Technical Report CS75030-T

COMPUTABILITY THEORY

An Introduction for Students of Computer Science

by
Andy N.C. Kang

Department of Computer Science

College of Arts and Sciences
Virginia Polytechnic Institute & State University
Blacksburg, Virginia 24061

January 1976

This work is sub
©by Andy N.C. K

(\ {

ject to copyright. All rights are reserved,
ang, Department of Computer Science, V.P.I, & S.U,

CONTENTS

PREFACE

THE PROGRAM MACHINE
1.1 Program Machines and Programs

1.2 Functions Defined by Program Machines
1.3 Program Computable Functions

3.1 Partial Recursive Functions

3.2 GHdel Numbers for Programs

3.3 Universal Program Machines

3.4 Computable Functions are Partial Recursive
3.5 Complexity of Primitive Recursive Functions

THE THESIS OF CHURCH AND TURING

.1 Turing Machines

+2 Turing Computabie Functions

3 Program Computable Functions are Turing Computable
4 Church's Thesig '
5 Two Useful Theorems

SOME UNSOLVABLE PROBLEMS
5.1 Halting Problem

5.2 Uniform Halting Problem
5.3 Further Examples

5.4 Remarks

6
6.5 Creative Sets
6.6 Other Recursively Enumerable Sets

Students, The main Prerequisite is the ability to follow mathematica]

Proofs, Therefore, no formal background is needed €Xcept for 4 general

This book consists of gix chapters., 1p the fipst three chapterg

some basgj, Yesults in Computability theory are established through the
study of g simple Computer mode], Chapter 3 introdyceg this computer model,

the prograp machine, 1Ip Chapter 2, the class of computabie functionsg defined

is established, 1p Chapter 4, the characterization of effegtive computability
via Turing machines ig Introduced, A discussion is also included there on
an informal appreach to verify, by Church'g Thesis, Tecursivenegs without
going through tedioug details of tonstructing formal notibns of effective

computability. In Chapter 5, some unsolvable pProblems are bPresented which

« In Chapter

- Some properties

Chapter 1

THE PROGRAM MACHINE

1.1 Program Machines and Programs

| One of the major objectives of this book is to introduce the concept
of effective Procedure and to develop the reader an understanding of thé
class of computable functionsg, Motivated by the concept of computer
Programming, we ghall formalize the notion of effective procedure through
a simple model of a digital computer, the program machine. This model isg
simple enough to bhe treated mathematically, yet 1t preserves most features
that a digital computer has,

The major difference between a Program machine and a digital computer
is on their Mmemory structures., A digital computer has a large number of
addressable finite-sized memory units. Rather, 4 pProgram machine has
only a small number of addressable infinite-sized emory units, called
Tegisters. Infinite-sized register means that each register ig big enough
to hold any finite nonnegative.integer whatsoever., In this book, we denote
these registers by small letters (possibly with subscripts) sﬁch as X1»

Xy Yi» %, etc. The Program machine also provides 3 processing unit, which

on these registers. The operations carried out by a program machine are
determined by g Program, which is a finite Sequence of instructions built
in the program machine. A number ig associated with each instruction in
this sequence. TIn general, each instruction specifies (l) an operation,
(2) one or two registers and (3) the instruction number of one or two other
instructions. We now discuss the initial set of four instructions:

(a) Zero: xi@ 0. Set the contents of registex X, to zero.
Go on to the next instruction in the sequence.

(b) Successor: X, * xi+1. Add 1 to the contents of register X, .
Go on to the next Instruction in tha

sequence.
(c) Jump on not equal: If the contents of x, and x differ, jump to
if x, # x, then n. the nth instruction In the éequence. If

they agree, go on to the next instruction
in the sequence. The contents of X, and

xj remain unchanged.

(d) Exit: exit Stop the machine,

If an instruction "if X5 # xj then n" occurs in a program, n must be
less than the total number of instructions of the program. In other words,
the next instruction referred to in the current instruction must appear
somewhere in the sequence. Note that g program machine is different from
a stored-program computer for the program machine is capable of performing
only one job specified by its built-in Program. Since the functions of
& program machine arecompletely specified by its Program, we shall use

the term “program machine" and "program" interchangeably. Now we describe

a simple program machine in Fig. 1. The instruction number and the

instruction are separated by a colon ":",
Instruction

number Instruction
1: Xy * 0
2: x& <~ 0
3: x4 < x4+1
4: x, « 0 :
5: i% X, # x, then 7

...__.2 1-——....

6: exit
7: X, < x_ +1
8: 3£ Xy % X, then 5

Fig. 1.
The machine begins with instruction number 1. If x2 initially contains
a number 8,5 the machine will eventually stop with the same number a, in S
To see this, we trace the operation, starting with 2 in X, and any numbers

in X5 x3, x,:

Instruction number Effect

1 Set X, to 0

2 Set x, to 0

3 Increase X, by 1

4 Set X; to 0

5 Contents of X and
80 go to 7

7 increase X by 1

8 Contents of xg and
S0 go to 5

5 Cmmmmsofxzami
80 go to 7

7 increase X by 1

8 Contents of Xy and
80 go to 5

5 Contents of x, and
80 go to 6

6 halt

X, differ

x4 differ

Xl differ

X, differ

X, agree

We will use a new instruction "goto n" for this purpose

3

Register contents

% |x, X X,
- 2 0 -
- 2 0 0
-~ 2 0 1
0 2 0 1
2 0 1
2 0
1 2 0 1
1 2 0 1
2 0 1
2 1.2 0 1
2 2 0 1

s With the understanding

that it can be replaced by using only the original set of instruetions on

two extra registers. With this new instruetion, the above program looks like:

Instruction
——sLiucclicn
number

.

s 4s sa

LIE S U N RN

Fig. 2,

Instruction
=—=truction

X} <0
if =, ¢ X, then 4

exit

X, € x 41

goto 2

1

the contents of X, unchanged, 71t ig convenient to define gz new instruction
of this type. Let us denote this instruction by "lee xz". Again, we
understand that the "copy" instruction cap always be implemented by using

only the instructiong belonging to the original set.

is defined as tq decrease the Ccontents of x, by one only when X; contains
a4 positive number; in cage %; contained 0, jtg content remainsg to be 0,
The following Program machine hag three registers Xy, Xy, X3+ The

Program is shown ip Fig. 3 below.

Instruction
number Instruction
1l: xi~+ 0
2: x3-+ 0
3: X, * x +1
4 i§ X ; X, then 8
5. —. 2 11—
: exit
6: X+ x 41
7: xl-+ x1+l
8: Eg_x ; x3 then 6
9: exit
Fig. 3.

also contain 0. On the other hand, if X, initially contains a, # 0,
the machine will eventually halt ar instruction number 9 angd X will

contain 8 - 1. That is, thig Program performs the instruction X * x, T 1.

to flowcharts, and vice versa. The flowchart for the program in Fig. 3

is shown in Fig. 4.

Startisx. 0 X.«0 X3€Xat]of x_#x Xo#X X1eX,+] XoaeXot]
3 277 Ves 2773 vos 1 1 373
no no
ex1t X1t

Programs interchangeably.

1.2 Functiong defined by Program machineg

While it may be intuitively clear what the Computation ig carried oyt

by a Program machine, ywe 8till need 4 formal definition, The easiest

consider the actions of the instruction as being taken at discrete Step 1,

2, 3, ... etc. At step 1 the contents of the registers X715 wuusy X specified
in the Program machine are denoted by a k-tuple 31-=<a”, sees A5 >

For instancé, if EE;_IEEE;EEEESH to be ekgéuted at step i;isay, is

fgj “ §j+l", and itg associated instruction number ig Ai, then at step

ifl the contents of these k registers become §i+l =< a5 ai?, ey

The entire record of the computation ig therefore made explicit if we
giveﬁthe sequence of these pairsg <Al, 21 >, < Az, 8y ?s ... Thisg concept
i§ used tg identify the function computed by g Program machipe,
Definition

—=idnition

Let P be g Program in which only X1 Xgs seu, ¥, occur, A coemputation

according to P is a finite or infinitive sequence of pairs-<ll, §1>,
< 12, g2>, ««» such that
=< > i i
(1) Al is 1 agd & a113,, s alK is the contents of the registers
xl, Ko wsoe xk initially.' o
(2) Ai+1 is the instruction number and 2447 18 the k-tuple of the
contents of xl, x2, oy xk obtained after the instruction with number
A* is performed on the k~tuple of a,.
1 —i
Definition
= tndiion
A computation terminates if it contains a pair<<hs, §S> where the
instruction with number AS is an exit instruction in P. In this case,
we call 2, the output of the computation for the input a;.
Under the above notion, a program P defines a partial function ¢
from Nk into Nk as follows: Given a k-tuple a5, if the computation according
to P terminates at g finite step, 8, the function value is then defined
as és- On the other hand, if the computation does notr terminate, the

function value ig then said to be undefined. The partial function &

is said to be the function defined by P,

As an example, a computation according to the program in Fig. 3 is,

<1,<5, 3, 2>> input X = 5, X, = 3, Xy = 2
<25<0, 3, 2>> instruction 1 is executed
<350, 3, 0>> instruction 2 is executed
<420, 3, 1>> instruction 3 is executed
<8,<0, 3, 1>> xl and X, differ

<6,<0, 3, 1>> X, and Xy differ

<7<1, 3, 1>> instruction 6 is executed
<8,<1, 3, 25> instruction 7 is executed
<6,<1, 3, 2>> X, and X, differ

<7,<2, 3, 2> instruction 6 ig executed
<8,<2, 3, 3>> instruction 7 ig exécuted
<9, <2,13, 3>> _ X, and x3 agree

7

We found instruction number 9 is an exit instruction, the computation
therefore terminates, The output is< 2,3,3> for the input < 5,3,2>, We
consider now an input to this program, say, < al,az,a3>. After termination

of the computation, the registers shall have final output, say,<b ,b2,b3>

®: <b., b,, b.> = (<a,,a ,a >), or can be represented by three functlons
1 2 3 1’72 3 ahd @CQF)Q s}=

¢l’¢2’¢3’ one for each register: ¢1 { al,az, a) (al,az, a3)’
In the present example, ¢l,¢2, and ¢3 are total functions. In fact, the

functions defined by this Program are:

b1 (35 aghay) =gy 1
¢2 (al’ 3.2,3.3) = az
¢3 (31332933) = 82 if 5.2 ?é 0,

1 if a, = 0.

1.3 Program-computable functions

The registers that occur in a program play quite different roles. Most
often we are only interested in knowing the contents of one of the registers,
This register is usually called the output register. In the example of
Section 1.2, X is the output register. Another type of registew whose
initial value really influenceg the final outcome of the computation, such
as X, in that example, are called the input registers. The third type
of registers whoge initial value does not matter for the output but are
used for intermediate storage are called auxiliary registers. Xg is such
a register in thar example.

We shall fix our attention on functions that can be defined by program
machines. The definition below includegpartial functions, that is, functions

which are not defined for all arguments.

Definition
== hition

(in short, computable) if there exists a program P with m input registerg
XjsXys o, Xne T auxiliary registers Y13F9s ey Yy {n > 0), and an output
register z such that the following conditions are satisfied:

(1) if ¢vﬁal,,... am) is defined, then the computation according to P
terminateg on input <a1,...,am, 0,...0, 0> with output < bl""’bm’
dl’""’dn’ ¢> where ¢ = ¢ (al,...,am).

(2) if ¢L/jal,..., am) is undefined thep the computation according to
P on input < al,...,am, 0,...,0, 0> does Rot terminate.

In case a computable function ig defined on all arguments, we say it

is total computable. Note that the output register z could be any one of the
input registers. In this case, the input and ocutput of the computation
according to P are both (mtn)-tuples rather then (m+ﬁ+l)-tuples.

As an example, consider the square root function defined below:

Jx if x is a square,
$(x) =
undefined otherwige.
¢ is computable Since the Pregram shown in Figqre 5 computesg ¢. In
this Program, x is an input register, y is an auxiliary register, and z ig
the output register., An extensive set of instructions (e.g. y€ x - x, 8oto 2)
is used 1in this exampie, Nevertheless, these instructiong can always be

replaced by a Sequence of instructions from the original instruction set

with some extra auxiliary registers.

Instruction
—=truction
number Instruction
1: z <+ 0
2: yez - g
3: if v # x then 5
4 exit
5: z+ z+1
6: goto 2
Figure 5

If x is a Square, this program will eventually terminate at instruction
number 4 and yield an output in register z such that z + 2z = x. That is,
¢$(x) = JX. On the other hand, if x ig not a square, then thig program will
never terminate. In this cage $(x) is undefined.

Take another example, in which a partial function ¢ is defined in
terms of two other partial functiops ¢ and ¢' with disjoint domain i.e.,
domain ¢ domain ' ig empty,

| ¢(xl,x2,...,xm) if ¢(xl,x2,...xm) is defined,
w(xl,xz,...xm) = ¢'(xl,x2,...xm) if ¢'(xl,x2,...xm) is defined,

undefined otherwise.

If ¢ and ¢' are computable and are computed by programs P and p'
respectively, then ¢ is also computable, To gee this, we shall design a
Program which computes both ¢ and ¢°' on a timesharing basis until one
halts. This can be achieved by combining the programs P and P' as a
coroutine. To illustrate this idea, let us combine the following two

Programs (shown in Figure 6 as in flowchart form) together as a coroutine,

10

exit

Figure 6

In these flowcharts, u's and 8's are irrelevant and they can be arbitrary.
N> By, n,, né, ni, né are the instruction numbers associated with the
corresponding boxes in these flowcharts. The combining flowchart is shown
in Figure 7 in which two variables w and w' not appearing in P and P' are
provided to "remember" the next instruction to be executed when the
computation is resumed. Notice that every loop of P and P! is broken to
route the control to the other program so that both P and P get executed
on a timesharing basis. Sipce P and P' are domain disjoint, if one

terminates, the output produced is then the function value for v.

S ‘__ '.j‘.-m =

Figure 7

11

12

Exercise

1.

This problem relates another basic set of instructions for program

machines.

a. Consider a new instruction "decrement or Jump':
if x, = 0 then n else x, « x. - 1,
— 1 —_— =71 i

meaning that if content of x, is Zero, jump to the nth instruction,
otherwise decrease it by 1 and g0 to the next instruction. Show that
"Jump on not equal" instruction can be replaced by this instruction

together with "zero" and "successor" instructions.
b. Consider a new instruction "decrement and Jump":

if x, # 0 then x, + x, - 1 and n

— 71 - i —_—

meaning that if content of x. is nonzero, decrease it by 1 and go

to nth instruction, otherwise go to the next instruction. Show that
both "zero" and "jump on not equal” instructions can be replaced by

this instruction together with the "successor" instruction.

‘Show the following functions are computable:

X 3
a. . £(0) = 0, f(x) = x~' M} X, e.g. £(3) = 33 = 327.

23 X
b £(x,0) = x, £0o,y) = 277§y, e.g £(x,2) = 2,

c. £(0) = 2, £(1) = 3, £(x) = (x + 1)st prime number.

Define a function recursively in terms of a total function g.

£(x,0) = g(x), flx,y+1) = £(£(x,y),y).
If g is computable, show f is also computable.
Let {¢_(x.,...,x) | i=1,...,n} be a set of partial functions with
mutualiy éisjoin% domain, i.e. for each m-tuple (xl,...,xm), at most
one of ¢i(xl,...,xm) ig defined,
Define a partial function ¢ as follows

¢1(xl,...,xm) if ¢l(xl,...,xm) is defined,
¢(xl,...,xm) = én(xl,...,xm) if ¢n(xl,...,xm)_is defined,

undefined otherwise,

13

If {¢ (x ,...,xm), i=1,...,n} are computable, show y s alse

computable,

Reference
—~=Lelence

Chapter 2

PRIMITIVE RECURSIVE FUNCTIONS AND LOOP PROGRAMS

One question we would like to ask is what are the functions that
can be computed by program machines. In other words, as far as computing
functions is concerned what is the capability of a computer. We answer
this question for a limited class of programs, the loop programs, in this
.chapter. The question in general will be answered in suﬁsequent chapters.
The functions computed by loop programs are characterized by a class of
functions called primitive recursive functions which we are going to

define next.

2.1 Primitivg-Recursive Functions

In this section, we define a class of functions by certain kinds of
recurgive definition. A recursive definition for a function is a
definition for which the values of the function for given argumeﬁts are
somehow related to values of the same function for "simpler" arguments
or to values of other "simpler" functions. For instance, the function
defined by

£(0)=1,
F(xtl)=(x+1) " "£{x),

gives the factorial function.

The primitive recursive functions are an example of a class of
functions that can be obtained by such a characterization,
Definition

(1) The following functions are called initial functions.

(a) The zero function: Z(x)=0 for all x,
(b) The successor function: S(x)=x+1 for all x,

(c) The identity function: U?(xl,...,xm)Exi for all e for all
KysornsX o

14

15

(2) The following are rules for obtaining new functions from given
functions.

(d) Composition
f(xl,.,.,Xm)=g(hl(xl,...,xm),...,hn(xl,...,xm))
f 1s said to be obtained by composition from the functions
g(yl"°"yn)’ h(xl,...,xm),...,hn(xl,...,Xm).
(e) Recursion
f(xl,...,xm,O) = g(xl,...,xm),
f(xl,...,xm,y+l) = h(x ,...,xm,y,f(xl,...,xm,y))
f is said to be obtained by recursion from g and h.
Here, we allow m=0, in which case we have
f(0) = k (where k is a fixed non-negative integer)
f(y+1) = hiy,£(y)).
Definition

The class of primitive recursive functions is the smallest class

of functions that contains the initial functions and 1s closed under
composition and recursion.

That is, a function f ig primitive recursive 1f and only if there
is a finite sequence of functions, fo,fl,.;.,fk such fhat fk=f’ and,
for 0 < i < k, either fi is an initial function, of fi comes from
preceding functions in the sequence by an application of composition
or recursion.

We now collect a list of useful functions and show that they are
primitive recursife.

(1) Addition function:

X0 = x
X+ (y+l) = S(x+y)

18

The definition does not fall 4n with the definition of a primitive
recursive function, To be Precise, the definition should be

f+(x,0) = 3x+0 = Ui(x)

H

£, (x,y41) X+H(y+l) = h (x,y,f+(x,y)),

where h(x,y,z) S(Ug(x,y,z)) is defined by composition.
In the sequel, to.identify a primitive recursive function we ghall not
Present its definition in such gz formal way, but rather, we only indicate
the type of definition employed to define the function in terms of
Previous known primitive recursive functions,
(2) Multiplication, by recursion in terms of addition function
x°0=9
X (y+1) = X y+x
(3) Power, by recursion in terms of multiplicatrion function,
X =1 _
x(y+l) = x . X

(4) Predecessor, i.e,

x-1 1f x>1,
P(x) = x21 =

0 Otherwise,

P(0) = 0
P(y+l) = ¢
(5) Modified difference, 1i,e.
X-y 1f x>y,
X-l.y -—
0 Otherwise,

by recursion In terms of Predessor function:

x+(y+1) = P(xly)
(6) Distance,by composision:

[x-y| = (x2y) + (y+x)

17

The following functions will be technically ugeful.

Oif x =0
(7} sg(x) =
lif x40
by recursion: sg(0) = ¢
sg(y+l) = 1

(8) rm(x,y), remainder upon division of y by x,

by recursion: rm(x,0) = 0
m(x, y+1) = S(rm(x,y) < sg({x%s (rn(x,y)) |))
(9) Divisor function, i.e.
=} if x is a divisor of Vs
D(x,y) _{O otherwise,
by composition: D(x,y) =1 = sg{rm(x,y))

(10) Bounded summation on primitive recursive function f, 1i.e.

' z-1 0 if z = 0,
g(x,z) = Y fli,x) = ‘
1=0 £(0,x) + £(1,x) +oo o+ (z-1,%) if Z > 0,

by recursion: g(x,0)

= 0
g({x,z+1) =

£(x,2) + g(x,z2)

(11) Bounded multiplication on primitive recursive funetion f, 1.e.

z-1 1 if z = 0,
g(x,z) = I f(i,X) =
i=0 f(O,x)-f(l,x)...f(z-l,x) if z > 0,
by recursion: g(x,0) =1
g(x,z+1) = f(x,2)-g(x,z)

Notice that a functioen is not Decessarily primitive recursive even
if it can be defined by some recurrence equation, For example, the
Ackermann's function:

a(0,y) = y+1

a{x+1,0) = a(x,1)

a(xtl,y+1) = a(x,a(x+l,y)),
is defined recursively but it is not primitive recursive. This function
does give a unique value for each pair of arguments x and ¥y and appears
to be Intuitively computable. This provides an intuitive evidence thatr

the class of primitive recursive functions does not include all computable

functions,

*

i

18
We shall now show that primitive recursive functions are program
computable. The initial functions are: for the zero function is computed
by the "zero" instruction; the successor function is computed by the
"successor” instruction; and the identity function is computed by the
In gereral '
"copy™" instruction.ﬁfh)show a function is computable, we need to obtain
a program that computes it. However, it is not necessary that the
program be completely given. In fact, if a function is defined in terms
of functions that have been recognized by a set of programs as computable,
all we need then is to obtain a new program by a proper combination of
the set of programs following the definition of the function in question.
For example, consider a function f defined by the composition from
g, hl’"'°hn:
f(xl,...,xm) = g(hl(x,f.f,xm),...,hn(xl,...xm)),
Let us assume g, Hl,...,hn are computable by a set of programs (represented
by hexagonal boxes in Fig. 1 below). Furthermore, we may assume for
each of these programs the contents of the input registers remain
unchanged after the program terminates., Then the following program
obviously computes the function f (z is the ourput register):

wl+hl (Xl’ cee ,Xm}-'-)é:%; (il, ves ’XM+g(ul’ con ,unMexit,

Fig. 1.

As another example, we consider a function f defined in terms of
recursion from g and h: |
f(xl,...,xm,O) = g(xl,.,.,xm),
f(xl,...,xm,y+1) = h(xl,...,xm,y,f(xl,...,xm,y)),
Again, we assume g and h are known computable functions and their programs
leave the contents of their input registers unchanged after termination.

To compute f(xl,...,xm,y) for y > 0, we need first run the program g on

e
S,

U

19
|
input (xl,...,xm) and obtain the output value. Notice that this value is

i

f(xl,...,Xﬁ,O) and is used to define f(xl,...,xm,l), S0 we ke%p it in a
register =z, Now, to compute f(xl,...,xm,l), we need only ruﬁ;the Program
h for input (xl,...,xm,O,z), siﬁce Z containg f(xl,...,xm,o). The output
can also be kept in register z, since the previous contents of register z
is not required for f(xl,...,xm,2),‘we may use the same register to store
f(xl,..,,xm,l). Iterate thisg Process another y-1 times, we shall obtain
f(xl,.,.,xm,y).

The program computes f {ig then clear (z is the output register), it

is shown in Fig. 2. below:

start THZ g(xl,...,k;s

6
< h(xl""’xﬁ’W:;§>3

We have thus proved:
Theorem I. Primitive recursive functions are Program compuﬁable.
—Lorem [

2,2 Coding Function and Simultaneous Recursion

In this section, we introduce g Patticular coding from n-tuples of
integers to integers., Thig coding scheme ig reversible for that we can
decode a coded integer into the originél n-tuple. As shown in the
following figure, to compute an n-tuple function ¢ frem N» to Nn, instead
of performing a direct computation based on the definition of ¢, we may
code an n-~tuple input into a single integer, then rerform a computation
for this integer on g corresponding single~variable function ¢ from N to
N, finally decode the result back into an n-tuple value,

N emmﬁugwmwmmwgyNn
code decode
%%N

Fig, 3,

20

We now present our coding scheme. ILet P0=2, P1=3, P2=5"'°’Pi= the
(i+l)st prime number. In our coding scheme, we code an n—-tuple (xl,...,xn)
into a single number g(xl,...,xh), vhere

X X X X
= 1 ;2 3 n
glxpsvenx) =2 5 3%, 5 7. p 1)

This coding function is certainly one to one. On the other hand, we know

every positive integer y has a unique factorization into prime powers:

1 B

y o= PO P1Pk .
Let (y)i denote the exponent ai in this factorization. TIf y=1, (y)i is 0
for all 1. If y=0, we arbitrarily let (y)i=0 for all i. 1t is clear
that (y)i serves the purpose as our decoding function. That is,

80 s (95D _) = 5.

Notice that the coding function is by no means unique. Any computable
function g could serve the purpose as long as the following conditions are
satisfied:

(a) g is one to one,

(b) There is a unique procedure which determines whether any given

positive integer v is in the range of g, and, if y.is in the
range of g,

(c) There is a procedure to decode y into the n-tuple (xl,...,xn)

such that g(xl,...,xn)=y.

We now show that our coding function and decoding functions are
primitive recursive and thus computable. To see this, we need to introduce
some other primitive recursive functions:

(1) Define a function "Prime':

1 if x is a prime number,

Pr(x) =
0 otherwise.

21

To determine whether a positive integer x is a prime or not, we
simply count the number of divisors that x has. If the number of divisors
of x ig exactly two, then x ig a prime number. Otherwise, x is not a
prime number, Recall that the divisor function is:

1 if i is a divisor of X,
D{i,x) =

0 otherwise,

So, the number of divisors of x is then ?E? D(i+1,x).
i=0

Thus, we have

Pr(x)=(1 * sg(%é} D(i+1,x) = 2))'sg(x)-sg(lx~l[)
i=0

The last item sg(x)'sg([x—l]) inserted there is to make sure that Pr(0) = 0,
and Py (1) = 0. Pr(x) is defined in terms of composition and bounded
summation from primitive recursive functions and thus is primitive recurgive.
(2) Given a function f, we define a new funcfion g in terms of f

as follows:

The smallest integer j[j < z and £(3,%x)=1] if such j exists.

glx,z) =
zZ, ' . otherwise,

We shall use the notation

Bl < gy EG,%) = 1]
to represent such function, and we say g is defined from f by bounded

minimization (or bounded u-operator).

if f is a primitive recursive, we now show that g will also be

primitive recursive. For any X.and y, the functionm

¥y
I (sg(|f(1,%)-1])

i=0
is 1 if £(i,x) # 1 for all 0 212y, and 0 if f(i,x) = 1 for some

0<1=<y,

22
and £(i,x)#1 for ie],

Case 1: If there exists a Js» 3< 2z, such that £(,x) ;-;erhe above

function is 1 if 0< y< j-1, and the above function is 0 if i< y< =z
5o the following function
z-1 ¥y
C 1 (sg (JEG,x -11)))
y=0 i=0
is j.
Case 2: If for all j, j < z, £(j,x) # 1. In this case, the function
z-1 v
Z (1 (sg(l£(i,0-1])))
y=0 i=0
s 1+1+ ... +1= 4,
e
z
We have thus shown that
z-1 ¥y .
Mg 2y BG@® =11 =3 T sg(let,i - 1)),
J y=0 i=0

Now we are able to prove P ., the (i+l)st prime number is a primitive

13
recursive function. Consider the number

Pi! + 1= 1+2:3:4--. Pi + 1.
This number is either a prime or is not g prime. If this number is not
a prime, then it has a prime factor which is greater than 1 but less than
itself. Since all the prime numbers PO’PI""’Pi are not a factor of
Pi! + 1. We deduce that there exists at least a prime number which is

greater than Pi but less than Pl! + 1. Now we can define the function Pi

in terms of recursion:

f

Fi T ¥ j(ngi.' +1y [#8G =2 - P (3) =1].

23

Here, we define PO=2’ and Pi+l is the first number J such that j is greater
than Pi (i.e. sg(iji) = 1) and § is a prime (i.e. Py(j) = 1),
Next, we like to define (x)i in terms of primitive recursive rules.
Remember (x). is defined to be the exponent of P, when x is factored into
In other words * .
its prime powers, /~we simply search for the largest j such that Pi is
a factor of x, or a 3 such that Pi is a factor of x and Pi+l is

not a factor of x. Se we get:

() = w J5<l@ = sg(rm(pi,X))) : sg(rm(Pi+l,x))}= 1]

This completes the proof of the assertion that our coding and decoding
functions are both primitive recufsive.

We now consider an example, in which a system of recursively defined
functions can be shown to be primitive recursive via the céding and
decoding scheme,

Example: Consider the following two functions defined by recurrence

equations.
§600) =2
2 f2(0) = a, '
fl(x+1) = fl(x)+f2(x)
fz(x+l) = fl(x) . fz(x)

It is clear that these two equations determine the function values

of both fl and f2. But it is not quite clear that they are primitive

recursive.
Let us define a new function I as follows:

a a
£(0) = 2 1.3 2

£(xr1) = 2EE) g+ (F0D N 5(£(x))g* (£(x));

We can see that f is a primitive recursive for it is defined by recursion

from known primitive tecursive functions.

24

Claim that for x,fl(x) = (g(x))o, and fz(x) = (ﬁ(x))l.' Wé'prove this

claim by induction on x:
a a
1 2
€O, = 390 = a
1 2

@), =t 3

[
]

Base: fl(O) (2

1

It

)y =&

Induction step: Assume fl(x) = (g(x))o and fz(x) = (jﬁx))l

£,(0)

il
]

D = GGG = (E@)gHE@), = £ () + £,(0),

(Q(X))O . (ECX))l = £ () - fQ(X).

fl
]

and £, (xt1) = (£(x+1)) 1

It thus follows that both fl and f2 are primitive recursive.

This example provides a new rule for obtaining functions from given

functions.
BDefinition., ILet gl,...,gm be functions of m variables; and hl,...,hn be
functions of (m+l)+n variables. The functions fl""’fn of m+l variables

are said to be defined by simultaneous recursion from gl,gz,...,gm,hl,hz,...,

hn’ if for ail xl,...,x

fj(xl,...,xm,O) = gj(xl,...,xm),

w1

f.(x
J(
for j = 1,2,...,n.

To see that the set of funetions fl,..

recursive if gi's and hi's are primitive recursive, we define a new

function f:

gl(xl,...,xm) gz(xl,...,xm) gn(xl,...,xm)
s P « a.. P
0 1 n-1

hl(xl,...,xm+l,(£(xl,...,X
0

ﬁ(xl,...,xm,O) =P

jjxl,...,xm,xm+l+l) =P

1,...,Xm,xm+l+1)= hj(xl,...,xm+l,fl(xl,...,xm+l),...,fn(xl,...,xm+l))_

.,fn defined above are primitive

o

25
So f is primitive recursive, Furthermore, we observe that each function

f;5 1 21 < n, can be obtained by

fi(xl,..., x)= (£(x

L, s ERREELSTDD

In other words, we have proved:
Theorem II. The set of functions defined by simultaneousrecursion from

primitive recursive functions are primitive recursive.

2.3 The Equivalence of Primitive Recursive and Loop Program Computable Functions

In this section, we define a class of somewhat limited programs,
called the loop program. We shall see that the class of functions
computed by the loop programs is exactly the same as the class of
primitive recursive functions,

Let us redraw the program in Fig. 2, as follows:

T
s irmmmaeen N yes
[starig.ggweo}-)@é-g(x1 seee ,xm) infw - Z & h(x1 seas ,xm,w:i))
exit

e,

Fig. 4.
With input (Xl,...,xm,y) the loop is run through Precisely y times.

This is because the function defined in terms of recursion has the
property thdt one knows in advance (by the value of y) how many times
the iteration will have to be done. We shall make this special feature
as a characterization of a class of Programs and hope that each primitive
recursion function is computable by a program in this class, and vice
versa. Let us define a new instruction from the program machine:
"loop"* loop y,m Repeat y times the body of the loop (i.e. the

sequence of instructions from the one immediate

followed to the one with instruction number m), If

y contains 0, go to instruction m+l. The contents

of y remains unchanged in any case.

*This instruction corresponds to the "DO" statement in FORTRAN.

26

As an example, consider a program which computes the predecessor of

X, 1.e, z «x 21,

\'—"—!-n‘-n—_.-.
Wew+]
. yes
LStV t>] 2 € OPS[WE V]S> (FF0) Z€ |
no
exit
Fig, 5,

Using "loop" inétruction, we have the following program listing:

z <+ 0

: w0

: loop x,5
: Z +y

: W+ wtl
exit

LSARR LR P N RN

an

Fig. 6.

We shall investigate‘the funetions that can be computed by programs
limited to the following instructions: X, * 0, X < xi+1, "loop", and
"exit",

Definition L, the class of loop programs, is defined as follows:
(1) L contains pPrograms which consist of instructions of the form:
X, +~ 0, X, xi+l, and trailed by an exit instruction.
(2) IfPis a loop program with n instructions and y does not oceur

in P, then the following program is also a 1oop program:

Where P' is the program P with its instruction numbers increased by 1.
And instructions appeared as "loop x:m" in P are changed to "loop x:mtl.

(3) 1If programs Pl and P2 are In L, so is the concatenation of

P1 and P2' Where the concatenation of Pl and P2 is formed by

deleting the trailing exit instruction from P1 and attaching

Pé to it; Pé is obtaineq from P2 with

If Pl has n instructions, then a1l the instruction;numbers of P2
are increased by n-1, and the instructions appeareé‘in P2 as
'figgg y:m" are changeqd to ”iggg yimn-1'",
(4) ¥o other program is in 1,
Notice that a loop Program hag only one exit instruction, namely, the
last instruction. |
Definition
A function is loogwgrogram Computable if there eXigtg gz loop Program
that Computes 1t
We now gfvgz;cracterization of loop-program computable functions.,
Theorem 177, A function is loop—program Computable if gng only if it ig

4 primitive recursivye funetion,

ability of Primitive recursive functiong are all loop Programs, The

theorem thys follows directly.

Tecursive functions.
(2) lLet Us assume gz Program P of , instructions with n registerg
xl,x ’°"’Xm Cotputes p Primitive recursive functions, one for egeh
register,
fl(xl,.,.,xm), fz(xl,...,xm),...,f (Xl""’xh)'

m
Then the Program:

loop ¥, n

P!

28

gz(xl,...,XE,y), gm(xl,...,x&,y) at thege registers, where
gi(xl,...,xm,O) = X,

8; (x5 .. -,Xm,y+l)=fi (g, (5.0, X ¥ s, fgm(xl, T LY)),
for i = 1,2,...,m. These functions, being defineg from Primitiye
Tecursive functiong by simultaneous recursion, are therefgpre Primitiye

Tecursivye, The funetion for the register y ig the identify function and

thus ig Primitive recursive,

(xl,...,xm) and the functiong Computed py P2 be denoteg by gl(xl,...,XE)

,...,gm(xl,...,xm). Then the Concatenation of P1 and P2 Computeg p

hi(xl,...,xm)= gi(fl(xl’"°’Xm)’f2(xi’""Xn)""’fm(xi""’xn))
for i = 1,2,.,.,m. These functions, being defined by Composition of two

Primitive fecursivye functions, are therefore, Primitive recursiye, Q.E.D.

by it, In thig €xample, gope instructions are not part of the instructions
used in the definitign of a loop Program, However it does‘illustrate the

concepts behing the theorem,

1 x2 <1

2 X3¢0

3 loop X155

4 x, < X, (x3+l)
5 Xy * x3+l

6 : exit

3 »
respectively. Following the proos of the

Xl 9X2 ’XB) » 82 (X

theorem, the loop CoOmputeg

,x3) at Tegisterg x

l,Xb,Xé, where
8y (XI’XZ’X3> = X, .
gz-(o’xz”%) T %)
33(0,x2,x3) = x,
g2(y+l,x?,x3)= fé(gz(y,x?,XBJ,gB(y,xz,x3))
= gz(y,xz,x3) (83(Y,X2,X3)+1)
83 (y+1

3 (y,xz,x3), g3(y,x2,x3))

= g, (y,x2 ,x3)+l

, * x, (X3+1) (x3+2) - (x3+xl)

l’x2’ and x3 as follows_:
hl (xl,xz,x3) = x

30

If g is Primitiye recurgiye

recursive.

£(x,0) = g(x), flx,y + 1) = F(f(x,y)
Let a(x,y) be the Ackermann' functiog
the Succeggq functlon.
a.

€. Show thar

r any
Constang C such ¢

primitive
at a(x,x) . g8(x) f

31

32
4. Show that po(x) =X 4+ 1

» Pr(x) = 2x, Py(x) = x .
3(x) explicitly?

b. ¢an You €Xpregg D

C,

T 1s one-ppne and ontg,
Usual]

to Tepresant the co
) 1 Pair (x,y), The codip i
then=be‘4efined as;

B I z).

In genéral
of ;hé-coﬂ'

Reference

The discussion of primi¢
on Mendelgop I1964].

The characterization of Primitiye Tecurgiye
functions in teymg of loop Programg may be found ip Meyer ang Ritchie
[1967}. Ackermann's function

1: 5 « 0

;: 1{_: -z #x then 4
! exj

4: & z+ 1

5:

if fop all Xi’ ceay #m,

34

35
the Smallegt Dumber Such thae f(x,, x
¢ (x

22 e X,) =1
1f sieh an j exis?s,
1,...,Xﬁ) =

undefined
We use the Notatipp é(xl,.

In thig Section, ywe shaly

are program—computable.

Tegister) .

36

Theoren I.

Y capable of manipulating with
Other hand

* OUTr progranp Machine, 4 Particulgy
. s
todel of 4 digitay Computey

+ Thar is, it has png

Programg,

37

of the following type:

(a) X, <0
(b) x o+ xi + 1
(c) if Xi # x& then p

(@) exit
Furthermore, We may assume that 5 Program uses n registers, They are denoted
respectively by xl,xz,...,xm. We now describe oyr G8del numbering, Recall
that Py = 2, and Py = the (i+1)gt Prime number,

(1) At each instant of the Computation, Jet the contentg of the m

registers be al,az,,..,am. We code thege Numbersg by

(2) Each individual Instruction is assigned a unique Ggdel number gzg

Instruction . Gidel number
Xi < 0 21+1.3 I
e L T e - ﬂMAg
X, +x 1 21+ |
ERE __ |
L # x thep 2™ 53 +l.11n’7
™ R iju‘ e
o et s e e

Figure 2,

instruction Dumberg Let b, pe the Gsde; Number of
the instruction Number i, Then the Géde] Dumber of the Program jig4 defined as
b b, b
2152573 n.

Lo be very large, For eXample, of the following Program
i: X €0
2 Xl +'xl +1
3t iF # X, then 2
4: exit

2%3 2?5 22.o ?3'113 13
is2 .3 |, 5 7 which ig 4 tremendously large Dumber,

3
Nevertheless, gliven such g Dumber 577 We are interested in ig the Program

The Program Machineg that we have been Studying are nog store~program

Computers fgoy that egep machipe Performg only one Job, on the otheyr hand,

Perform OpPerationg on the dat, according to the instructions of the Program,
.and it will 8enerate tpe Output 4f there jgq any., 1Ip other Wwords, the Store~

Program Computey behaves ex%ctly like the input Program behaves and thug

In thig Se€ction, ye shaly Present g Particulay Program machine, the

39
Counterpays of a store-program Computer,
be thought of ag 4 co

Mputer which ¢
language (represented

by itg Glde] Dumber) apn4 e€Xecuteg the 1
Specifiayg by the Program.

The following Plcture 8lves the idea;

akeg 4

Program (described
Y its Gsde; Number) .

executing t
on the data

X, ¥, and p
Z stores rhe Gdel Dumber of 4 program to he 8Xecutegd
X storeg the Géde Dumber o¢ the

Fegistepg used by pp

X 1s the Memory which

Storeg the datg,

which ig Primitive recursive function,

(2) label (b,x,2):

To compure labei (b,x5§§we first see if b, the current instruction, is

not a multiple of 7 (Pleage refer to Fig. 2), If so, output p 4+ 1,

Otherwise, find out the register X, and x& from b ap

4 - If they agree, output g 4 1,

NO . —
yﬁw(b)d-l :}{’exit f

H
R PR

(a) X, € 0: Simply Tepeatedly divige Xbyp

1-1 mtil Pi-l is not 5
diviggy of x.

(b) xiéw-xi + 1: Simply multiply x by Pi-l'

{(c)
(d)

if x, #

3
4; exit

if x, T :
E;-Xﬁ # Xj hen n

exit:

x2 then 2

X remaing unchanged

X remaing unchangeqd,

41

Let register

to b. Thisg step essentially fetch the firgt Instruction "Xl + 0" and place
its Gbdel number 22.3 in b. Now this number ig not equal to 13 (4 .e. this

instruction is ot the exit instruction), g0 y rerforms ¢ « 1gpei
2 4 % .
(27,3, 2 -3 7, 1) which increagse g tq 2. After the instruction x <« exec
a

(2 .3,2 1.3 2) 1s completed by U, x containg 3

(2,2) which leaves b the number 2 .35 (i.e. feten the second instruction
X+ 1), Again, b 15 pot equal to 13 g0 y performs & + 1ghel

a
(2 .5, 3 2,2) which inecreage 2 to 3. After the execution of x « axac
2 az 1 a2

(2 .5, 3),x becomes 2 , 3 B

The third time U runs through the loop, it wi1g fetch the next instruction

"if X # X, then 2" gpg Place its @5de] number 2 .7 .11 in b, Again, b.is
2 3 3 1 a
Dot equal to 13 go performs £ < I1gpel (2 .7 .11 s 273 2,3) which ser g tq
2 3 3 3 a, 1.3
2., After the execution of x « exec (2 .7 .11 » 2.3 9, x remains to he 2 N

€xXecuted over and over until x Contains 2 2.3 « At this moment, the execution
2 3 3 a, a2
of the instruction § < label (2 .7 A1, 2 “.3 »3) by U will set L to 4, Then,

13. The final step will discover that b is equal to 13 and gtop the cop-

bPutation. The output of U is ip register x which is equal to 2 2 3 2.

From thig example, it {ig now clear that every time the loop of U ig carried

Program with p registers, the Program terminateg on input <a1,...,am> with

a, a a
2 l' 2

oufput <dl,...,dm> if and only if g terminates op input <z, 3 ...me1> with

d d

43
dl
Output <z, 2 °,

Number of the input Program,

= fetch (z,l),

» then a¢ the beginning of the DexXt cycje
p G+ feteh (5, ,(9),
x(151) mmc(bﬁ) xﬁ),
and 4 (+1) labe1 (1) @ Dy,

pair <p (S),X(S)> such thay 1, (8) i
equal &, 13, 14 this cage X(S)
1)

X On the Othey hand

5

AN
to 13 then tpig Sequence

With the input x(l) is undefined.

44
(1)
associated wigp the inpyt »

is determined as:

(i) o g5
Staﬁggthis result a5 5 theorem, we have
Theoren ITI rLet xl,..., X be the registers used in 4 Program, apg let
——==rem IT1
¢k(x1,. sX) be the bPartiag]l function Computed py this Program witp output
Variable X -

Proof. Define iﬁgme functions

2
gljﬁand ga as followg:

gl(z,xl,...,xm,o) = feteh (z,1)

X1 Xé Xﬁ
gz(z’x s'*'yxmao) = 2 .3 LA pm_l
g3(z, Xi,.a.,Xﬁ,O) =1
81(Z,Xl,e--,xm,j+l) = fEtCh(zsg3(gsxl! ey Xm,j))
g2(z,xl,...,xm,j+l) = exec(gl(z,x ,...,xh,j),gz(z,x e L3))
g3(z,xl, 0¥ ,JHL) = label(g,(z,xl,...,Xh,j),gz(z,xl.
Xmsj))

T X 53) »84 (3,x1, .

n from Primitiye recursive functiong
gl, 9s and g gpe therefore Primitiyea recursive
Next jet
t(z,x

We now lep the G5del Dumber of the givepn Program be ,

s then we have
¢k(x1,...,xm) = p(z,x EEFE S uj[t(z,xi,...?xh,j)=1]).
for a1} Xl,.. X,

in terms of one application of the H=0perator on Primitive recursive
functiong, This ig geénerally known ag Kleene Normal Form Theorem, The

function ¢ is a 0-1 valued funetion and ig génerally known ag Kleene

P{x SeresX) = p{z,x seeosX o uilt(z,x 2eesX , §) = 1))
1 m 1 m 1 m

for al3 xl,...,xm.
Proof, Since ¢ 1g Partial Técursive, gg there exigtg g Program which

Computes §, Iet z be the Gidel number of the Program, So, the result

3.5 Comglexitz of Primitive Recursive Functiong,

While it ig4 important to understand the capabilities ang limitationg
of a computing device, there are other questions of vagt concern tgo g
Computery scientigt, For example, given that a function jig Program
Computable, ap immediate question arises g to how difficult the function
is to Compute, ag keasured by some criterion such as the amount of time op
storage required., It ig clear that the same function can be computed by

different Programs. The timeﬁtakes to execute €ach of thege Programs ig

Theorem 71V, A functiop f 1s Primitive ye
@ program P which Ccomputes f gpg TP(X) is
function for all x,

TpAssume f is Primitive recursive, By
Program P that Computes f, Assume y {g a
We create 4 Dew program Q as f0116WS:

a) Add the instruction "y<0;" at th
b) Insert the instruction "yey+1;n
The new Program ¢ obviously computes TP(X

Program @ ig also g loop Program. g§go fp(

f(x) = p(z,x

Cursive if ang only if there 1ig

bounded by a primitive recursive

e beginning of program P;
before each instruction of program P,
) with Y to be the output register,

x) is itself 2 primitive recursive

Hence nonprimitive recursive functiong cannot in general he Practically

computed,

49

d. Define a function
if pi(i) is even,
f{i) =
2 if pi(i) is odd.
Is f recursive? Is it primitive recursive? Why?
4, Define a function
?l(xl,...,xm) if ¢l(xl,...,xm) i1s defined,

w(xls"'sxm) = : R
.¢k(xl"°"xm) if ¢k(xl,...,xm) is defined,

undefined otherwige.
Show that if $,...,¢k are partial recursive, and if, for any X ,...,x ,

at most one of ¢ (x sevesX)y, . (x seeesX) 1s defined, thefi i is m
171 m k1 m
partial recursive.

Reference
Sesetence

The way that Gédel numbers are assigned and the universal program
machine ig constructed isg largely from Engeler [1973]. The characterization
of the partial recursive functions using the T-predicate and one application
of the L-operator is shown in Kleene [1943], Superhb discussiong on
equivalence of various models for effective Computability can be found in
Minksy [1967]. The complexity of Toop programs is duscussed in Meyer and

Ritchie [1967].

	CS75028-R.pdf
	20050922145946808.pdf

