Technical Report CS875021-R

- APROPOSAL FOR A MINTLANGUAGE
FOR THE BASIS OF DISCUSSION
. REGARDING DATA STRUCTURES

John A. N. Lee

Language Research Center
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

October 1975

The work reported herein was sponsored in part by the
National Science Foundation Grant No. DCR74-18108.

Abstract'

This report generalizes the concepts of data structures which
were presented in mini-language 8 by Ledgard [1], and provides a basis

for the more general discussion of data structures.

Keywords: Mini-languages, data structures, programming languages,

directed graphs.

CR categories: 4.2, 4.29, 4.34

A PROPOSAL FOR A MINILANGUAGE FOR THE BASIS OF DISCUSSION
| REGARDING DATA STRUCTURES

INTRODUCT ION

The discussion of elements of programming languages is too often stified
by the selection of current implemented languages such as ALGOL, FORTRAN, PL/I,
etc., as the basis for exemplification. In these contexts the influences of
prior experiences have been at work and have manifested themselves in the
particular features that the languages possess. Thus any attempt to discuss
language e]eﬁents in terms of empirical implemented languages is doomed to
eventually discuss our prior inabilities to forsee the potential uses of the
Tanguages. Furthermore, implemented languages are, by necessity, controllied
in their scope by two facts of life; the current intellectual capabilities
of the programmer and the current logical capabilities of the host equipment.
As each of these capabilities is extended, so languages are similarly extended.
In the same way, to discuss the domain of data structure language features in
a limited context éuch as a language which admits only one type of structure
is defeating the purpose of such discussions before the discussion commences.
This paper proposes a "minilanguage" devoid of specific implementation schema
and separate from other language features which operate over the products of

data structure operations or which generate data which are input to data

constructive operations.

The critical issues relaied to data structures are: naming and description
of structures and their components, the manipulation of structures and their
components including deletion of elements, the modification of eleménts and
the insertion of elements, and the sharing of structures and their camponents
by other structures. Typically, in the past, structures have been language
restricted to be either regular arrays (including the COBOL or PL/I style
of data structures) and linked lists (including various representations or
implementations of rings). In most cases such structures have been implemented
by the use of two elements; a (samewhat) ordered parent structure and a mapping
function between the idealized, programmer's structure and that parent structure.
Typically the parent structure has been scme manifestation of a linearly
addressed memory system. Thus the majority of our interest has been placed
on the mapping function and its properties rather than on the structures and
their benefits fo the solution of pressing problems. This same bi-element
system has lead to a discrimination between problems and studies of the
individual prcbleﬁs rather than studies of the use of generalized data
structures. In this paper a structure is proposed which is embedded in a
skeletal language; the structures capable of being described, named,
manipulated and shared in this language can cover an extremely wide range
of classical structures and in fact can represent structures whidh, so far,
have not yet appeared in production languages. Such structures include

sets and content addressable systems.

STRUCTURES AS DIRECTED GRAPHS

iiiii The structure which is chosen as the basis for this elemental language
is a single level directed graph composed of a root node, a set of distinctly
f named edges (distinct in the context of this one level graph), and a set
.0f component nodes. Each sing1e level graph is represented graphically as
a tree, classically drawn upside down, from the root node bf which emanate
the named edges, at the termination of wﬁich are located the component nodes.
Reference to the name of the structure implies the whole structure, being
the root node, the'edges and the component nodes. A component node is
referenbed by naming the edge on which it is located in the context of a
named structure.

Component nodes may take two forms; they may be single level directed
graphs themselves or they may be primitive elements in the universe of
discourﬁe. Such primitive elements are not structural and therefore cannot
be considered to contain compohents or be capabie of being dfvided into
other elements. The universe of discourse can be one of two classes; in
the context of operations over structures the universe is a class of values
such as numbers, poihters or strings, whilst in the context of structure
description the universe will be the class of structure descriptions including

the primitive descriptors number, pointern, or sining.

-4-

As a primary restrﬁction we shall not permit structures to by cyclic;
that is, a structure cannot be constructed which contains itself as a
component (that is, as the compopent node at the termination of an edge
emahating from its root node), or as the component of any of its components.
This does not prevent a component which is a pointer from pointing to its
containing structure or even to one of its own components:; the resfriction
merely does not allow a structure to recurse on itself.

In the discussion which follows we shall restrict the domain of va]ués
to two primitive elemental types:; number and pointer, represenfed in the

Tanguage by num and ptr respectively.

Figure 1b

THE LANGUAGE

To provide facilities related to the critieal issues pertinant to data
structures as mentioned earlier, the language will be composed of six basic
elements:

* the description and naming of structure classes,

* the composition and naming of structures,

+ the selectioﬁ_of structure components,

* a dynamic type statement and a type check to measure'the conformance

of a structure with a named description,

-

a conditional statement, and
* a transfer of control system.
The generic, syntactic form of the representation of a structure is to be a
set of edge name/component pairs; where in the case of a descriptor
(deelaration in prograﬁming language terms) the component is éifhér a named
descriptor or (in the case of a component which is value bound'fOP the
duration of the execution of the program) is a value descriptor., In the
case of a manipulative expression (to be detailed later) the camponent in
this pair will be a value, including another stpucture. Providing some
syntactic sugaring'to this basic form we generate an expressign of the. form
{clzdl, Cyidys weey cn:dnJ '
where the c; are the edge names (which we shall term component identifiers)
which identify component structures and di are component or value descriptors

depending on the context of the expréssion.

The basic declaration is given by the BNT syntax
<structure descriptor>::zdec <structure ideptifier>=

[<descriptor sequence>]

<descriptor>::= <component identifier> : <component descrdiptors

<descriptor sequence> ::= <descriptor>{,<descriptor seéuence>}%
where <structmre identifier> ::= {A|B|C|... XIY]Z};Z
<component identifier> ::% {alble]... ﬁ}ylz}il

<component descriptor> ::= num | ptr | <structure identifier>|
<primitive expression>

The latter definition provides for a component descriptor which may take
the form of an expression containing identifiers which yields on evaluation
either a numeric value or a pointer to sdme-strucfune. This provides for
the case of a structure whose component is always (always being the
duration of fﬁe program) directly related to properties of other-
structures, but whdse camponent value is not fixed. This might seem

 to require the implementation of the language to continuously monitor

the elements which would cause the modification pf the value of séch a
component; in faét; any value evaluations need only be completedIWhen
there is a reference to the described structures. A simple tagging
scheme to identify the components needing evaluation would resolve this
problem., Where the pfﬁnitive expression results in a pointer, the object
of which is a structure which may or may net exist at any insfant ih.time,
the same strategy will‘suffice. However, we will specify that if the
object of the pointer is currently non-existant, the value of the

pointer shall be the null pointer.

To provide for alternative forms of descriptor, that is to permit
a union of c¢lasses of descriptors, we shall provide a secondary
declarative statement of the form

dec s= sV 32 RN |
where s and 8; are structure identifiers, those on the right hand side
of the = sign being described in other descriptors elsewhere in the
program. |

Whilst a descriptor only specifies classes of structuresrand their
associated names (structure identifiers), the basic operations of this
language must be the construction and naming of structures. We choose
to use the same syntactic form used for description of structures for
specifying the structpre itself, that is [cl:vl, CgiVys vevs cn:vn]
where the c; are component identifiers and the Vs are expressions which
result in scme structural or primitive object. Embedding this és the
right hand side of an assignment statement, we provide both the
mechanism for constructing structures and the means of naming those
structures. The left hand side of an assignment.statement may take one
of two forms; either an (upper case single alphabetic character)
identifier or a cdmponent expression. The former syntactic form
represents the néme.which is to be associated with the structure created
by the evaluation of the right hand part of the assignmeﬁt statement,
this action causing the removal of any association of that name with
some other structure. It is not required that identifier names be at
all times associated with some fixed structure descriptor; ih fact,

identifiers may be associated with structures for which there never

exists an explicit structure descriptor.

A component expression is given the syntactic form

.<canponent identifier> (<expression>}
where, in general, the expression enclosed inparentheses may be any
expression which results in a structure. On the right hand side of an
assignment statement this component expression will yield the named
component'of the structure; where either the structure does not contain
an edge so named or the evaluation of the parenthesized expression does
not result in a structure (that is the result ig a primitive obiect),
the application of the camponent identifier will yield the null object.
On the left hand side of an assignment statement, the expréssion
enclosed in parentheses should be limited to an identifier, or another
component expression which satisfies the same criterion.

When the left hand portion of an assigmment statement is a component
expreésion the value of the right hand side then replaces that component
in the named structure. Two other cases are of importance. If the
component does not exist in the structure prior to the execution of the
assignment statément, then that new camponent is added to fhe existing
structure. For example, after the execution of the statemenf

F := [a:23, b:@B, c:5]
the structure shown in Figure la would be constructed. Subsequeﬁtly,
the execution of the statement

e(F) := @F

would modify this structure to that shown in Figure 2.

FIGURE 2

FIGURE 3

i

~10-

Similarly, if the structure named T did not exist previously to the
execution of this statement, then the structure shown in Figure 3 would
have been created. |

Introducing the null object @, we may also provide for the removal
or deletion of structures or their components. We prescribe that where
the component is null (not the null pointer) the edge and its camponent
may be considered to be removed fram the structure.

The ability tormake decisions within this language is based on the
predicate which is formed from a structure idéntifier and the prefix is-.
The application of a predicate to a structure results in a truth value
which is then used to direct further program actions. The predicate
expression has the syntactic form

ig:fstructure,identifier> (<expression>)

The predicate expression is the first element inthe conditional statement
if <predicate expression> then <statement> else <statement> where <statement>
may be any of the executable statement forms of the language.

The predicate expression also can stand as a statement in the language
- which expresses the applicable predicates over a structure. Semantically
the stand alone predicate expression states that from this logical point
forward, the predicate expressicn is true; if the case occours where the

predicate expression is no longer true then the program is not valid.

=]l

The subject of a ﬁredicate expression in this context is normally
expected to be either the name of a structure or of a component of a
structure. Subseqﬁent to the statement, the‘pamed structure or caomponent
will always conform to the specified description., This implies that the
implementation of the language will continually monitor the named objects
" to ensure.their conformance. In practice such checks are necessary only
when there is a reference to the named object either as a source of data
(when the check should occur prier to the use of the data) or as a
destination of data (when the check should occur subsequent to the store
operation). There is not provided in the language a complementary
predicate éxpréssion such as not-, nor is there provided a stafement
which removes the conformance requirements of a predicate éxpression.
Instead, a simple renaming will remove the conformance requireménts.

The final elements of this minilanguage are the statement label
and the goto statement. For ease of readiﬁg we_specify that eagh
statement in the language (except declarations) may be preceded by an
alphabetic label (upper case herein) and separated from the body of the
statement by a colén. The goto statement then.references the label and
upon execution causes a transfer of control to the statement which is
prefaced by the referenced label.

We have purposely cmitted detailed reference to and description of
the expressions which may occur in this language. -Several forms are
inherent in the languége; expressions whicﬁ construct structures, component
expressions, simple identifiers, numeric value representations, aﬁd pointer
expressions., Other fénns of expression may be added to this list
including (say) arithmetic expressions, but we shall not specify here

such nlcetles whlch are truly outside the domaln of this language.

]2~

Pointer’expressions must result, on evaluation, in pointer values.
However, where the.expression contained in the parentheses associated
with a pointer expression is a constructive expression, then the result
is a pointer to an unnsmied structure, That is, fer example, the two
sequential statements :

X :

[first:1,second:2]

Y 1= @X
are not equivalent to the single statement

Y := @ [first:1,second:2]
since ih the second case the constructed structure is ummamed and therefore
not referenceable diréctly elsewhere in the program. One more operator
1s necessary to overcome same semantic ambiguities related to pointer
values. Let us assume that there exists:a structure identified by A;
thén the statemént_ |

B := @A
assigns to the identifier B a pointer tco the structure A. The'question
now arises as to thg meaning of a reference to B. Should such-; reference
refer to A or the éontents of B, thaf is, the pointer value? T§ overcome
this ambiguity we shall specify that refepences to identifiers.are meant
to refer to the associated value (or structuré). Thus following the
execution of the above assignmeni statement, 'B refers to the value @A

not to the structure A. Explicit references to the "pointed to" element

by the use of a pointer value must use the operator gg;_Which.sfrips off

one level of indirection. Thus val(B) above wquld reference the
structure named A. If B were not associated with a pointer value, the

result of evaluating val(B) would be undefined.

-13-
References

[1] Ledgard, H. F., Ten Mini-Languages, Computing Surveys, V3 N2,
Sept. 1971 '

