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Abstract

An alternative is provided to a recently published method of
Benjauthrit and Reed for calculating the coefficients of the
polynomial expansion of a given function. The method herein is
an adaptation to finite fields of a method of Newton. The method
is exhibited for functions of one and two variables. The relative
advantages and disadvantages of the two methods are discﬁssed.
Some empirical results are given for GF(9) and GF(16). It is
shown that functions with "don't care" states are represented
by a polynomial of minimal degree by this method.
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Introduction

In a recent paper in these Transactions Benjauthrit and Reed

exliibit a method for computing the coefficlents f(i) in the finite
field GF(pn) in the expansion:

k-1 s
FGx) = ;L) £@)x" (1)
of a function F: E(k)> E(k), where k=pn, and E(k) is the space
E®) =" 10,1,...,k-1}. The result is important since every such
function F has a unique expansion over GF(pn) of this form. TFurther,
they generalize this to the case in which F is a function of n

variables, F: En(k)+ E(k). Specifically in the case of expansion (1):

£(0)

F(0);

£(1i)

N OIS IO R e icr @

In the two variable case the expansion is:

zkuz 1 13
F(XsY) = i,i=0 f(isj)x yJ (3)

and the coefficients f£(i1,j) are given by:

£(0,0) = F(0,0);
£0,3) = _2,[F(0,0) - F(0,y) Iy~ 0< <k
E(1,0) = 2)[F(0,0) - F(y,0)] vt 0< i<k -
FGD = BIF0,0) - F(0,6) - F(v,0) + Per,5)1 v 567 (a

The coefficients of (2) and (4) are described by Benjauthrit and Reed
as generalized finite differences. In the next section we present a
classical approach to the same problem which makes evident the role of

"différence" in the process of deriving the coefficients f(1) and £(i,3).




Throughout this paper, let P be a prime and n be a natural number.

Let k = pn. Let + and % denote addition and multiplication,
respectively, over GF(pn). When there is no danger of confusion,

we write "ab' for 'ag*ph'. Finally let Z and II denote the extended
sum and extended product in the usual way. Let E(k) = {0,1,...,k-1}.

=1
Definition l:- For each k, let Zk(x) = i=0(x—i).

Note that for each ae E(k), we have Zk(a) = 0.



Let p be a prime

n
» N a natural number, and k = p

' . i ermutation of
If the sequence Xy Xl’ s Xk~l 18 some permy

the elementg of GF(k)
[ % Xi‘]

, ®(x,) - plx.)

» then:

]

0;

= s 1f Qg g, (5)
i7; ‘
5%, ex ] o [xi"'xi-l-j—l‘] - [Xi+1_”'xi+j] , 1f 3= 2. (6)
17i+] it Xi - Xi*ﬁfi

In particular, we have:

F(xp) - Bex,)
o= —20 770

= > a first order difference;
0%
[%y%,] - x x ]
fxoxlxz] = __ij;____ﬁj;ﬁ__, 2 second order difference; and
T x
[xoxl...x._lj - [xlx2...x.] B ence.
[x. % ...x 1= ~——*—~&¥L~——h-—~——-l~ a jt order differ
01 ' X - x. ?
0 h|
F(x5) -5 (x,) Fx) -p(x,)
Note algg that [x.x.1 = “"*L—““*r“l-= J ~— = [x.x 1,
175 ﬁfﬂ %-ﬁ 1

and in Particular, [Xoxl] = {XiXOJ'



F'(XO)
[x % ]
071
F(x)) D%y %, ]
[x,%,)] [y %y %]
F (x)) [y 2p%4] :
[x,%,] X1 %y % g%, ]
F(x.) 2737
3 [x3x4] [X2X3X4X5]
Fix,) [xyx, %, ]
EX4X5]'
FI(XS)
[ ¥ 35071 ]
% % ] { ]
Py ) "k~ 35k -2k -1
Example 1:=~ Let k = 5 and construct s difference table for
the function with value sequence < 13231 > ,
X )
0 1
2/1
7 3 2/2
4/1 0 .
9 2 2/2
1/1 0
3 3 2/2
3/1



Example 2:- Let k = 5 and construct a difference table for:

1, if x=3;
VS(X) -
0, if x#£3.
X Vy(x)
0 0
0/1
0/2
1 0 3/3=1
0/1 1/4=4
5 0 1/2=3
‘11 1/3=2
3 1 3/2=4
4/1
4 0
Example 3:- Same as Example 2, but permute the order of the
values of x.
p:d Va(x)
0 0
0
2 0 0
0 0
2/3=4
4 0 0
0 2/1
1 0 3/4=2
1/2=3



Example 4:~ Let k = 4, and construct a difference table for:
l, if x = 2;

V(%) =
0, if x # 2.

The field GF(22) igs given by the two tables:

+1 o 1 2 3 0 1 2 3
o]l o 1 2 3 of o 0 0 0
1) 1 0 3 2 1] o i 2 3
21 2 3 0 1 21 o 2 3 1
3] 3 2 1 0 3] o 3 1 2
X VZ(X)
0 0

0/1=0

2/2=1

1 0

1/3=2 3/371
2 1 3/2=2

1/1=1



The above remark, that [xoxl] = [xlxo}, can be generalized inte

a pleasant and important result, contained in the corollary helow.
Regrettably there does not appear to be an equally pleasant proof,

The following lemma_proved in [2, p. 10] achieves the desired result.

' n
Lemma 1:— Let p be a prime, n a natural number, and k=p

If Xyr Kys eees Xj are distinct elements of GF(k) and

if F(x) is a polynomial of degree n (j<£n), then,

[ (xy)
KX aaaX,] = -
071 | (XO ~Xl)(x0 -xz)...(xo —Xj)
. P(x,)
(Xl —XO)(Xl —xz)...(xl —Xj)
+ . .
r(x,)
+ N
(Xj —XO)(Xj _Xi) -..(Xj —xj_l)
Corollary:~ If Xgs Xys enns Xj are distinct elements of GF{k) and

F(x) is a polynomial of degree n (i< n) and s is a
permutation of the integers 0, 1, cesy J, then [Xoxl...xj]
= [XS(O)XS(I)..e s(j)]' In words, the value of [Xoxl...xj]
is invariant under a permutation of its elements.

Proof:- Note that a permutation of the élements {xi} permutes the

order of the terms in the expression in Lemma 1 but leaves

the value unchanged.



IIT.

Divided Difference Polynomials
The method which was employed in the previous section can be
extended. Note that in Definition 2 we required that the points

Xp* Xq» +e+s X _; be distinet. We wish to extend our definition by

weakening this restriction.
Lemma 2: TLet p be a prime, n a natural number, and k = pn.
If F(x) is a polynomial of degree n (1€ n<k-1) and
XlE-GF(k), then there exists a unique polynomial q(x)
of degree n-1 such that:

F(x) - F(xl)

q(x) = )

Proof: If F(x) is a polynomial, then F(Xl)S GF(k) and F(x) - F(xl)

is a polynomial. By the Euclidean algorithm there exists
a polynomial q(x) of degree n-1 and an r ¢ GF(k) such thar

f(x) - f(xl) = {(x - Xl)q(x) + r. Since r is a comstant,

setting x = X1 gives r = 0. Since q(x) is of degree less

than or equal to k-2, q(x) defines a unidue function.

This lemma makes the following definition reasonable.

e . n
Definition 3: Let p be a Prime, n a natural number, and k = P .

Let XO, Xl, e X g be a permutation of rhe

elements of GF(k). Let F(x) be a polynomial of
degree n, (0sn< k-1).

. F(x) - F(xl)
D= = —5—% ™
1

_ [xxl. . .xj__]—_l -~ fxlxz. . .X_i] (8)
@xln.xlw ~
i x - x



The notation of Definition 3 is designed to 1ull the reader into
accepting it as a simple extension of Definition 2. We need to
prove that where Definitions 2 and 3 coincide syntactically they

also coincide semantically.

Theorem 1: Let p be a prime, n a natural number and k=pn.

If the sequence XO, Xy e xk_l is a permutation

of the elements of GF(k) and if F(x) is a polynomial of
degree n (0= n< k-1), then when i n, [xxl...xj] is a
polynomial q(x) of degree n—j and q(xo) = [XOXl"'Xj];
and when n< i, [XXl...Xj] = 0.
Proof: The proof is by induction on jo If 7 =1, there are two
cases.
Case 1, 1 = j= n. By Lemma 2 there is a q(x) of degree n-1

as required. Since

F(x) - F(xp)

X‘“Xl

letting x = X, gives

q(x)=

q(XO) = = [xoxl], as required.

Case 2, n< j 1, that is, n = 0. If the degree of F(x) is

0, then F(x) ce GF(k), a constant. From the definition,

cC ~-c

m———— 0, and the theorem is true.

[xx ] = )
Let 2= j. As the induction hypothesis assume the theorem to
be true for differences of order i-1. Thgre are again two
cases.,

Case 1, j= n. Consider the expression

[Xxl"'xj—l] - [XIXZ...Xj]

[xxl...xj] = — Xj




Since 2< j= n, we have 1< j-1= n-1. By the induction

hypothesis [xxl...xj_l] is a polynomial of degree n-j+1= 1.

Let ql(x) = [xxl...xj_

l] - [XlXZ"'Xj]’ also of degree n-j+1.
By the Euclidean algorithm there exists a polynomial q(x) of
degree n—j and a constant re GF(k) such that ql(x) =

{(x - Xj)q(x) + r. Since r is a constant, let x = Xj. Then

j—l] - [Xl...xj_lxj].

ql(xj) = ¢, But also, ql(xj) = [ijl...x.
By the corollary above the two terms on the right are equal and
t = 0. Therefore q(x) is the unique polynomial value of

[xxl...xj]. Since Xys Xys oo Xj are distinct

o (% % eoex, o1 = [®,...%,]
- 071 j-1 1 i _
j q(Xo) - XO — = [XO---Xj].

J

Case 2, n< j. If n = j-1, then by the induction hypothesis
{xxl...xj_l] is a polynomial of degree n-j+l1 = j-1-j+1 = 0,
that is, a constant, say [XXl...Xj] =c. Ifx= Xj’ then .
[xjxl...xj_l] = ¢, and by the Corollary, [Xl"'xj—lxj] = g,

[z ovax, 5] = [% .0.2, ]
ii:l So [xxl...xj] = L i=L L J

X - X,
N]

cC —C
=£ =% -9,
X - XK,

If n> j-1, then by the induction hypothesis the (j-1)th order
differences are 0 and, as above with ¢ = 0, [XX1'°'Xj] = (.
We know that for any finite field GF(k% fk"#-pn5 dach function

" E(k)~ E(k) may be represented by a polynomial over GF(k) of

degree less than or equal to k-1. We know that for each polynomial




Qf degree n the nt+l order differences and all higher order
differences are 0. Hence, we know that for the polynomial
representation of each function F, the k order differences are
0. (Differences of order higher than k are not defined.)

We can now prove the main result:

Theorem 2 (Newton's Interpolation Formula with Divided
Differences): Let p be a prime, n a natural
number, and k=pn. If GF(k) is a finite field
of k elements and. if F: E(k)+ E(k) is a function,

and if Xy X e Xy is a permutation of the

2,

elements of GF(k), then F is given by the polynomial:

k=
F(x) = F(Xl) + i=l(x - xl)(x - xz)...(x - Xi)[XlX2°"Xi+l]

Proof: Reversing the order of the terms on the right side of

Definition 3, we obtain:

- . [XIXQ"'Xk} . [XXl"'Xk—l]
1.-Ok - =

TR TR
L S R T L e RO, WY
[Xxl...xk_l] = - — + —
k-1 k-1
) [XlXZ"'Xk—Z] [Xxl---xk_3]
[Xxl...xk_z] = - T + —
) R )
[x;%,] [xx,]
[XXlXZ] = X - x2 X - Xl
F(x) F(x)
[X-Xl] - =



Note that in each line except the last the numerator
of the second term on the right is the left side of
the succeeding line. Repeated substitutions yield:
L. ] = _[XlXZ"'Xk} _ [y %y ]
1%2° % X =X (x - Xk)(x - Xk—l)

) [X1X2'°'Xk—2]
(x - x) (x- _1r (X -x )

[xlxz}

{(x - Xk)°"(X - Xz)

F(Xl)
(x -~ xk)...(x - Xl)

F(x)

(x - Xk) ceo(x - Xl)
This may be rewritten:
F(x) = F(x) + (xx)) [x;x,] + Gemxp) (x=xy) [xy%,x,]
+ ...
) o) e (o) [y ]

+'(xrxl)(xvx2)f..(x—xk) [XXlXZ"'Xk]
Inspecting the last term, we note that the product
(x—xl)(x-xz)...(x—xk) is a permutation of the product

Zk(x) of Definition 1. Zk(x) = 0 for all x in GF(k).
Further, [xxl ...xk] is a k order difference of F,
a polynomial of degree at most k-1. Hence [XXl...xk]

is 0, that is, the last term is 0; the theorem is true.




Example l:- Let k=5 and let F and its differences be given

in the table;

x F(x)
0 1
2
1 3 1
4 0
2 2 1 0
1 0
3 3 1
3
4 1

Then F(x) = 1 + 2x + x(x-1) =1+ 2x + x(xt4) =1 + x + x2

Example 2:- Let k=53 and let V3 and its differences be given

in the table:

x V(%)
0 0
0
1 0 0
c 1
2 0 0 4
1 2
3 1 4
4
4 0

Then VB(X) x(x-1) (x-2)} + 4x(x-1) (x=2) (x~3)

= 4X4 + 2X3 + x2 + 3x

Example 3:- The same as Example 2, but permute the order of

the values of x.




i
L]
(93]
P
5
o

0 0
0
2 0 0
0 0
4 0 0 4
0 1
1 0 2
3
3 L

bx(x-2) (x~4) (x-1) = G (xtl) (x+3) (x+4)

Then V3(X)

= 4x4 + 2x3 + x2 + 3x.

Example 4:- Let k = 4 and let Vz(x) and its differences be

given in the table:

X v, (=)
0 0
0
1 0 1
2 1
2 1 2
1
3 0

Then Vz(x) = x(x~1) + x(x~-1)(x-2) x(x+tl) + x(xtl) (x+2)

X)) (14+xt+2)

x(xtl) (x+3)

X3 + 2X2 + 3x




IV.

Functions of Two Variables

The notation of Definitions 2 and 3 does not lend itself to
generalization to the case of a function of more than one variable.
We introduce here a notatiom closer to that which has developed for

the differential calculus.
2 )
Let F: E“(k}=* E(k) and let Xgs Xps cees X g and Yoo Yis vres

Vi1 be two (not necessarily distinct) permutations of E(k).

Definition 4:-

y - F(x

yi i41° Yi)
X, — X.

i i+l

F(Xi,

i

1.
DXE(Xi’ Yj)

F(Xi’ Yj) - F(Xia yj"'l)

Yy 7 V4

I

i,
DyF(Xi ’ YJ)

p-1 _ Pl
DX F(Xi, Yj) DX F(Xi'l‘l’ yj_)

X, = X,

i it+p

P

p-1 _ppl

73 7 Vit

fl

D
DYF(Xi 3 Yj)
By analogy, we have in the one variable case:
DlF(x ) = [x.x 1, and
x i 174+

p =
DXF(Xi) [Xixi+1"'xi+p]'

By analogy to the differential calculus, one may prove that

P q _ +dnP X
DnyF(Xi’ yj) DnyF(Xi’ yj) and alsoc develop formulae evocative of

the sum, product, and quotient formulae of the differential calculus.
Finally, we may reformulate Newton's Theorem in terms of a

function of two variables:




Theorem 3:- Let p be a prime, n a natural number, and let k=pn.

If GF(k) is a finite field of k elements and

if F: Ez(k)%'E(k) is a function, and if X 3Ky, eees

X and Y12¥ps «evs ¥, are two permutations of E(k),

then F is given by the polynomial:

F(x,y) = F(x ) +

1271

k=1 _i
z DXF(Xl,yl)(X—Xl)...(x—xi) +

i=1

k=l
i .
=1 DYF(X]_’YI) (=)o (y-y;) +

k=1 _i_j
i,jZilDXDyF(Xl 5¥) () (x—xi) (y*yl) ceo(y-y.).

Multiplication of the terms yields the form of (3), namely:

kE; i3
FGy) = % of @, 1xy)
3



For a function of n variables, say 215 Zy» RETEA one. defines-

. . . . . i i i
n difference operators, Dz 5 Dz s eee DZ « The general case of Newton's
1 2 n

Formula consists of s constant followed ‘by n summations, each involving
one variable and its associated difference operator, followed by n{n-1)/2
double summations each involving two variables and their assoclated
difference operators, and continuing to the n-fold summation involving

all n variables and the n associated difference operators.

The organization on paper of difference tables is not as easy in
the two variable situation, but the tables may be conveniently imple-
mented in a high level computer language with the capacity for defining
recursive functionsf*fin order to be reasonably efficient one needs to
save the values of differences as they are computed.

Each of five functions was defined by a polynomial over GF(9)

and over GF(16). The last function is defined by:

}fl, if = vy;
Order (x,y) =€ 0, if x = y;

11, if x> y.

*
The Appendix to this paper contains the source text of PL/I procedures
which demonstrate this fact.




(Here, as usual, the high integers are taken to be negative.) The
table below indicated the number of terms in each polynomial definition.
The columns labelled UE are the number of terms in the polynomial in
its unexpanded form, that is, in the form given by Theorem 3; the
columns marked E are the number of terms in the polynomial in the
form (3). The reader should note that a polynomial over GF(9) might
have 81 terms while a polynomial over GF(16) might have 256 terms.

Tn the expanded form (3) the representation of the function is
unique. In the form given in Theorem 3, the representation depends

upon the particular permutation of the elements of E(k) chosen for

Rys enes X and yl, cors Vo
Table
Function GF(9) GF(16)

UE E UE E
xty (mod k) ‘ 17 18 124 124
x*y (mod k) 17 25 129 174
xty (mod k-1) 42 69 134 233
x*y (mod k-1) 50 48 161 206

Order (x,y) 57 55 184 163




Comparison of the Methods

Faced with two different methods for computing the coefficients
of the polynomial expansion of a function, it is reasonable to wonder
v
whether there is a clear preference between the two from the point of
view of the amount of computation inveolved. We consider here the case
of a function F(x) of one variable.
The method of Benjauthrit and Reed (hereinafter called the "B-R

method") leads directly to the form Zf(i)xl, while Newton's method

arrives there via the expansion of Zbi(x—xl)(x—xz)...(x—xi)ﬁ

In the case of the B-R method, for the calculation of each f£(i)

one needs the set {Yl|'Y¢O, veGF(k)}. For each v# 1 the development

3

of the set {Yz, Yy ey Yk_l} requires k~2 multiplications and so the

ufaevelopment of the whole table of powers requires (k—2)2 operations.
l Armed with such a table of powers each coefficient £(i) is the sum
of'(k;l) terms, each term has two operations: a subtraction and a
division, and there are (k-1) such terms. Thus the B-R method requires
ék—2)2 + (k-1) (2(k-1) 4+ k-2) operations, that is, 4k2 - 11k + 8

- operations.

In the case of Newton's method, one first develops the difference

table. The table contains k(k-1)/2 entries, each of which involves

three operations. This form, requiring 3k(k~1)/2 operations is the
form in which one would probably choose to implement a circuit,
rather than modifying it to obtain the normal form. Should gne |

wish the normal form, one would expand the polynomial:



b0 +

bl(x—xl) +
. +
bk_l(x—xl)(x—xz)...(x-xk_l).
Obtaining the product (x—xl)(x—xz) = (x2~ (xl+x2)x + xlxz), requires

two opefations. Multiplication of that product by (x—X3) requires four

operations, and in general, development of the (i+1)th row from the ith

row requires 2i operations. Thus the expansion of the above polynomial

requires 2 + 4 + ... + 2(k-2) = (k-1)(k-2) operations. The ith row

then has the form: bi(xl + ci_lxl-l + ...+ c x + c&. This row

expansion requires i operations, and therefore the expansion of the
whole polynomial requires L+ 24+ ...+ (k-1) = k(k-1)/2 operations.
This results in the form:

dO0 +

dig ¥ 4y +

2

d + d2 x +

20 x+d

1 22

dempyot dpogyr® ¥ oer t i 1y (k_l)xk_l
Summation of these columns, to obtain the final coefficients, requires
(k=1) + (k-2) + ... + 2 4+ 1 = k(k-1)/2 operations. Thus the expansion
of the polynomial requires (k-1)(k-2) + k(k-1) = Z(k—l)2 operations,
and so Newton's method requires 3k(k-1)/2 + 2(k—l)2 = (7k2 - 11k + 4)/2

operations.



Thus, for the B-R method, the coefficient of the k2 term is 4,
whereas for Newton's method the coefficient of the k2 term is 7/2 if
one normalizes the polynomial and 3/2 1f one does not. This gives an
advantage to Newton's method.

There is a practical situation in which Newton's method has a
marked advantage. It is the situation in which one wishes to
represent as a polynomial a function which is undefined at certain
points, that is, for which ar certain points we have "don't care!.

In the B-R method one could only assign some arbitrary value at these
points and calculate the coefficients. In the case of Newton's method
one merely uses the points at which the function is defined to develop
a partial difference table, assumes that all further differences are
zero, and produces a polynomial of minimal degree which fits the

function at the defined points.



Suppose that S is the q-subset of E(k) upon which & partial
function FE(k) 4 E(k) is defined, Let Xyo Xyy vy Xq be the points
of § and let Xq+1, rees X be the points of E(k) - S, Assume all

undefined differences to be 0. By this ¥ is represented as a poly-

nomial of degree q-1 over E(k).

Example: Suppose that over GF(7),

1, if x =1, 3;
F(x) =
6, if x

il
=~
L

Elsewhere F (x) is undefined. The rable of differences is:

x F(x) [ab] [abc] [abed]
1 1

0/2=0
3 1 5/3=4

5/1=5 4/4=]
4 6 2/2=1

0/1=0
5 6

The function is defined as Fix) =1 + 4(x-1) (x-3) + (x=1) (x-3) (x-4)
=1+ 4(x=6) (x+4) + (x+6) (x+4) (x+3).

This technique can be coupled with a decomﬁosition technique
for functions of several variables. Specifically, if 8§ « Ez(k)
and ¥ is a partial function on E(k), F: § 4 E(k), then let SX =

x: (x,y)e 51  and let X X s Xq be some permutation of

23

the points of SX. Define the q partial functions
I =F .
giﬁy) (%, 57)

Each of these is a partial function of y defined upon some subset
of E(k). By the technique sketched above, each g, may be expressed

as a polynomial in y. These form the difference table:



x F(x) [ ab] ['abel

X g. (y)
! 1 [gngJ
Egzg31
X, g3(y)

By Theorem Two we have:

F(x,y) = gl(y) + Eglgz](x—xl) + [glgzg3](x—xl)(x-xz) + ...

fglgz"'qu; (X“Xl)(x-xz)--.(x—x 1).

q—
Example: Suppose that over GF(4) max is given by the usual

table:

2 2 2 2 3

31 3 3 3 3

and suppose one wishes to make use of the symmetry in the table
to simplify the resulting polynomial. By substituting the simple

symmetric functions z = xty and v = xy, one obtains the table:

2 2 3

3 3 2
wherein the blank entries are not defined.
Except for the zero row and the zero column, each row and
each column can be represented as a linear function, since each

containsg only two entries, The zero column is clearly also linear.



Representing reach column as a polynomial in z, we have the

difference table:

W 7(w) [ab] [abel © “Eabed]
0 Z

3z+1
1 2z+] (3z4+2)/2 = 2z+1

2/3=3 z/3=2z
2 2z+3 (24+2)/2 = 3241

z+1
3 3z+2

1l

Hence, §(z,w) z + (3z+Dw + (2z+Dw(wtl) + 2zw (w+1) (wt2)

2zw(w2+2w+l) + w2 + z.

Example: Suppose that &ver GF(3) we have the function of four

variables: F(x,v,z,w) = YyIEx=0; =z if x=1; = w if x = 2.

X F(x) [ab]] [abe]

0 v
z=y=z+2y

1 z (wtzty) /2
W—z=wt2z

2 W

and so, F(x,y,z,w) =y + x(2y+z) + 2x(x+2) (ytztw) .
Other decomposition techniques can be used in conjunction with

these divided difference methods,






X

Y:

a linear array containing a permutation of the elements of
the space being used.
a linear array containing a permutation of the elements of

the space being used.



Dx: procedure (order, X-ind, Y-ind) returns (fixed binary) recursive;
del{ order, X-ind, Y-ind) fixed binary;
If X~diff(order, X-ind, Y.ind) A= -1 ...
then return (X-diff(order, X-ind, Y-ind));
If order = I then do- v
X-diff (order, X-ind, Y-ind) =
Quot (DLff(F(X(X-ind), Y(¥Y-ind)),
S F(X(X-ind + 1), Y{(Y¥-ind))),
Diff(X(X-ind), X(Xzind)));
return(X-diff(order, X~ind, Y-ind));
end;
else X-diff(order, X-ind, Y-ind) =
Quot (Diff (Dx(order - 1, X~ind, Y-ind),
Dx(order - 1, X-ind + 1, Y-ind)),
Diff (X(X-ind), X(X-ind '+ order)));
return(X-diff(order, X-ind, Y-ind));
end ij

A procedure Dy to calculate differences with respect to v is

the exact amalog of the above procedure.

The procedure Dxy below calculates the mixed differences of

a function f(x'y). This procedure invokes both the procedures

Dx and Dy and it stores the differences in a table XY-diff.



Dxy! procedure (X-ord, Y-ord, X-ind, Y-ind)
returns (fixed binary) recursive;
del (X-ord, Y~-ord, X=-ind, Y-ind) fixed binary;
If XY¥~diff(X~ord, Y-ord, X-ind, Y-ind) "t = -1
&iX-ord =0 & Y-ord "i= 0
then return (XY.diff(X-ord, Y-ord, X-ind, Y-ind)):;

If Y-ord

0 then return (Dx(X-ord, X-ind, Y-ind)) ;

If X-~ord

fl

0 then return (Dy(Y-ord, X-ind, Y-ind)});
X¥-diff(X~ord, Y~ord, X-ind, Y-ind) =
Quot (D1£f (Dxy (X-ord, Y-ord - 1, X-ind, Y-ind),
Dxy(X-ord, Y-ord - 1, X-ind, Y-ind + 1)),
Diff (Y{Y~ind), Y(Y-ind + Y-ord}}):
return (XY-diff(X-ord, Y-ord, X-ind, Y-ind)) ;

end Dxy:
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