Technical Report CS75014-R

VIRTUAL PROGRAMMING INSTRUMENT
EXTENDED HEWLETT-PACKARD
[VPI/EHP]

G. W, Gorslinew®
G. B. Gorsline®%
Phil Scanlon®*%

May 1975

Department of Computer Science
Virginia Polytechnic Institute and State Uni

versity
Blacksburg, Virginia 24061

*Professor of Computer Science, VPI&SU, Blacksburg, VA 24061

**Student of Computer Science, VPI&SU, Blacksburg, VA 24061

**%Computer Programmer, Department of Computer Science,

VPI&SU, Blacksburg, VA 24061

Context of Project

A definition and implementation effort is currently underway to provide
an augmented HP2100A processor for use by students and faculty. The main
restrictions affecting the design are:

= preservation of the ability to operate in the present
hardware/firmware machine mode

= Ppreservation of the ability to operate TSB, DOS~M, DOS-3,
and stand-alone software as furnished and maintained by
the vendor

Augmentation will include:

- availability of two index registers and a page register (implying
both real and virtual pages of size 512 words

~ availability of software interrupts in addition to hardware
interrupts, both serviced through an extended relocarable
equipment table and user created I/0 control blocks

- availability of input/output devices as logical references to
relocatable, Teentrant, pure code device drivers (including
appropriate non-device connected interrupt server routines).

~ availability of all software modules and associated data areas
as completely relocatable, reentrant, recursive, pure code pages.

~ the complete separation of logical program addresses from hardware
addresses with a firmware translation routine allowing programmatic
modes ranging from uniprogramming to virtual memory paging

= brogrammatic invokation of an alternate WCS module O through
a VPI&SU hardware/WCS augmentation

- availability of communication to and from the central University
computer system (IBM/370: 158-HASP-158) in two modes:
1. M8 (asynchronous)
2. HASP quences (making the RJE HP21MX and the advanced 370
SPO0Ling abilities available for 1/0) (bisynchronous)

~ availability of a Cross—assembler, a macro-preprocessor, and a
cross-micro-assembler for the dvnamically alterable and augmented
HP machine (executing on the central University system).

- dynamically alterable user defined imstruction repertoire through
a user micro-instruction mapping table

It is a major design requirement that the following be true:
~ the present hardware/firmvare definition be either
1. restorable during normal power up, or
2. restorable by setting a single manual toggle switch, or
3. restorable by invoking an I/0 instruction supported by
special hardware (installation defined, produced, and
supported).

- pure, reentrant, and recursive code possible

~ unprogramming ,multiprogramming (MFT or MVT types), and
virtual memory uniform size pPaging systems possible

HARDWARE - no changes are contemplated (beyond the programmatic WCS module 0=0'

switch) although augmentation is always possible (if funding is available).

MICROPROGRAMMING - among the many micro-procedures change needed, the following
three have major implications:

1. a new jump~subroutine instruction supporting pure code/re-
entrant code/recursive calls (via save state stacks)

2. a new central hardware/software interrupt fielding micro-
procedure

3. a replacement instruction fetch phase micro-procedure allowing
calculation of the effective hardware address of the operand
including logical program indirect addressing, base page,
and indexing (pre and/or post). Appropriate calculation of
the succeeding instruction address will also be accomplished.

These additions and changes imply at least minor changes to the basic instruction

set coding. The operational implications are:

1. power up the HP2100A processor with control store module
0 (ROM) in control;

2. load, using module Q0 and the VPI/EHP systems loader, volatile
WCS module 0' with the new fetch micro-procedure, new central
interrupt fielder, new jump~subroutine instruction, and the
altered basic instruction set;

3. the loader will invoke the I/0 instruction that programmatically
controls the switch making module 0' act as module 0; and

4. then will finally initialize the equipment table and load

the user furnished nucleus of the desired software system.
SOFTWARE - All I/0 drivers and interzupt servers will be written as pure,
reentrant, non-recursive routines completely relocatable as desired by the
Systems user (usually an operating systems designer). All tables, stacks,
queues, buffers, etc. will also be defined as relocatable in a similar manner.
Thus, the software contents and their relative locations in primary memory
will be completely under operating systems software control. The 1/0 drivers
and interrupt servers may gradually be transferred to micro-code in WCS as
the need arises and talent is available. Various programming systems will be
needed including cross-agsemblers, cross-compilers, primary membry managers,

secondary memory access methods, etc.

Introduction

The Virtual Programming Instrument/Extended Hewlett Packard is a micro-
programmed HP2100A computer with 16K of 16 bit words primary memory as a portion
of a standard HP2000E system. The presently planned configuration is specified
in figure 1.

The host machine available for microprogramming to emulate the VPI/EHP is
graphically depicted in figure 2. 1,024 words of microprogram control storage
is available in four modules of 256 words each, Module 0 is Read Only Memory
and contains the HP2000E standard basic instruction set as defined and furnished
by the vendor. Module 1 is also ROM and contains the & floating point instructions
as defined and furnished by the vendor. The standard operating systems (TSB,
DOS;M, DOS-3, etc) and their associated language processors (BASIC, FORTRAN, ALGOL,
etc.) as well as support packages such as utilities (tape to disk, etc.) are
supported by the machine as defined by these two modules.

The other two modules of Writable Control Storage (512 words) are available
for user microprogramming in a dynamically alterable mode for the definition of
new or-alternate instructions. These two modules of WGS are being employed to
implement an alternate instruction set to emulate a basically different hardware
machine. This concept is different from retaining the instructions of modules 0
and 1 and supplementing them with additional instructions. [This concept of
supplementation is also a valid and interesting area of investigation]. Rather,
the VPI/EHP replaces the instructions of modules O with an entirely different set,
the instructions of module 1 (floating point) remainé available and many prove

valuable.

C=SA/HA
d5VH

HHLINID ONILAJW0D

(FAVTS)
8GT/HAT

(4IISVR)
86T/WYI

ssndueng
NI *2"D 01
HIN0Y 104100

S0LE

ONASTY

wa1

\M (V00TZdH

03 29Ta9p 3ndino/indut

qLE/oUTTUO SBY@Sn 104])

YAINTHd
¥ dIavid
XRTZ an

ROOVINOJ
(81T ¥0v)

AVIHTAL -

AVIETHL

XINOYINAL
(GEE W)

(yound odeay zaded
se 9dAleT93 Isn pue 1yn

T Y3ta aoeydex mmmsﬁmmv
mmUHWmm (AAATATIL) |
TTOSNOD
VOOTZdH SHATSAS
\
WALLOLd
WILSAS Sutaeus
ONIHAVEDOEd —SWTl (SKO) 2pom UOTIDBIDIUT
ASVITLANH Ul ITeUTNAD] [T® woiF (/T
. . MOTTE 01 WOISAg 103BIjUSOUOY
o ~
LANIWIL HNIITAZVH ANIITAZVH INILTHZVH
NOTIVENDIANOD SWALSAS VOOTZJIH ASOJ0Ed T @an8Eyg

MAR

M~-REGISTER

A

._m-_q;j<

CORE MEMORY

" MDR

R.
o3
£+
[
=
(]
g
E

CPU INSTRUCTION ¥

i P s i e e e e

1/6

SUTHIEN ISOH VOOTZdH UL iz @angig

SNg I0dIOO/ENANI . .mMHHVx“.m s
. e | .

[*3o% vorierors | T

|
)

COUNTER

|

A-REGILSTER

—r
I
[
i

—

B-REGISTER i
Q-REGISTER |

snNg-a

s o

¥
P
7

poremed]
i

§VA7>
kg
{ .
|
{
A
1
t
|
4
I
| \\
N/

F-REGLSTER !

Protgggggn

e

—

;

Function
Generator

i
Instructio

-

ALU
BUS

i

n Counter

[m e I

=

ol

T A

8091

T

I
PR |

£-REGISTER

ol
-

Fl

e

SCRATCH PAD #1

|
t
e

SCRATCH PAD #2

-

Y
A
|

%
o
4

SCRATCH PAD #3

~
/I

SCRATCH PAD #4

interrupts

> CENTRAL INT. REG

i
o

The emulated machine (the VPI/EHP) is paged (equal size) with logical
program address space (segment: page: displacement) mapped to real memory space
through a microprogrammed instruction fetch phase micro-procedure. Page faults
ctause an interrupt within the fetch micro-procedure and result in page fetch from
secondary memory. The replacement algorithm, I/0 call, and all portions of the
operating system are left undefined for future development, investigation, and
research by interested faculty and/or students.

The raison d'etre of this definition/implementation effort is two fold:

1. to investigate the factors involved in microprogramming a
machine design on a host computer not particularly suited
for the concept.

2. to provide a vehicle for advanced instruction and for

research into virtual memory operating and programming
systems as well as the instructions needed for efficiency.

An Overview

The Extended HP as a Virtual Programming Instrument is a microprogrammed
HP2100A CPU as a portion of a standard HP2000E system. The VPI/EHP mode is
entered by loading WCS modules 0' and 2 with the requisite instructions using
the 1/0 instructions of ROM module O and then enabling WCS module 0' as the
basic instruction set. ROM module O (the standard basic instruction set)
is not usuable in the VPI/EHP mode. No permanent changes to the CPU are
involved and ROM module O can always be enabled by a programmatic or manual
switch.

The VPI/EHP is a logically addressable machine peossessing several program
memories of 16,777,216 words of 16 bits each (program address space = 224 words.

Logical program (virtual) memory 1s implemented as a series of uniform sized pages

(512 words = 29) organized as segments distributed under control of an alterable
algorithm between the 16,384 words (214) of randomly addressable core memory
(read/write time = 980 mancseconds) and the two direct access movable head disks.
Thus, a two level (segment/page) virtual memory is available for each of several
Programs in a multiprogrammed mode. Note that a maximum of 128 pages are
allowed on each of a maximum of 256 segménts for each program—-or a total of
32,768 pages per program (each of size 512 words).,

The format for instructions referencing memory is (OP Codes 0010 through

1111):
NSQS
e A7 90 76 0
{1[Op. Gode [R t Rf Displacement [Il Segment | Page |
, L 2 within page)
two word Register Number Indirect
instruction Address Bit

If bit 31 is zero, the instruction is one word in length and includes bits 16
to 31 only. 1In this case the eperand is on the current segment/page. Indirect
addressing is restricted to two word instructions and is performed after all
indexing (pre-indexing), although indexing may also be specified at the succeeding
level (post~indexing). Indirect addressing is limited to a chain of length
sixteen.
Address constants use the same format as the memory referencing instructions
except that bits 27 and 28 refer to index registers B and A respectively. The
non-memory referencing instructions and their one word format are exactly the
same for the VPI/EHMP as for the EP2100A except that all SKIP instructions are changed to

JUMP instructions.

Major design features of the VPI/EHP, not available with the HP2000E, are
the ability to program in pure code, the availability of veentrant procedures,
and the support of recursive external procedure calls., In particular, all
interrupt service routines including I/0 device drivers are written as fully
reentrant pure code. All calls to external procedures result in the automatic
stacking of the machine state by firmware.

The relocatable VPL/EHP control stack for each:program is a doubly linked -
list (cell size of 32 words), with the format as given in figure 3. The location
is under the control of the operating system software. The current cell of the

control stack will contain the psuedo-registers for the VPI/EHP. They are:

P ~ register - 24 bits ~ Program Counter

A - register - 16 bits - 'A' Accumulator

B - register - 16 bits - 'B' Accumulator

AR1L - 24 bits - Address Register 1
AR2 - 24 bits - Address Register 2
ARG - 24 bits - Argument List Pointer

Note that this results in automatic saving of all psuedo~registers in the control
stack at procedure call time as the initiated procedure will cause invocation of
a new cell containing new psuedo~registers.
A relocatable interrupt address table is provided to contain the pointers
to the service procedures. Three pointers are provided:
1. the address of the appropriate stack
2. the address of the appropriate entry point

3. the address of the appropriate I/0 block or work area

10

Figure 3. Control Stack Format.

Word /

0 FFS 4 User Mask Including:
- PRIV/PROG mode

1 P register

2

3 A register

4 B register

5 AR1

6

7 AR2

8

9 ARG B
10

E

11 N Previous Stack Top
p D
31 12
E
13 N| Succeeding Stack Top

D
14
15 Micro-instruction
16 Mapping Table
17 Micro—-Code
1 .
% Work Area {

31

The pointer format is that of a double

being unused:

31 25 24

11

16 15 14

76

-word instruction with bits 15 and 25-31

Displacement

Segment

Page

Each entry requires three double-words of primary memory to contain these three

pointers with the exception of the 32 SVe entries which are only two words long.

The table is 106 entries long and thus occupies 508 words of memory. The

following sections are defined (and constitute a priority of service order):

Entries 1 - 64; 6 words:
Entries 65 - 74: & words:
Entries 75 - 106 2 words:

\

Equipment Service Interrupts
System Faults Interrupts

Supervisor Services (or software interrupts)

The ten systems faults interrupts are defined as:

Undefined operation
Priviledged operation

Memory protection violation

Excess Indirect Addressing Count

Page Table Not Resident
Page Not Resident
Bottom of Stack (end)
Top of Stack (return)
Instruction Not in WCS

Anything else (weird conditions)

Note that 32 distinct.supervisor service tequest calls (software interrupts) are

provided. The priority order is linear by interrupt number.

These supervisor

service request calls are completely definable by the operating system designer.

The somewhat generous number should allow ample opportunity for investigations

concerning types, parsimony, and effects on systems software implementation

of variations in software interrupts.

12

The first 64 entries (equipment service interrupts) are defined by the
hardware design and, thus, are not subject to change or priority reordering at
software design time. They correspond directly to the hardware I/0 'slots'
(or boards) of the HP2000E system. It should be again noted that interrupt
service priority is defined by the numerical ordering of this--the I/0 interrupt
and Fault Entry Table.

Real memory addresses 0 to 127 are reserved for a Micro-Vector Table to:
1) allow fast transfer of control to the various relocatable tables; 2) to
provide work Space, censtants, and pointers for the various micro-procedures
that implement the instructions of the VPI/EEP; and 3) to collect statistics
on memory referencing. A diagram of these locations is given in figure 4,

A relocatable real memory resident Segment Table must be provided by the
operating system designer. Each entry (of 256) of each segment table refers

Lo a page table. The format is:

15 14 0

R
/D _ Physical Address of Page Table

where the R/D bit in position 15 indicates that the page table is in real memory
(=1) or on disk (=0). If the page table is on disk and is referenced, a page
table fault will result. The subsequent interrupt will initiate the transfer

of the page-table to real memory and the change of the R/D bit to 1 and the 15
bit address field to the appropriate real memory address. During the entire
Period that a program is active, its segment table must be resident in real
memory. Thus, the number of resident segment tables equals the number of active
programs (including the operating system). It is possible to define partial

segment tables, if desirable.

13

word
0 real addr of Stacktop
1 real addr of Segment Table
2 real addr of EQPTAB
3 Logical addr of
4 Stacktop
5 Address Space Mask (defines size
of current virtual Menory)
6 fetch count
micro work areas and
other logout functions
63
64 physical page
accesses since last
127 page fault

Figure 4. Physical layout of the micro~vector table. Note that this table
occupies real locations 0 though 127 while the other tables {the
control stack and the I/0 interrupt and fault entry table) are
relocable at the whim of the software designer,

On the contrary, each page table can be transient in real memotry. Four

page tables will fit on a page. Wirh 16K real memory and a page size of 512

words, 32 real pages are possible. Real pages O to 30 are usable for systems

and user programs space; real page 31 is reserved for a binary loader (BDBL)
and for an EHP/HP interface systems loader. S8ix bits are provided for rea]

page identification of which the least significant five bits are concatinated

with the nine bit displacement field of the instruction to derive the fourteep -

14

bit real memory address (thus real memory expansion to 32K is possible). If
the page is not in real memory, the entire fifteen bits comstitute a disk address.

The format of each entry of a page table is:

i5 14 987 0
R/D| real address . | protection mask

core/disk bwprotection
resident mode

where:

bits 0-7: wuser protection mask, (only in program mode) tested on
each access for legalitv of access.

bit 8: protection mede (only if protection mask corresponds to
user mask)
0 = not accessible
1l = read only

/]

bits 9-14: real memory page address as a power of two over 512
bits 0-14: physical disk address of page 1f not resident

bit 15: like this same bit in the segment table, indicates
if the page is in real memory (=1) or on disk (=0)

15

INSTRUCTIONS

5ix types of instructions are provided by the VPI/EHP computational system:

1. Extended HP Group - These seven instructions are those that
use the table definitions that constitutes the extended system.

They are:
Css Call a Supervisor Service Procedure
CALL Jump to a Procedure
ARG Get Address of an Argument
RET Return from a Procedure or Supervisor Service Procedure
X8TK Exchange Control Stacks
LP Load a Pointer
STP Store a Pointer

2, Memory Reference Group - These twenty~four instructions are divided
into three groups.

A. Single-Register Subgroup - These fourteen instructions
include a virtual memory address. If this address is
within the currently used page, a one word instruction
is possible; if not, a second word contains the segment/
page reference. Thirteen of these instructions corres-
pond in action to those of the HP2100A. The other is
& subtract (replacing the Jump Sub). The instructions

are:
LDA . Load A
LDB Load B
STA Store A
STB Store B
ADA Add to A
ADB Add to B
SUB Subtract from A (two's compliment)
AND And with A
XOR Exclusive OR with A
IOR Inclusive OR with A
JMP Jump (absolute)
18z Increment memory/jump on zero
CPA Compare to A/jump if not equal
CPB Compare to B/jump if not equal

B. Double-Register Subgroup - These four instructiomns also
include a virtual memory address using the same approach
as for the single-register subgroup. These instructions
correspond in action to those of the HP2100A. They are:

MPY Multiply by A/result in B + A

16

DIV Divides B + A by memory/result in A/remainder in B
DLD Loads A and B with memory and memory +1
DST Store A and B with memory and memory +1

C. Floating Point Subgroup - These six instructions also include
a virtual memory address as above and correspond to those
of the HP2100A, They are:

FAD Floating Point Add

Fsn Floating Point Subtract

FMP Floating Point Multiply

FDV Floating Point Divide

FIX Convert Floating Point to Integer
FLT Convert Integer to Floating Point

The floating point datum format is two words in size and
corresponds to that of the HP2100A:

31 30 87 10

mantissa exXponent

+ sign of mantissa sign of exponenttt

3. Register Reference CGroup - The forty-five register reference
instructions are divided into two subgroups: the shift/rotate
subgroup and the alter/jump subgroup.

A. Shift/Rotate Subgroup - Of these twenty-two instructions,
sixteen operate on a single register while six involve a

datum contained in a double-register.

Shift Group

ALS Left Shift A-register one bit arithmetic

BLS Left Shift B-register ome bit arithmetic

ARS Right Shift A-register one bit arithmetic

BRS Right Shift B-register one bit arithmetic

ALR Left Shift A-register ome bit and clear sign bit
BLR Left Shift B-register one bit and clear sign bit
ASR Arithmetic Right Shift N bits/double register
ASL Arithmetic Left Shift N bits/double register
LSR logical Right Shift N bits/double register

LSL Logical Left Shift N bits/double register

Rotate Group

RAL Left Rotate A~register one bit logical
RBL Left Rotate B-register one bit logical

RAR
RBR
ELA
ELB
ERA
ERB
ALF
BLF
RER
RRL

17

Right Rotate A-register one bit logical

Right Rotate B-register one bit logical

Left Rotate A- and E-registers one bhit logical
Left Rotate B~ and E-registers ome bit logical

Right Rotate A- and E-registers one bit logical
Right Rotate B- and E-registers one bit logical
Left Rotate A-register four bits logical

Left Rotate B-register four bits logical

Right Rotate B- and A-registers N bits logical
Left Rotate B~ and A-registers N bits logical

Alter/Jump Subgroup - Of these twenty~three instructions,
eleven are set/clear registers; two are increment registers;
nine are conditional jump; and one is a reverse jump condition
(or absolute jump).

Clear Register Group

CLA
CLB
CLE
CMA
CME
CME
CCA
CCB
CCE
STO
CLO

Set A-register to zero

Set B-register to zero

Set E-register to zero

Ones Compliment A-register
Ones Compliment B-register
Ones Compliment E-register
Set A-register to all ones
Set B-register to all ones
Set E-register to all ones
Set Overflow Flip/Flop to one
Clear Overflow Flip/Flop to zero

Increment Register Group

INA
INB

Add one to A-register
Add one to B-register

Conditional Jump Group

JZA
JZB
JEZ
JSA
J5B
JLA
JLB
J0S
JoC

Jump if A-register is zero

Jump if B-register is zero

Jump if E-register is zero

Jump if A-register is positive
Jump is B-register is positive
Jump is A-register is even

Jump if B-register is even

Jump if Overflow Flip/Flop is one
Jump if Overflow Flip/Flop is zero

Reverse Condition Test

5.

18

RJIC Used 1n conjunction with the conditional
jump group to reverse the test--ahsolute
jump when used alone.

Input/Output Group - This group of instructions operates to transfer
information from external devices and either:

the A- or B- registers, or
Direct to Memory (DMA).

The use of registers for I/0 is limited to one word or byte of
data The use of DMA allows transfer of data in any size block
(maximum = 32 K). Both types of I/0 use a subset of the same

basic twelve instructions.

STF Set Flag of I/0 channel or function

CLF Clear Flag of I/0 channel or function

JFS Jump if I/0 Flag is set

JFC Jump if I/0 Flag is clear

MIA IOR I/0 buffer of device with A-register
MIB IOR I/0 buffer of device with B-register
LIA Load I/0 buffer of device into A-register
LIB Load 1/0 buffer of device into B-register
0TA Load A-register into I/0 buffer of device
0TB Load B-register into I/0 buffer of device
STC Set control bit of I/0 channel or device
CLC Clear control bit of I/0 channel or device

(turns device off-00 is all devices)
Systems Control Group -~ The two instructions in this group are:

NOP No Operation (16 bits zero)
Allows space to be saved for inmstruction
alteration or data psuedo-ops

HLT Halts the System. Has the same effect
as the console HALT push button. (priviledged)

MAC Group - As the HP2100A processor was designed to maintain
software and device compatability with the predecessor HP 2114,
2115, and 2116 processors, some of the controls are hardware
generated and some are micro-programmed. The VPI/EHP allows
user microprogramming of instructions supplemental to those
described above. Space exists in WCS for nine additional
instructions which can be expanded by a fairly large factor

if necessary (through jump tables).

19

Appendix 1

VPI/EHP Instructions

2.

CS85: Call Supervisor Service

€35 «<numbers, <«datas

1051408 HP MAC GROUP
<number>
address constant <data>

<number>: the left 5 bits are used as the requested service number,

<data> : address of the argument list. Loaded into ARG register upon
entry to €SS instruction. Fnters CSS in priviledged state,
mask = "ff',

CALL: Call a procedure

CALL <label> <«<datas

1051418 HP MAC GROUP
addr con <label>
addr con K | <datax>

<label>: the address of where to start executing the procedure
<data> : address of the Argument List
RET: Return from a procedure or supervisor service

RET

1051428 HP MAC GROUP

20

4. XSTK: Exchange Control Stacks

X8TK <Data 1>, <Data 2>

1051438 P MAC GROUP
Adcon <Data 1>
Adcon <Data 2>

A priviledge instruction that stores the current stack pointer register
at <Data 1> and loads <Data 2> as the new stack pointer register.
5. LP: Load Pointer

LP <REG>, <Data>

1051508 HP MAC GROUP

REG <Data>
Adcon

The two bits not used in the Adcon specify which register is to be loaded

with <Data> as below:

00:A left truncated to 16 bits
01:8 left truncated to 16 bits
10:ARL
11:AR2

6. STP: Store Pointer

5TP <Data 1>, <Data 2>

1051518 HP MAC GROUP
Adcon <Data 1>
Adcon . <Data 2>

Stores <Data 1> at <Data 2>

21

ARG: Get Argument Address

ARG <REG> <Data>

1051528 HP? MAC GROUP

REG <Data>

The 16 bit <data> field contains the argument number. Tf the datum is
0, the real address of the argument list is loaded into the register,

If the datum is 1, 2, 3, ..., 256; the real address of the corresponding
argument is loaded into the specified register. Bit 30 of the ADCON is
‘on' for the last argument and 'off' for all others,

22

Appendix 2
Instruction Formats
1. EBPG Extended HP Group
a, : Op Code
Dp 0y 00 0 Oy]
b. 1 0 0 0,1 0. 1,01} . ,
R A WA RN
Adcons
2A 1. MRG Memory Reference Group (Single Register)
0 | Op Code AtA
R|R DISPLACEMENT
LUl Jade PPy
2 1] Op Code A A Displacement
R IR .
L Ll tedo b p] pg] |
D
/I Segment . Page
RN EEEEIEEEEEE
2B 1. MRG Memory Reference Group (Double Register)
Op
d
S T T) N Bl
AjA
Orx x| A B{ RIR Displacement
N taf Lyig i
Op . Op Code
2011104000 A EEEETNEEN
AjA ,
ILix =i A B RR Displacement
l 12 HENEEN
D/ | _ Segnment Page
Sor b bt bbbl

23

3A. RRG Register Reference Group (Shift/Rotate)

A/ Op Code
01 040; 0 "BIO | i ¢ | L

3B. RRG Register Reference Group (Alter/Jump)

A Op Code
0010500 /ByT| § ||| ||

4, I0G Input/Output Group
_ lop | Op Code
1101040 L ENRANENE
5. Adcon
a 0lx x|{A{BlA}A Displacement
RiR
| vl Pl
b Lix x{A|BlAJA Displacement
RIR _
| NN
D/) .
I| | Segment § |y | | [| Pagq | |

The opcodes are identical to those listed in the HP2100A reference guide
except on page 18 the JSB opcode is a two's compliment subtract from the A
register. The extended system group is supplemental to the HP2100A system.

24

"SUMMARY

A design is presented for the VPI/EHP--an augmentation of the HP2100A through
microprogramming to produce a Virtual Programming Instrument/Extended HP. Writable
Control Store module 0' will contain the eighty-three normal instructions of the
HP2100A except that the jump-sub instruction will be replaced by a two's-compliment
subtract memory from the A-register. In addition, seven new instructions suppoert
pure reentrant code and recursive subprogram calls, Thus ninety instructions are
defined. Thirty-two software interrupts (supervisor calls) are made available
in addition to sixty-four device and fén system faults interrupts.

The firmware implemented architecture is designed to support a multiprogramming
operating system in the virtual memory philosophy. A uniform sized page with
a resident segment table allows each "active" program to possess an addressing
space of 16,777,216 words or 33,554,432 bytes. Each page is 512 words (1024 bytes)
in size; each segment contains up to 128 pages (65,536 words=131,072 bytes):
each program can have up to 256 segments (16 megawords=33 megabytes). A new
instruction fetch micro-procedure calculates all effective hardware addresses,
including indirect addressing and both pre-indexing and/or post-indexing,
Subprocedure calls result in automatic stacking of the machine state while a
return restores the previous machine state. In effect, this VPI/EHP instruction
fetch micro-procedure is a micro-programmed dynamic address translation (DAT BOX)
plus page fault and page replacement algorithm (with the replacement plan
alterable by the operating system).

Communications to and from the central University IBM/370 158-HASP-158
system is provided to CMS via dial-up asynchronous communication and to the

HASP queues via dial-up bisynchronous communication. The local HP 21MX based

25

HASP RJE station is thus available for I/O by the VPI/EHP as are all the other
peripherals of the central system and the associated network.

The purpose of this design and implementation is to provide an architecture
suitable for experimentation in modern programming systems. Needed software
includes:

Device Brivers (physical and logical)

Data Management Systems

File Management Procedures

Compilers and Assemblers (VPI/EHP resident and cross)

Operating Systems

