 1 0 1 1 16 0 1 0 01 0 0

To deduce a minimal set of nonredundant variables requires the cal-
culation of all 64 intersection cubes, most of which give redundant conditions.
The following sets of variables are all those which these 64 intersection
cubes dictate cannot all be redundant. {xl, Xss X6}, {Xl, X, x7}, {Xl,

s X7}, {Xl, Xa» X5}, {Xl, X, x6}, {xl, Xy X7}, {XZ’ %o x7}, {X3, X
X7}, {x4, X5, X6}.
The minimal sets of nonredundant variables are easily determined by

a2 covering table and are {Xl, Xy, xﬁ}, {xl, X4, Xs}, {xl, X, x7},
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by xgs xgds D, x, b s xh %3, {x,, 50 %p)s Lag, %, xd,
bgs %55 xghs {xgy xg, %3,

The solutions selected by algorithm 2 would be the first three sets
listed since these have the smallest number of new variables. These are

exactly the solutions deduced in {a).

{c) We investigate two low value correlation coefficients to sSee what
sort of realizations they lead to.

(i) R§4=~4 and let X5=S(Xl, X3, x6)

ON X, X, X3 x, Xg OFF xl X, x3 x4 X5
¢y 1 1 0 1 1 Ce 0 X 0 0 o0
c, X 1 1 0 0 c5 0 X 0 1 1
Cq 1 X 1 0 o cg 001 0 0
s 1 X1 1 1 Cy 0 X 1 1 o
cs 1 X 0 0 1 10 X0 0 1 1

It is easily seen that none of Xl’ XZ, X3, X4 is redundant since

¢pacy = 1011
1A €147 igo11
c,a ¢ = 01600
Cyh Cg = 011¢0

so the only redundant variable is X and its introduction does not appear
to have been useful,

(ii) Consider R134=—4 and let x5=S(xl, X35 Xa).

OoN Xl X2 X3 x4 X5 OFF Xl x2 X3 X4 x5
cq 1 1 X 1 1 Cs C 0 X 0 0
c 0O 1 1 0 0 d 0 X 0 X 0

2 ]
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Cq 1 X 1 X 1 c 0 X 1 1 1

C I X0 0 o0 c i 00 1 1

and we have

cyac, = @x1i1
C1A Cg = 18011
Cyn Cp = 01400

so that X1y Xps and X4 are not redundant. However X, is redundant, its

removal resulting in

ON 3 X, Xg Xg OFF Xy X, g X
1 1 x 1 0 0 X 9
01 1 0 d X 0 0
1 21 1 0 X 1 1
1 X 0 o 1 0 0 1

and this function turns out to be rather more difficult to attaek than
the original function.
However on occasion the choice of a small value may lead to a reasonable

solution, e.g. x =S(x2, §3, XS) gives a good solution although R234=—4.

5

Ixample 3.2

A 5-variable totally specified function defined by the arrays below
and illustrated in the Karnaugh map.

ON x, x, x, X, % OFF %, %, %, X, x

L7273 %% 75 17273 %% 75
X X 1 Xx 1 ¥ X 0 X o
X X X 11 XX X 0 0
1 X 1 1 x X 0 0 0 x
1 1 X x 1 0 X 0 0 X
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X X, X,
®2%3
000 001 011 010 100 101 111 110
CO 0 0 1 0 0 0 1 0
01 0 1 1 0 0 1 1 1
11 0 1 1 1 0 1 1 1
10 0 0 1 0 0 1 1 0
The module used is a 3~input majority function, M(i’j’k)=Xin+XiXk+
Xij' Rijk will be used to denote the correlation coefficient with M(i,i,k).

Neither inverted inputs nor constant inputs will be considered in the example
in order to avoid it becoming too complex. For 5 variables there will be

10 possible 3~input majority functions so the transform has 10 rows.

Now

23 T 12
R124 12
Ri95 12
Ry34 12

k= Riss| = IF = 20
Ri45 20
R34 12
Ro3s5 20
Rous 20
R34§J | 28

where T is defined ag
A



and
F=1-1-1-1-1 1-1 1 -1 -1-1 1-1 1 1 1 1
s "4

-1-1-11-1 1 1 1-1 1- 1 -1 1 1 1]

(a) For algorithm 1 the largest coefficient is R345 50 we let X =
M(3,4,5) giving
ON Xl X2 x3 X4 x5 X6 OFF Xl X2 x3 X4 x5 X6

cq X X 1 X 1 1 Cq XX 00X 00

22



23

c, X X X 1 1 1 ¢ X XX 0 0 o0

2 9
Cq 1 X 1 1 x 1 ¢ig ¥ 0 0 0 X 0
¢ 1 1 0 0 1 0 1 00X 0 0 X 0
Cq i1 1 x 11 €19 0 01 1 0 1
Ce 1 1 X 1 11 €3 0 0 0 x 0 0
¢y X1 1 1 x 1 14 0 00X 0 0 0

Note that this six variable function is only partially specified.

The distance 1 intersection cubes are

CyAcy, = 0011¢1
cya Cy, = 001161
Cah €y = @#01101
CunCg = 110040
c ac, = 110080
€4 A g = 160010
€, Aacyq = $10010

so0 that x3, X4, and X6 are singly redundant. Since there are no distance

2 intersection cubes in X, and %, both are redundant and may be deleted

giving
ON X %, Xe X OFF X %, Xg X
X X 1 1 X X 0 o0
1 X x 1 X 0 X 0
X 1 x 1 0 X X o0
1 1 1 0 a 0 ¢ 1

This 4-variable function which remains is treated similarly except

that the transform only has 4 rows in it, namely



Rios
Ri26
R= Ris6
Ros6
where
o

T=14-1-1-1 1-1-1-1
At

-1 -1-1-1-1-1 1

=1 -1~-1-1-1 1 -1

-1 ~-1-1 1-1 1 1

1

1

12

12

-1 -1

and E =[-1-1-~1 1-1 1-1 1 -1 1

which would indicate the equal potential usefullness of M(1,2,6), M(1,5,6),

and M(2,5,6).

1

1

1

1

1

1

-

-1 1-1 1 1 1]

reveals a symmetric relation between the variables.

Xy = M(1,2,6) for this reason.

ON x. x

c 0 0

with the distance

c c

1%

Cli‘ C7

c

14 -8

C2AC5

031\(.‘_5 =

cl[.,\ Cs =

c. =

1 %2 5 ¥ %5

intersection cubes

00190
00160
00810
11081
11041

11g01

This gives

We consider only

OFF Xy X, XS X6 X7
cs 1 1 0 0 1
¢ X 0 X 0 0
¢, 0 X X 0 0
Cq 0 0 0 1 0o

24

This is hardly surprising since a detail look at the function
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Since there are no distance 2 intersection cubes in Xl and X2 both

of them are redundant giving

ON X5 X6 X7 OFF x5 X6 X7
1 1 90 0 0 1
X 1 1 X 0 0
1 0 1 0 1 0

which is M(5,6,7).

This gives the module circuit below

N

X4_m M

[ P
—
|

%5
We will briefly consider the effect of an alternative choice which could
have been made.

(i) 1f X, = M(1,2,5) (corresponding to the smaller correlation
coefficient).

The only redundant variable turns out to bhe Xy itself, If we
persist with this approach and apply the original 5-variable transform to
this function (retaining X7) the resulting high value correlation co-
efficients are R126’ R156’ and Régg and the resulting circuits are similar
to the one above, with Xy remaining redundant at the end.

(ii) One further possibility dis to only remove X, rather than
both Xq and X, after the first stage of the example.

ON x. x OFF = X, X_ X

1 %2 *3 ¥5 X4 1 g ¥3 X5 %
X X X 1 1 X X X 0 0
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I X 1 x 1 X0 0 x o0
11 0 1 0 0 X 0 X o0
X 1 1 X 1 0 0 1 0 1

The 5 variable transform can be applied to this function giving:

- .
R193 8
Ry25 8
R o 16
R, 4 12
R, 4 12
R o - 20
R, s 12
R,q 12
Ryce 20

| ®356 | | 20|

The high value coefficients are R The first two

1567 Ra5g» and Ryc .

avoid X3 and will lead to the earlier circuit.

To specifically include %3 we choose X, = M(3,5,6) giving

ON xg X, x3 XS Xg X5 OFF X X, x3 Xg X6 X7
X X X 1 1 1 XX X 0 0 0
1 X1 X 1 1 X0 0 X 0 0
i1 01 0 0 0 X 0 X 0 o0
X 1 1 x 1 1 0 01 0 1 1

The redundancy check indicates that X35 X, and X5 are singly redundant
and that Xy and X, may both be deleted. This results in a function which
is identical to the one we had after deleting Xg and Xy in the first stage
of the example, so all this accomplishes is the introduction of an extra

redundant module into the circuit.
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(b) Returning to the first stage to apply algorithm 2 there were four
entries of 20 and one of 28 in the initial R, Including all of these we
Ea
let Xp = M(3,4,5), Xy = M(2,4,5), xg = M(2,3,5), Xg = M(1,4,5) and X0 =
M(1,3,5).

The extra variables require some expansion of the specification arrays

giving:

ON Xy X, Xq x4 X5 X6 x7 X8 X9 XlO OFF X, x2 x3 X, Xg XG x7 Xg x9 XlO
cy 0 0 1L 011 0 1 o 1 Sy 1T 010010 1 0
<y 11 1 x 111 1 1 1 €5 0 0 0x 00 0 0 0 0
Cq 0 1 1 01 1 11 ¢ 1 16 I 0010 090 0 1 0
<, 101011 0 1 3 1 iy 01 01 0 0 1 0 ¢ 0
Cs XX 1 11111 1 1 g XX 00000 0 0 o
e 11 x 111 1 1 1 1 9 00 X 0 00 0 0 0 0
ey 01 0111111 0 90 101 0 0 0 0 o 0 1
Cg 10 01 11 1 90 1 1 oy 0 1 1 000 0 1 0 0
Cq 0000111190 1 0 Y 11100 0 0 1 ¢ 1
10 1111 %x 111 1 1 g 0 0 00 X 0 0 0 o 0
1 1L 01 101 0 90 1 1 Cos 01 0 01 0 1 1 ¢ 0
1o 11 0010 1 1 1 1 Cys 001 1 01 0 0 o0 0
13 01 1 1 0 11 1 o 0 56 100010 0 0 1 i

and the 169 intersection cubes vield the following sets of variables which
cannot all be redundant:

{x3, Xgs XlO}’ {x4, Xes Xg}, {Xl’ %y Xlo}, {X3’ Xg s XS}, {X4, X x7},
{z,, X7, Xgl, {x,, X5y Xe» xgl, {Xl, Xps Xes x6}, (=, X5 Xgy % T, x4,
40 F5s Fgls 1xg, XS’ K7 Fghs Dxgs x5y xgs x5, tess %65 xg, %103, {xg,
6> X720 Xty x5 xes xg, %), bxss 565 x50 110}, {xy, %4 Fgr Xgs Xgl,

(x5, %, %’Xwﬁﬁ&’{%’xy Xg» X9t
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From these using a simple covering table it transpires that the only
two minimal sets of nonredundént variables are {x6, X2s Xlo} and {X6, Xg»
Xg} giving solutions M(6,7,10) and M(6,8,9).

As we would expect the solutions from algorithm 2 use fewer levels

but more modules at each level, the circuit for the first solution being

as shown below.

The simplest solution, which was not deduced by these methods, appears

to be that shown below.
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